

Overview of spectroscopies III

Simo Huotari

University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

UNIVERSITY OF HELSINKI

Motivation: why we need theory

Measurement vs. experiment

Equipment for measurements

Equipment for experiments

Part 1 – Excitations and properties

Part 2 – Techniques (general)

Part 3 – Sample environments

Tomorrow – Techniques (examples)

Classification of excitations

(non-exhaustive)

	Collective	"Single particle"
Vibrational	Sound waves (phonons)	Molecular bending, stretching
Spin	Magnons, spin waves	Spin flip
Electronic	Plasmons, orbitons, polarons	Crystal fields, excitons, Compton, electron removal

+ multiples (bimagnons, double plasmons, ...)

Properties

Macroscopic dielectric function $\varepsilon_M(Q, E) = \varepsilon_1(Q, E) + i \varepsilon_2(Q, E)$ Complex refractive index $n + i \kappa$ Reflectivity RAbsorption coefficient $\alpha = 4\pi\kappa/\lambda$ Loss function $-\text{Im}[\varepsilon_M^{-1}(Q, E)]$ Dynamic structure factor $S(Q, E) = -\left(\frac{Q^2}{4\pi^2 e^2 n}\right) \text{Im}[\varepsilon_M^{-1}(Q, E)]$ Spectral density function $A(k, \omega)$ Resonant Raman spectra

Dynamic structure factor is also the Fourier transform of the **density correlation function** - which is the probability to find two different particles separated by \mathbf{r} and t.

Energy-loss spectrum

Magnons: spin waves

Magnetic excitations: orbital physics in transition metal oxides $$\rm Sr_2IrO_4$$

J. Kim et al. 2011, arXiv:1110.0759v1 [cond-mat.str-el]

Plasmons

Band structure picture

Both *energy* and *momentum* can be controlled

Part 1 – Excitations and properties

Part 2 – Techniques (general)

Part 3 – Sample environments

Tomorrow – Techniques (examples)

Outgoing particle

		No	thing	Photon	Electron
	Nothing	Skiing at the Pyrenees		Light emission, photoluminescence	Electron emission
incoming particle	Photon	Absorption (IR, UV/vis, vacuum UV, x-ray) CD; XMCD		Ellipsometry, reflectometry, ATR, Raman, Brillouin, x-ray scattering, Compton scattering	Photoemission Auger spectroscopy
	Electron El ak + Time-of-flights + Non-linear phenomena		ectron sorption	Inverse photoemission Cathodo- luminescence	Electron energy loss Tunneling
+ +			Differences in: - Dynamic range of Q and E, coupling to spin, nuclei, - Bulk or surface sensitivity - Resolving power in energy, momentum, time, space - Element specifity (useful for complicated systems)		

Particle probing depth

Transition rate from state |A> to state |B> is given by the Fermi's Golden Rule:

$$W_{BA} = \frac{2\pi}{\hbar} \left| \left\langle B \left| H \right| A \right\rangle + \sum_{I} \frac{\left\langle B \left| H \right| I \right\rangle \left\langle I \left| H \right| A \right\rangle}{E_{A} - E_{I} + i\Gamma/2} \right|^{2} \delta(E_{B} - E_{A}) + O(H^{3}) \right|^{2}$$

From $\mathbf{p} \cdot \mathbf{A}$ - Resonant scattering (Resonant Raman, resonant inelastic x-ray, fluorescence....)

Dynamic structure factor

Average density-density correlation function

$$G(\mathbf{r},t) = \frac{\mathbf{1}}{N} \int \langle \rho(\mathbf{r}' - \mathbf{r},t) \rho(\mathbf{r}',\mathbf{0}) \rangle d\mathbf{r}'$$

Dynamic structure factor $S(\mathbf{Q}, E) = \int \int G(\mathbf{r}, t) e^{i\mathbf{Q}\cdot \mathbf{r}} e^{-iEt}$

Small Q interference effects are important (collective excitations)

Large Q independent particle picture (Compton scattering)

Absorption and scattering

Absorption

Scattering

$$P(\omega) \propto \sum_{f} |\langle \Psi_{f} | \mathbf{p} \cdot \mathbf{A} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{f} + \omega) \text{ Dipole selection rule}$$
$$S(\mathbf{Q}, \omega) \propto \sum_{f} |\langle \Psi_{f} | \sum_{j} e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{f} + \omega)$$

Use the momentum transfer dependence of the scattering matrix element: as $q \rightarrow 0$ then $e^{i\mathbf{Q}\cdot\mathbf{r}} = \mathbf{1} + i\mathbf{Q}\cdot\mathbf{r} - (\mathbf{Q}\cdot\mathbf{r})^2/\mathbf{2} + \cdots$ dipole Higher order multipoles

Part 1 – Excitations and properties

Part 2 – Techniques (general)

Part 3 – Sample environments

Tomorrow – Techniques (examples)

Phase diagram of water

Extremely high pressures

pressure = force / area

V.M.Giordano, T. Pylkkänen et al. ESRF ID16

Experimental details

- 1 mm diamond tip (culet)
- \varnothing 5 mm Be gasket
- \varnothing 350 micron sample size
- X-ray beam 100 \times 50 μm^2
- Ruby chip for *P* calibration

Low temperatures

Liquid nitrogen cryo-jet (77 K)

He sorption pump (1 K)

F. Albergamo et al., ESRF

Extremely high temperatures (thousands of deg): Laser heating and aerodynamic levitation

High temperatures (up to 1000 deg C): furnaces, hot air guns

Droplet of liquid basalt BCR-2 during levitation. The sample was heated from the top using a CO_2 -laser. The diameter of the sphere was ~2 mm. A. Pack et al., Geochemical transactions 2010, 11:4

Modern 3rd generation synchrotrons

Advanced Photon Source, USA

Super Photon Ring 8 (Spring-8), Japan

European Synchrotron Radiation Facility, France

