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Overview

Part | : Introduction to nonequilibrium Green’s functions

- Second quantization

- Time-propagation and Keldysh contour
- Feynman diagrams and the self-energy
- Kadanoff-Baym equations

- Bethe-Salpeter and double excitations

Part | I: Density functionals from many-body theory

- Kohn-Sham equations and the action functional
- Adiabatic connection in TDDFT
- Conserving density functionals and the xc-kernel

( material inspired by

“ Nonequilibrium Many-Body Theory and the Keldysh Formalism”
Gianluca Stefanucci and RvL, Cambridge University Press
to be published 2012/2013)



Basic one-particle quantum mechanics

We measure a particle to be in interval A,
Its corresponding state is denoted by V[

Zn)
These states have the property

<xn|xm> — 5nm

and form a complete set
) =) |en)(@a|P)
n

If the system is in state ‘\Ij> then the probability to measure state |aj‘n> is

P, = [an|0)* = [ (zy)°



Two particles

If we simultaneously measure a particle ™
in intervals A ~and A, the state is

T Ty
° ° ° ° ° \
The particles are indistinguishable x (fermion) - x (fermion)
Ty Top) = ATy Tp) = )\QIxn ) — A= +1

The states are normalized

<37n CIjm|xn’ xm’> — 5nn’6mm’ L 5nm’ drrm’

Let us consider fermions. Only the states with n > m are linearly independent and

we have
W) = Z T, T ) (T T | V)

n>m

an — |<37n mm|\Ij>|2 — ’\Ij(xn7ajm)’2



Second quantization

For N fermions we have (with P a permutation)

‘Xl...XN> = (—1)P ‘XP(1)°--XP(N)> X=TI,0

<X1...XN‘yl...y _Z Pl_[(S YP(j)

P

There is a unique operator &T(X) that generates the position basis. It is defined by

x1) = %(X1)|0> A A
x1x2) = Plxe)lx1) = ¢T(X2)W(>A<1)\0>
x1...xn) = TN oxvo1) = ¢ (xw) - 9T (x1)]0)

@@T(X) is called creation operator



It follows : DT (x) (y) = =t (y)df (%)

Remember that the adjoint of an operator O is defined by
(@[07[x) = (x|O] @)

The adjoint ﬂ(x) of the creation operator therefore satisfies

(x1 ... XNt [P (xN)y1- YN = (y1 YN|1ET(XN)|X1 CXN—1)
=(y1...yN|X1...XN) = Z PH5 —XP(])
P

and hence (check yourself!)

N
Y(x)ly1 - =) (DN FS(x = yr) Y1 Yh—1Yhe1 - YN)
k=1




For example:

) = 0
p(x)y1) = 6(x—y1)0)
/ ) = dx—y2)ly1) —ox—y1)ly2)
) = (X —y3)|ly1¥y2) —0(x—y2)|ly1¥3) +(x —y1)|y2¥3)

The operator 1(x) is called annihilation operator

It follows (with anti-commutator |A, B], = AB+ BA ).

D00 = [dT0.6T )] =0
D)) = dx—y)




The density operator is defined by

and has the property
N
n(x)|x1...XN) :Z 0(x —Xj) |x1...XN)
1=1

For example:

D) Y(x)|y1y2) = ¥T(x) (0(x —y2)ly1) — 5(x — y1)ly2))
= d(x—y2)ly1x) — 0(x — y1)|y2x)
= (0(x—y1) +d(x—y2))ly1y2)

The expectation value n(x) = (U|n(x)|V)

is the particle density of the system in state |¥)



The Hamiltonian

The time-evolution of a N-particle system is given by the Schrodinger equation

10U (t)) = H(t)|¥ (1)) W (to)) = o)

It has one- and two-body parts

Kinetic energy + external potential Two-particle interactions

If we use a specific Hamiltonian we have to give its representation in a given basis.



For one particle in position basis we can, for example, define the Hamiltonian
7 1</ 1 2 /
(x|} = (—5V% + v(x, 1) (x]x)

The Schrodinger equation

A

hlap(1)) = 304 (t)) V(x, 1) = (x|v(t)

in the position representation then has the form

iOp(x,t) = (xhlp(t)) = /dx’ (x|l ([ (6))
/dx’ (—%VQ—l—U(X,t)) <X]X'><X’W(t)>
<—%V2 v(x,t)) Y(x,t)




Similarly for N particles we define the Hamiltonian by

(x1...xn|HIX, .. xy)

2 / /
E ——V +v(x;,t) + = g w(x;, X5) | (X1...XN|X] ... XN)
Z#J

or equivalently, for any state |\If>
) ” ! Many-body wave function

(x1...xn|H|T)

Z——V2+v X;, 1)+ = Zw Xi,X5) | (x1...xn5|P)
Z#J

Since the one- and two-body potentials are diagonal in the position representation
it is easy to express them in second quantization



For the 2-particle interaction we have

N
- 1
Wi xy...xn) = 5 Z w(X;, X5)|X1 ... XN)

7]
Since the density operator has the property
N
n(x)|xi...xy) = Z 0(X —X;)|X1...XN)
j=1

it follows that

W =

N = DN~ DN -




Similarly for the one-body potential

N

V(t)|xi...xy) = Zv(xj,t)bcl LLLXN) = /dxﬁ(x)v(x,tﬂxl XN

J

A

V() = / dx (%) (x) v(x, 1)

The kinetic energy operator is only slightly more difficult. Let’s illustrate it for
3 particles. Remember that

D(x)y1y2y3) = S(x—y3)|y1ye) —6(x — y2)|y1y3) + 6(x — y1)|y2 y3)

w(X)V%ﬂ(X) Y1y2y3)

= V?6(x — y3)|y1 y2x) + V(x — y2)|y1xys) + V?6(x — y1)[xy2 y3)



If we therefore define

then since T is Hermitian

<Y1Y2Y3 !T\X1X2X3> = <X1X2X3 \T|Y1Y2Y3>*

(szl + V?’z + V§,3) (X1X9X3|y1y2y3)"

N — DN~

(Vil T v?@ T V§,3) (Y1y2y3|X1X2X3)

yielding exactly the matrix element of the kinetic energy operator. Hence

At = / dx O (x) (—%vz + v(x,t)) (%)

% / dxdy w(x,y) O ()9 (y)d(y)d(x)




Often also a discrete representation is used by defining

A

i, = [ dxpn ()0 () =[x x)00

where O, is an orthonormal set of orbitals

The Hamiltonian then attains the form

where
hij (1) = / dx % (%) h(x, £) g} (%)

Vit = / dxdy w(x, y) ¢t (%)% () ()1 (%)



Time propagation

The next task is to solve the Schrédinger equation  §0;|W(t)) = f](t) W(t))

If we divide [to, T ] into n intervals A then
(1)) e e A cmH00M (1)) = T { e HEDA e HHE0A L |0 (1))

— T {e—iZ? ﬁ(tj)A} T (to))

where 77 denotes time-ordering that orders the latest operator most left.
We used that operators commute under time-ordering

T {A(tl)é(tz)} =T {E(tZ)A(tl)}
and hence, in particular

T {eA(tl)eé(tg)} _ T {BA(t1)+B(t2)}



In the limit A => 0 then

W) =T {f d’fm”} Wto)) = U(T, t0) [ (ko))

S

Time-evolution operator

It follows from the Schrodinger equation that
0, U(t,t") = H)U(¢,t')
Let us now calculate an expectation value of an operator O(t) :

(O()) = (T(B[OB)¥(1)) = (Yo|U(to,t) O(t) U(t, 10)|o) = (Yo|On (£)[Po)

where

O (t) = Ulto,t) O(t) U(t, to)

defines the Heisenberg form of the operator O(t)



It satisfies the equation (check yourself!)

0 O (t) = —i [OAH(t),ﬁH(t)} + (até(t))H

For example, you can check that

A

) 1 )
PO (X, ) = <—§V2 + v(x,t)) Y (x,t) + /dy w(x,y)ng(y,t) Y (x,t)
It will be useful to extend the concept of expectation value to ensembles
(O (1)) = > wa(Wa|On ()W) = Tr {5 On(®) }

p=> wu|Wn)(Ty| D w, =1 Wi > 0
n n

where we defined Tr A = Z((I)m\fl@m} with |®m) any complete orthonormal set



An important special case is
e~ Pln

DI

HM|U,) = E,|¥,) HM = H(ty) — uN

Wy —

_ROM
BﬂH

p = Wy |V ) (W | = -
zn: fari¥a Tr {e—ﬁHM}

This corresponds to an initial system at inverse temperature [ and chemical potential [

_5HM —i[(to—iB)—to) H ﬁ(to — 13, 10)

If we therefore define

A B [:[(t) z € [tg, 00|
H(z) = { HM z € [to,to — 10

then we can write



Time contour

(L.V.Keldysh, Sov.PhysJETP20, 1018 (1965))

“‘“: —i[7)

A A

1r {U(to — 10, to)U(to, t)O(t)U(t, tO)}

(O(t)) =

Tr {f](to —w,to)}

Tr T{e_ifv dZﬁ(z)OA(t)}
Tr T {6—7;1“7 dzﬁ(z)}

(O(t)) =

Time ordering is now defined along the Keldysh contour




Perturbation expansion

Tr T {e_ifv dz (ﬁO(ZHW(Z))OA(t)}

©.@

(_nz,) / dzy ... dey Tr T {e_ifv 4= Ho(=) (1)1 (1) . . W(zn)}
gl
The integrand has the form

Tr 7{ —BEM O (YW, (21) . . WHO(ZR)} -

(H ; /dxjdx w(x;,x )) Tr T{ ﬁHMOHO H szk szk)wHo(szk)Q;Ho(szk)}

j=1

We thus have to deal with time-ordered strings of an equal number of
creation and annihilation operators



We therefore define the general correlator ) =Xz

LT T {e BB ) ). (1))
— in Ty T {G_i‘/:V dzﬁo(Z)}

also known as the (noninteracting) n-particle Green’s function which has some
nice properties (as explained very soon) if we define the time-ordering for
field operators such that every interchange yields a minus sign

If we now let O(t) be a |-body operator :

A

owszwwaW@>

then we can expand its expectation value in terms of (g



This gives

Tr T {e_ifv d'zmz)()(t)}
T T {e—z’f,y dz Fl(z)}

(O(t)) =

. \ k
—i Y % (%) [dx [w(1,1")...w(k, k') o(x,2)gor+1(x2, 1,1, .. ;x' 2T 1T 17 L) |xex/ ot

0. @)

> (%)kfw(lall)---w(kak')g%(l,l’,...;1+,1’+,...)
k=0

and can be rewritten as

(O(t)) = —i/dxo(x,t) G(x2,%x'27) |x=xt 2=t



where we defined the (interacting) |-particle Green’s function as

0@

> LG Tw 1) wlk K) garg (a, 1, 1, 50,1717
k=0
G(a,b) =

S A ()T fw@ 1) wlk k) gar (L1, 1H, 14, )

It is alternatively defined as

/ 1 Tr T {e_ifv dzjq(z)g@(l)?ﬁ(l’)}
SL) =g - T{e_if’Y dzf?z(z)}

— _Tr [ﬁT{z@H(l)%EL(l/)H

It remains to find an explicit simple equation for g




Wick’s theorem

where we denoted  ¢(1,1") = ¢1(1,1")
The proof of this identity is easy: Apply the operators
. 1
Zazj o h(X]7ZJ) h(X7 Z) — _§v2 —|—?)(X, Z)

on both sides of the equation and check that both sides satisfies
the same differential equation and boundary conditions



what you need is that

(1., — h(5))g(j,7") = 6(j, ") (=0, —h(j'))g(j.5") = 6(5,5")

gk(---7t07---):—gk(---,to—iﬁ,...)

which follow directly from the definition of these quantities (check yourself)
(it is now also clear why the field operators need to anti-commute under
the time-ordering operator)

The equations of motion for g(l,1’) are simple one-particle equations and
we can therefore easily solve them.

In combination with Wick’s theorem this leads to an explicit expression
for the interacting Green’s function as a perturbation series



Perturbation expansion for the Green’s function :

Lty | A0 AT R

i 2 E : :

- 0T
i—. OF L 17) . w(k k) g(l’i1+) 9(1’,.1’+) g(l’,.k”r)
s o g(k’:ﬁ) g(k’,:1’+) g(k’:k’ﬂ

It is now only a technical matter to evaluate these terms

This leads to Feynman diagrams. Let us give an example an expand the
numerator N(a,b) to first order




Expanding the 3x3 determinant along the first column we find

(1), ' o / 9(1;1+) g9(1;1'")
NO(aib) = go(ait) [ diavw(ury| S0 S0
i : g(a;17)  g(a;1'7)

+ §/d1d1 (1, )g(L; b>| g(1;17) g1 1)

i , a; 1™ a; 1t
+§/d1d1w (1,101 ;b)| ggl;bi ggl;h; ‘

ek

o0 [ e

b b
(b,1,1') (b,1',1) (1,b,1")
A\ p g
a a a
1 ' E ; ;> '
b b ’
' VN
(1',1,b) (1.6,1) (1,1.0)
g A g g



It is not difficult to prove that the disconnected diagrams from the numerator
are cancelled by those of the denominator and we can further simplify to

gga, bi gga, 1:; . gga, k/ig
>0 1,b) g¢(1,1 . g(1, K
i* w(1, 1’ cw(k K 7 , , .
g(k',b) gk, 1%) .o gk KT | oy

where in the expansion of the determinant we retain only the connected (C) and
topologically inequivalent (Tl) terms

>

>

A
+:“ON\O+




Self energy

The expansion of G has the structure

G:_._JFMQH n «_@WQH + ..

where the self-energy is defined as the sum over irreducible diagrams
(i.e. can not be cut in two by cutting one g-line)

3(12) = 1< =2 = 1?2 T S P 1%2 +...

The Green’s function thus satisfies the equation

G(1,2) = g(1,2) +/dsd4g(1,3)2[g](3,4) G(4,2)



Skeletons

A skeleton diagram is a diagram without self-energy insertions, for example

>, 3,

The corresponding skeleton is therefore

By replacing ‘g’ by ‘G’ in the skeleton we sum over all self-energy insertions



n, times n, times
_ N M B %

n, times n, times

1y N, Ny 1y Hs

A AR Chse

ns times

It follows that

Z[G]=©+ y;\/t» +§ - §+%+

where we sum over all dressed irreducible skeletons in terms of G




We therefore find the Dyson equation

G(1,2) =¢g(1,2) + / d3d4 g(1,3) X|G](3,4) G(4,2)

or, if we use the equation of motion for g: (id,, — h(1))g(1,2) = (1, 2)

(85, — h(1))G(1,1") = &(1,1) +/d2 »[G](1,2) G(2,1)

Y

This is a self-consistent equation of motion for the Green’s function that
needs to be solved with the boundary conditions

G(Xlto — 13, 2) = —G(X1t07 2)
G(l,XQtO) = _G(17X2t0 — 7/6)



Particle/Hole propagators

If we denote (A) = Tr pA then the Green’s function has the structure

G(1,2) = ~i(T {du (V)i (2)}) = 021, 22) G7 (1,2) + (21, 22) G<(1,2)

> — sl i
G~(1,2) = —i{vu (1) Yy (2)) Propagation of a “particle” (added electron)

G=(1,2) = Z@L(QWHQ» Propagation of a “hole” (removed electron)

Natural tool in quantum transport; electrons are continuously added and
removed from the central system.

The same is, of course, true for photo-emission



SH(1,2) ~ (21, 22)

Hartree-Fock type diagrams are instantaneous

The self-energy has the structure
%(1,2) = 27 (1,2) + 6(21, 22) B7(1,2) + 0(22, 21) B5(1, 2)

Putting the structure of the self-energy and the Green’s function in the
equation of motion for the Green’s function we can undo the contour
integrals and derive real-time equations for the particle and hole propagators.

These are the Kadanoff-Baym equations



Kadanoff-Baym equations

For example, for the hole propagator we have the equation

Time-dependent
external field

(i0;, — h(1))G=<(1,2) — /dx3§:HF(1,x3t1)G<(X3t1,2)

_ /tl 435> (1,3) — (1, 3)]G<(3.2) — /tZ 42 5<(1,3)[G (3.2) — G<(3,2)]

to to

”

Collision or electron
correlation terms : \

Memory kernels Initial correlations

to—10
+/ 13%1(1,3)G! (3,2)

to



Kadanoff-Baym equations: practical solution

For practical solution the Green function is expanded into one-particle states

G(1,2) = Z pi(x1)Gij(t1, t2) ] (x2)

For the one-particle states we can, for instance, use the solutions
to the Hartree-Fock or Kohn-Sham equations

The Kadanoff-Baym equations become equations for time-dependent
matrices

If we use the notation

00 6]
Foa= | fmem Fxg= /0 ar £(r)g(7)

to



then the full set of Kadanoff-Baym equations is compactly given as

10, GS(t1, 1) = RIFE)GS(t1,t0) + [25-GA L 2R . G5 + 1.6 (¢4, )

L0, G5 (t,ts) = GS(t1,ta)h () + |GS - 24+ GR .25 1 G121 (11, 1)
0,01, 7) = [2R.¢1+ 21 xaM| (¢, 7)
—ia,Glrt) = |al- 24+ 6M x| @,1)

where all products are matrix products and the retarded and advanced functions
are defined as

KR E) =0t —t) [k~ (¢, 1) — k<(t, )]

EA ) = =0t — [k~ (¢, 1) — E<(t,1")]




Time propagation of the Kadanoff-Baym equations

Solve equilibrium case ::> Carry out time-stepping in the double-time
on the imaginary axis plane ( possibly with external field applied)
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The conservation laws

From an approximate Green function we can calculate several observables

(n(1)) = —iG(1,17) <= density

J(1)) = —i {2—2 DY | A(l)} G(1, 1/)1’=1+<}:' current density

(P(t))) = / dx; (§(1)) <= momentum

These observables are related by conservation laws such as

O, (n(1)) +V1-(j(1)) =0 <= number conservation

O, (P(t1)) = —/dX1 (n(1))E(1) + (1)) xB(1)] <= momentum

conservation

Will these relations be satisfied if the ingredients are calculated
from an approximate Green function !



The conservation laws ( G.Baym, Phys.Rev. 127, 1391 (1962))

Conservation laws, such as those of energy, momentum, angular
momentum and particle number, are automatically obeyed when we
use so-called Phi-derivable approximations for the self-energy.

5O
5G(2,1)

& - Ry L

For Phi-derivable approximations the expectation values are
independent from the way they are calculated

$(1,2) =




Conserving many-body approximations

Hartree-Fock ? = ? - i\»ﬁ

w s 0. LB




The hydrogen molecule in a laser field | Equilibrium (no field applied)

v(rt) = E(t)z
E(t) = 0(t — to)Eo

’

20
15

7

On the time diagonal :

ni(t) = (al y(Oan(t)) =Im G5 (t,t) ImGS . (th,t2)

Og0g

0.5

Im ngo'g (tla tZ) Nonequilibrium (field applied) Im G;U,O'u (tla t2)



Quantum transport

Green’s functions are a natural tool in quantum transport; electrons are
continuously added and removed from the central system.

(see e.g. P. Myohanen et al, Phys.Rev.B80, | 5107 (2009))
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Time-dependent buildup of the |-V curves

Hartree-Fock

HF
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electron correlations beyond mean-field wash out |-V features



Linear response and optical absorption: double excitations

Example: Bench-mark system: 6 site Hubbard ring with 2 electrons

N
~

1A2

. i 1 A
H(t) — Z hij(t) a;-r a; -+ 5 Z Wi5 N3Ny wl] p— U5Z]
]

1J

(Niko Sakkinen, M.Manninen, RvL, New.].Phys. 2012)




Response functions

Let us see how an (in general nonequilibrium) system reacts to a small
additional perturbation. For instance

on(l) = —i6G(1,17) = /d2 x(1,2)6v(2)
Let us define a generalized response function by

5G(1,1) = /d2P(11’;2)5v(2)

and try to find out its diagrammatic content. Ve have

(i), — h(1))6G(1,2) — dv(1)G(1,2) = / d3(S(1,3)5G(3,2) + 65(1,3)G(3,2))

(18, —h(1))6G(1,2)— / d3%(1,3)0G(3,2) = dv(1)G(1,2)+ / d3d4d5 2



Which gives

3
5G(2,2) = /d1G(2’,1)5v(1)G(1,2) +/d1d3d4d5G(2’,1)§

and finally

5%(6, 3)
5G(4,5)

[(2'2;1) = G(2,1)G(1,2) +/d3d4d5d6G(2’,1)G(3,2) I'(45;1)

which is diagrammatically given by (writing [ = GG A)

Bethe-Salpeter kernel

vertex A\




Single and doubly excited states

For instance at 2nd Born level we have the response kernel

TD Hartree-Fock
only singly excited states

TD 2B containing /

doubly excited states



5%2( ) — —ZéGzz t t_l_ Z/ dt ng 5”3( )
to

5?Jj( ) — )\51j 5(t — to)

X1

COoC 00O
W N = O = N W




(Niko Sakkinen, Matti Manninen, RvL -New | Phys 2012)

Excitation Spectra of a Hubbard ring, 6 sites and 2 electrons
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Doubly excited state



