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Overview 

Lecture I: Basic formalism of TDCDFT 

                  ►TDDFT and its limitations 

                      ►Existence theorems and properties of TDCDFT 

                      ►Memory and nonlocality in TDDFT 

                      ►The VK functional 

              

Lecture II: Applications of TDCDFT in linear response 

                   

Lecture III: TDCDFT in the nonlinear regime 

                   



The Runge-Gross theorem of TDDFT 
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Situations not covered by the RG theorem 

1 
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TDDFT does not apply for time-dependent magnetic fields or for 

electromagnetic waves. These require vector potentials. 

The original RG proof is for finite systems with potentials that 

vanish at infinity (step 2). Extended/periodic systems can be tricky:  

● TDDFT works for periodic systems if 

   the time-dependent potential is also 

   periodic in space. 

 

● The RG theorem does not apply when  

    a homogeneous electric field (a linear  

    potential) acts on a periodic system. 

N.T. Maitra, I. Souza, and K. Burke,  

PRB 68, 045109 (2003) 
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Reminder: longitudinal and transverse vector fields 

Any vector field can be decomposed into a longitudinal and a  

transverse field, which can be constructed as follows: 
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V-representability of current densities 

Continuity equation only involves longitudinal part of the current density: 
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In general, time-dependent currents are not V-representable. 
This makes sense: j is vector (3 components), and V  is scalar (1 component). 

R. D’Agosta and G. Vignale, PRB 71, 245103 (2005) 
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If comes from a potential   tV ,r

then cannot come from   .,tV r

[both have the same             , and this would violate the RG theorem]  tn ,r



TDCDFT: basic existence theorems  

generalization of RG theorem: Ghosh and Dhara, PRA 38, 1149 (1988) 

                                                 G. Vignale, PRB 70, 201102 (2004) 
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determined by the pair of 

scalar and vector potentials 
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V-representability of TDCDFT on lattices: I. Tokatly, PRB 83, 035127 (2011) 

(see workshop, Friday 9:30)  



TDKS equation in TDCDFT  
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Gauge transformations 

The map 

 AV,  t,rj

is unique up to within gauge transformations of the form 
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where Λ is an arbitrary well-behaved function which 

vanishes at the initial time. 

note: can choose a particular gauge such that the scalar potential vanishes. 



TDCDFT in the linear response regime  
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TDCDFT: effective vector potential  
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 Why TDCDFT? 

► TDCDFT overcomes several formal limitations of TDDFT: 

    ● allows treatment of electromagnetic waves, vector potentials,  

       uniform applied electric fields.  

    ● works for all extended systems. One does not need the 

       condition that the current density vanishes at infinity. 

Example: Circular dichroism spectra require TDCDFT (formally) 

Rotatory strength  )()(Im *

11 nnnR  mp

Electric dipole 

response 

Magnetic dipole response 

  ),(
2

1
)( 1

3

1  rjrm rd



 Why TDCDFT? 

► But TDCDFT is also practically useful in situations that could, 

     in principle, be fully described with TDDFT:  

     ● Upgrading to the current density can be a more “natural” way 

        to describe dynamical systems. 

     ● Helps to deal with the ultranonlocality problem of TDDFT 

     ● Provides ways to construct nonadiabatic approximations 

Let’s talk about memory and spatial long-range in TD(C)DFT!  



TDSE versus TDKS 
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Full many-body TDSE: linear equation, instantaneous interactions. 
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Two kinds of xc memory in TDDFT 

     tnV KSxc ,0,0, r

dependence on initial states, except  

when starting from the ground state  

 dependence on densities: 

 

  

(nonlocal in space and time) 
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The adiabatic approximation 

      rrr tnVtnV static

xc

A

xc ,, 

Take any approximate ground-state xc functional, and plug in 

a time-dependent density. Most widely used: ALDA 
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ALDA depends only on the density at the same space-time point:  tn ,r

“Adiabatic” means: no history dependence, no memory, no retardation. 



Construction of the exact xc potential (2 electrons) 

Step 1: solve full 2-electron Schrödinger equation 
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Step 3: find that TDKS system which reproduces the density 
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Construction of the exact xc potential 

Ansatz:  
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Example 
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The adiabatic approximation for excitation energies 

● In general, the adiabatic approximation works well for excitations 

   which have an analogue in the KS system (single excitations) 

 

● formally justified only for infinitely slow electron dynamics. But 

   why is it that the frequency dependence seems less important? 

Fundamental question: what is the proper  

extension of the LDA into the dynamical regime? 

● Adiabatic approximation fails for more complicated excitations  

   (multiple, charge-transfer). See lectures by Neepa Maitra. 

 

● misses dissipation of long-wavelength plasmon excitations 

The frequency scale of fxc is set by correlated multiple 

excitations, which are absent in the KS spectrum. 



Nonlocality in space and time 

Visualize electron dynamics as the motion (and deformation) 

of infinitesimal fluid elements:  

t,r
t,r

Nonlocality in time (memory) implies nonlocality in space! 

Dobson, Bünner, and Gross, PRL 79, 1905 (1997) 

I.V. Tokatly, PRB 71, 165104 and 165105 (2005), PRB 75, 125105 (2007) 



Ultranonlocality in TDDFT 

Zero-force theorem:     0,,3  tVtnrd xc rr 
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Ultranonlocality and the density 

● 
 txn ,0

x x0 

An xc functional that depends only on the local density  

(or its gradients) cannot see the motion of the entire slab. 

 

A density functional needs to have a long range to see 

the motion through the changes at the edges. 



Harmonic Potential Theorem – Kohn’s mode 

J.F. Dobson, PRL 73, 2244 (1994) 

A parabolically confined, interacting N-electron system can carry 

out an undistorted, undamped, collective “sloshing” mode, where 

    ,, 0 tntn Rrr  with the CM position  .tR



Failure of nonadiabatic local density functionals 

  
xc functionals based on local density can’t distinguish the two cases! 

But one can capture the correct physics with current functionals. 

►undamped density oscillations 

►xc potential rides along with density 

►constant velocity field 

►bulk plasmon: periodic compression 

and rarefaction of the density 

►intrinsic damping due to decay of 

collective mode into single-particle 

excitations 

►oscillating velocity field 



“Upgrading” TDDFT: Current-TDDFT  
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● Continuity equation only gives the longitudinal current 

● TDCDFT gives also the transverse current 

● We can find a short-range current-dependent xc vector potential  



End of the first lecture 

► density-based nonadiabatic xc functionals in TDDFT are  

     plagued by ultranonlocality 

 

► a frequency-dependent LDA in TDDFT does not exist 

 

► upgrading to TDCDFT makes a local approximation possible 

Today’s summary: 

Tomorrow: 

● natural way of describing dynamical xc effects via viscoelastic  

     stresses in the electron liquid: the VK functional 

 

● Applications of TDCDFT in the linear regime:  

   solids, nanostructures, polymers, molecules, atoms 


