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Density functionals from many-body theory

- Kohn-Sham equations and the action functional
- Adiabatic connection in TDDFT
- Conserving density functionals and the xc-kernel



The time contour action functional

We define the following action functional :

A[v] — ¢ InTr {(A](to — iﬁ,to)}

Where we used the time contour ordered evolution operator of
nonequilibrium Green function theory
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Why is the action defined like this ?

partition
If we evaluate the action for a static potential function of

then we find statistical
f mechanics

iA[v] = —InTr {e_ﬁﬁo} = —InZ = ()

A
lim -= = lim Q2 =FE — uN
1'—0 ﬁ 1T'—0

The action functional is therefore a time-dependent
generalization of the familiar energy functional
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If one takes the derivative of the action respect to the potential one
finds:
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The action is therefore a generating function for the density if
one makes changes in the potential.

(Just as the grand potential is in statistical mechanics)
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The action as a density functional

We then define the density functional :

~

Aln] = —Alv] + /Cdln(l)v(l)

We regard v[n] as a functional of n (Runge-Gross theorem).

This functional has the property :
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So this is our variational principle:

0A[n]

sn(r,t) o(r;?)

input v(rt)
known external potential
of the system of interest

output
density n[v](rt)
This requires in practice an approximation for the functional A[n].

We are going to use the Kohn-Sham method to make the
finding of such approximations easier



Kohn-Sham equations

We define similar functionals for a noninteracting system:

A A

H(t) = T + Vi(t) Vi(t) = [ dritrye(r.)

Ao =i T {Ti(to — if.10)

There is nothing new to derive. We already know that

0 Ag[vs]
ovg(r,t)

= n(r,t)

V4 =V—




Similar to the interacting system we define

~

Agln| = —Aglvg| + /Cdln(l)vs(l) = vg(r, 1)

The xc action functional is then defined as

)n(2)

—I“

Age[n] = Asln] — Aln] - % /O d1 /C d25(t1,tz)?r(11

Differentiation gives :

0Azc 0As 0A

U;z;c(l) — 5%(1) - 5n(1) 5%(1)




=0  Uz:(l) =vs(1) —v(1l) — vy (1)
Vs(1) = v(1) + v (1) + vee(1)

Since this is the potential for a noninteracting system with density n(r,t) we
obtain the Kohn-Sham equations :

K input known external potential

(5 V2 (1) om(1) + 0e(1)65(1) = i01i(1)

- 0 Agc
") =3 RIGF veell) = 5

Y AN

output density n[v] How to find an
° ! approximation for this ?




Connection to the time-dependent pair-correlation function

We connect the true system to the Kohn-Sham system by means of
a coupling constant integration (standard trick of ground state DFT):

r 3\

AMuyl =ilnTr { T exp (—z/ dt(TA+f/,\(t)+)\VAV)> >
C

\

/

V) = /dr n(r)vy(rt) <— A\ dependence of

the potential is
We then use such that density
is A independent

N N 1 A
Al[?}l] — AO [UQ] + / d)\ dA [UA]
) )\



The differentiation with respect to the coupling constant then gives

Alv] = Agv,] +/01d>\/0d1n( d”/\ / d>\/ d1d2w(1,2)T*(1,2)
0(t1,t2) ﬁ

r] — 12 Diagonal two-particle density
matrix

w(l,2) =

from which we then directly obtain

Ageln] = %/Cdlew(l,Z) (/OldAFA(l,Q) - n(l)n(2)>



We thus obtain the time-dependent generalization of the
coupling constant integration formula of ground state DFT

Apeln] = 5 [ d1dz 222 nn@)(g(1,2) - 1)

r1 — ro] f

G(1,2) = /1 d\ g (1,2) i} Coupling constant averaged
0

pair correlation function




Time-dependent xc-potential
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See RvL, O.Gritsenko, E.|.Baerends, Zeitschrift fur Physik D33, 22(1995)



Time-local part of the xc-kernel is

The xc-kernel . . . .
proportional to the pair-correlation function
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Responsible for frequency dependence : memory




Action functionals

The equation of motion of the Green function can be derived
from an action principle with action:

iA[G] = ®[G] —tr {In(-G™") + (Gy'G — 1)}

where ﬁ
0P

Baym’s Phi-functional == @ =)

and

Go'(1,2) = (i0y, — h(1))6(1,2)

(Ulf von Barth, Nils Erik Dahlen, RvL, Gianluca Stefanucci, Phys.Rev.B72,235109 (2005) )



Proof:

iA[G] = ]G] —tr {In(-G™') + (G;'G — 1)}
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Constructing new conserving xc-functionals with memory

Let us now restrict the domain of Green functions to those of noninteracting
systems with external potential vs

Alvs| = A[Gs|vs]]

where (10y, — hs(1))Gs(1,2) = 6(1,2)

We can now look for the stationary point in the restricted
domain:

0A

Svs

0

Because of the density-potential relation this is a density functional theory!!



Let us see what we get :

iAvs] = ®[Gs] —tr {In(—-G; ') + (Gy'Gs — 1)}

= 0=idA=tr {(3[Gs] -G '+ G_l)(;GS 5v3}
Us

\

We obtain the following equation for the xc-potential :

/ 02xs(1,2)0,0(2) = —i / 243G (1, 2)(D[GL](2.3) — 6(2.3)0 (3))Ga(3, 1)
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Kohn-Sham density These are the TDOEP equations
reponse function




We can take another functional derivative and obtain equations
for the xc-kernel of TDDFT.

We obtain, for instance, within the x-only approximation:

- <”5 R
Sap e
L

1 2

A = =Y [‘112}

This equation has been solved for atomic systems (M.Hellgren,U.von Barth,
Phys.Rev.B78, 1 15107 (2008), J.Chem.Phys. 131,044110 (2009))

The corresponding fx-kernel has unphysical double pole structure that make
inner shell excitations disappear from the atomic spectra



Important properties of the variationally derived functionals

- The zero-force, zero-torque theorems of TDDFT are obeyed

0 = /drn(rt)V%C[n](rt)

- The density response functions derived from the xc-kernels
satisfy important sumrules.

- Correlation induced memory naturally included

(Ulf von Barth, Nils Erik Dahlen, RvL, Gianluca Stefanucci, Phys.Rev.B72,235109 (2005) )




Luttinger Ward form of the functional

By using the Dyson equation we can transform the
functional to a different form:

iAg[G] = ®[G] — tr {In(-G™H) + (G;'G - 1)}

Klein functional (Phys.Rev.121,950, (1961))

iAo|G] = ®[G] — tr {2G +In(T —GyY)}

Luttinger-Ward functional (Phys.Rev.118,1417 (1960))

Nils Erik Dahlen, RvL, Ulf von Barth, Phys.Rev.A73,012511 (2006)



If we differentiate the LWV functional at fixed external potential we
find that

i0A = tr {(% _ 2)5G} —tr {(G—(S—-GyH) Hsx} =0

The Luttinger-Ward functional is stationary when the Dyson equation
is obeyed and when the self-energy is Phi-derivable :
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The Klein and LWV functional are equivalent when
evaluated for interacting Green functions but different
when evaluated on a smaller domain.



Variational TDDFT :The Luttinger-Vard functional

iALw(vs) = ®[Gy] — tr {E[Gs]Gs + In(Z[Gs] — Ggt) }

The expression for the xc-kernel from an x-only Phi functional :
fe
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The corresponding fxc-kernel has now a proper single-pole structure



Conclusions

- There is clear need to go beyond the adiabatic approximation
to describe various physical phenomena
(double excitations, quantum transport,..)

- The nonequilibrium many-body theory can be used to derive new
TDDFT functionals with nice properties
- Conserving
- Memory
- Derivative discontinuities



