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Overview 

Lecture I: Basic formalism of TDCDFT 

                                

Lecture II: Applications of TDCDFT in linear response 

                  ►The VK functional 

                      ►Polarizabilities in polymers 

                      ►Nanoscale transport, stopping power of metals 

                      ►Linewidths of collective excitations 

                      ►Excitations in atoms and molecules 

                      ►Optical properties of bulk metals and insulators 

 

Lecture III: TDCDFT in the nonlinear regime 

                   



Motivation for TDCDFT 

► TDCDFT overcomes several formal limitations of TDDFT: 

    ● allows treatment of electromagnetic waves, vector potentials,  

       uniform applied electric fields. 

    ● works for all extended systems. One does not need the 

       condition that the current density vanishes at infinity. 

► But TDCDFT is also practically useful in situations that could, 

     in principle, be fully described with TDDFT:  

     ● Upgrading to the current density can be a more “natural” way 

        to describe dynamical systems. 

     ● Helps to deal with the ultranonlocality problem of TDDFT 

     ● Provides ways to construct nonadiabatic approximations 



TDCDFT beyond the ALDA: the VK functional  
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   ● automatically satisfies zero-force theorem/Newton’s 3rd law 

   ● automatically satisfies the Harmonic Potential theorem 

   ● is local in the current, but nonlocal in the density 

   ● introduces dissipation/retardation effects 
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...but how on earth did they come up with this expression?? 



TDCDFT beyond the ALDA  

Physical insight [G. Vignale, C.A.U., and S. Conti, PRL 79, 4878 (1997), 

                             C.A.U. and G. Vignale, PRB 65, 245102 (2002)] 

1 Derivation by “brute force” [G. Vignale and W. Kohn, PRL 77, 2037 (1996)] 
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► Consider weakly inhomogeneous electron liquid, modulated by 

    a charge-density wave of small amplitude and wavevector. 

 

 

 

 

► Calculate xc kernel                              where 

► It turned out later that the resulting expression can be cast  

     into hydrodynamic form 
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► Classical theories of the dynamics of continuous media  

     (elasticity and hydrodynamics) express many-body forces  

     as divergences of stress tensors 

► want local functionals of the displacement or velocity field 

► use general symmetries and sum rules 



xc viscosity coefficients  
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The xc viscosities have both real and imaginary parts, describing  

dissipative and elastic behavior. 

Subtle (but important) point: the xc kernels of the homogeneous 

electron liquid are nonanalytic functions of q and ω! 
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static limits of the xc kernels  
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static limits of the xc kernels  

The shear modulus of the electron liquid does not disappear for 

(as long as the limit q0 is taken first, which is what one should do for a 

Local approximation). Physical reason: 

.0

● Even very small frequencies <<EF are large compared 

   to relaxation rates τ-1 from electron-electron collisions. 

● The zero-frequency limit is taken such that local  

   equilibrium is not reached. 

● The Fermi surface remains stiff against deformations 

    since we’re above the electron-hole continuum. 

1



xc kernels of the homogeneous electron gas  

GK: E.K.U. Gross and W. Kohn, PRL 55, 2850 (1985) 

NCT: R. Nifosi, S. Conti, and M.P. Tosi, PRB 58, 12758 (1998) 

QV: X. Qian and G. Vignale, PRB 65, 235121 (2002)   
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Applications of the VK functional  

(A) In the (quasi)-static ω→0 limit: 

● Polarizabilities of π-conjugated polymers 

● Nanoscale transport 

● Stopping power of slow ions in metals 

These applications profit from the fact that VK does not 

reduce to the ALDA in the static limit. 

(B) To describe excitations at finite frequencies:  

● atomic and molecular excitation energies 

● plasmon excitations in doped semiconductor structures 

● optical properties of bulk metals and insulators 

Here the picture is less clear. Some situations are well 

described, others fail. We’ll try to analyze when and why. 



Long-chain molecule in a static field  

Field-free ground state 

Polarized state 

Polarized state predicted 

by (semi)local functionals: 

Overestimation of the 

polarizability 



TDCDFT for π-conjugated polymers  

ALDA overestimates 

polarizabilities of long 

molecular chains. 

The long-range VK 

functional produces 

a counteracting field, 

due to the finite shear 

modulus at  .0

M. van Faassen et al., PRL 88, 186401 (2002) and JCP 118, 1044 (2003) 



Other long-chain molecules  

    VK works extremely well for π-conjugated polymers, 

    but not so well for other types of long-chain molecules. 

H-chain: localized σ-bonds 

dominate, and we probe 

density regions with rs<1 

→ XC viscosities not well 

    known in these regions! 

M. van Faassen et al., PRL 88, 186401 (2002) and JCP 118, 1044 (2003) 



Stopping power of electron liquids 

Nazarov, Pitarke, Takada, Vignale, and Chang, PRB 76, 205103 (2007) 

► Stopping power measures friction experienced by a slow ion 

     moving in a metal due to interaction with conduction electrons 

► ALDA underestimates friction (only single-particle excitations) 

► TDCDFT gives better agreement with experiment: additional 

     contribution due to viscosity 
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Nanoscale transport 

Total dissipated power in the junction: 
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Nanoscale transport 

xc electric field: 
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D. Roy, G. Vignale, and M. Di 

Ventra, PRB 83, 075428 (2011) 

For narrow junctions (small transmission coefficient), the xc piece of the 

resistance becomes as important as the Kohn-Sham resistance. 



Excitation spectrum of simple metals: 

● single particle-hole continuum 

    (incoherent) 

 

● collective plasmon mode 

 

● RPA/ALDA misses plasmon  

   damping (multiple e-h excitations) 

plasmon 

Optical excitations 

of insulators: 

● interband transitions 

● excitons (bound 

    electron-hole pairs) 

Metallic systems vs. insulators 



Electronic transitions in doped quantum wells 

CB lower edge 

VB upper edge 

Interband transitions: 

of order eV 

(visible to near-IR) 

Intersubband transitions: 

of order meV 

(mid- to far-IR) 

10 meV  =  2.4 THz 



Quantum well subbands 

Electrons in a quantum well: 

►quantized in z-direction (discrete subbands) 

►free in the x-y plane (each subband is parabolic) 



Single-particle and collective excitations 

Intersubband charge and spin 

plasmons: ↑ and ↓ densities 

in and out of phase 

||q



TDCDFT for intersubband plasmons 

Since this is a “1D” system, we can integrate the continuity equation: 
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We only need the zz component of the xc stress tensor: 
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Explicit expression for the scalar xc kernel in 1D 
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● long-range nature of the xc kernel explicitly visible 

● satisfies Harmonic Potential Theorem and other symmetries  

G. Vignale and W. Kohn, in “Electronic DFT” (Plenum, 1998) 



ISB plasmon frequency Ω and linewidth Γ 

Single well: VK gives good results for electronic linewidth 

Double well: VK overestimates linewidth. The tunneling barrier makes 

                     the electronic flow very “non-hydrodynamic”. 

C.A. Ullrich and G. Vignale, Phys. Rev. B 58, 15756 (1998) 



Small-matrix approximation of TDCDFT with VK functional: 

Atomic excitation energies with TDCDFT 
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Velocity field of 1→2 excitation: 
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More general formalism for molecules: M. van Faassen, Int. J. Mod. Phys. B 

                                                               20, 3419 (2006) 



Atomic excitation energies 

conditions for validity of the  

VK functional: 
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OK for ss, but badly  

violated for sp! 



Analysis of the VK functional for atoms  

► Frequency shifts: 

 

    ● Generally in the right direction; but only small for ss,  

        and tend to overshoot for sp excitations 

 

    ● need more accurate                , especially around nucleus (rs<<1) 

 

    ● excitations with large        are problematic. Need higher gradients.  

       [partial cure: Tao and Vignale, PRL 97, 036403 (2006)]        
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► Imaginary parts: 

   

    ● small but finite, often of the same order as frequency shifts. 

 

    ● unphysical: a finite system ought to have zero linewidth. 

       Difficult to achieve for a functional with the homogeneous 

       electron gas as reference system! 



TDCDFT for bulk semiconductors  

Berger, de Boeij, and van Leeuwen, PRB 75, 035116 (2007) 

● if shear modulus is ignored (CNT,QVA), marginal improvement 

   over ALDA. 

● including transverse shear modulus (QV), spectrum collapses. 

● like in atoms, the inhomogeneity is too large; VK conditions violated 

● usage of VK for insulators questionable, but can perhaps be improved 

CNT: Conti, Nifosi, Tosi 

QV: Qian, Vignale 

Experiment: 

Lautenschlager, Garriga, 

Vina and Cardona, 

PRB 36, 4821 (1987) 



Macroscopic dielectric function of metals 

Berger, Romaniello, van Leeuwen, and de Boeij, PRB 74, 245117 (2006) 

● cures deficiencies of ALDA (low-frequency Drude-like tail of spectrum) 

● again, the transverse shear modulus causes trouble. Results are better 

   if it is neglected. However, this might be fixed if we had better 

   expressions for the shear modulus. 



The VK functional: summary and words of caution  

►Relies on a “double-LDA”: both the ground-state density and  

   external perturbation are assumed to be slowly varying. 

   In practice, these conditions are often violated,  

   which can be a source of serious problems! 
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► Depends crucially on order of limits: q→0 first, then ω→0. 

    Does therefore not reduce to ALDA in the ω→0 limit, due to  

    xc shear modulus of electron liquid which stays finite. 

    The discontinuity in fxc is a very subtle point, and sometimes  

    seems to lead to unphysical results, depending on the system.  

    How to take the static limits properly is still subject of research. 

► Required input for VK functional is only approximately known. 

    Need more accurate expressions  for 

    especially at high densities.   

►VK is based on the electron gas, which is an infinite reference system.  

    Therefore, excitation energies have an imaginary part. 

    For finite systems, this is unphysical, but for extended systems, 

    this is the correct physics. VK is therefore ideal for plasmons. 



End of the second lecture 

► The VK functional in TDCDFT works great for polarizabilities  

    of polymers and linewidths of collective plasmon excitations 

 

► The situation is less clear for excitations in atoms and molecules 

     and optical spectra of metals and insulators. These seem hard to 

     capture with electron-gas based functionals. 

 

► VK is promising, but needs improvements (e.g. local → semilocal) 

Today’s summary: 

Thursday: 

● Dynamics in the time domain: memory and dissipation in TDKS 

 

● A rigorous extension of the LDA: TDDefFT versus TDCDFT 

 

● Time-dependent optimized effective potential 


