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@ Overview

Lecture I: Basic formalism of TDCDFT

Lecture IlI: Applications of TDCDFT in linear response

Lecture lll: TDCDFT in the nonlinear regime

» Time-dependent Kohn-Sham with memory
» Energy dissipation
» TDDFT in the Lagrangian frame



@ Warm-up exercise: the damped harmonic oscillator
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@ Warm-up exercise: the damped harmonic oscillator

Displacement: X(t) = COS(a)t)
Elastic force: FE (t) = — COS(C()t) — COS(a)t + 72')

Damping force: FD (t) = Sin(a)t) = COS(C()t + 72'/2)

Elastic and damping forces are both phase shifted with respect to
the displacement of the system.

Elastic force: phase shifted by 1 (half cycle), and in opposition to
the displacement.

Damping force: phase shifted by 11/2 (quarter cycle), in opposition to
the instantaneous velocity.



@ Recall: the VK functional in linear response

1 -
AL (r,0)= AL (0. 0) - 96 0)

XC viscoelastic stress tensor:
2
GXC,,uv (C()) — nxc Vvul,,u + vyul,v o g V . uléyv + é'/xcV . ulé‘,uv

u(r,w)=j(r,w)/n,(r) velocity field

What is the corresponding xc vector potential in the nonlinear,
real-time case? How do the xc memory effects look like?




B9 TDKS equation in TDCDFT

E(¥+Am(r,t)+Axc(r,t)j PV, (1) +V, (r,t)-i% 0,(r,t) =0

The viscoelastic expression of linear-response TDCDFT can be
easily (but somewhat ad hoc) extended into the dynamical regime:

8 AVK
ot

ALDA V. &x G. Vignale, C.A.U., and S. Conti,
=-VV,.  + PRL 79, 4878 (1997)
n(r,t)

e Valid up to second order in the spatial derivatives
e The gradients need to be small, but the velocities themselves can be large
e A rigorous extension of the LDA into the nonlinear dynamical regime

can be formulated in a Lagrangian framework (see later)




@ Nonlinear VK-TDCDFT: xc stress tensor

time-dependent velocity field:  U(r,t) = J(r,t)/n(r,t)

t
O e (1) = jdt’nxc(r,t,t’)[vﬂuv(r,t’)+Vvuﬂ(r,t’)—%V-u(r,t’)@w}

t
+ j dt' & o (r,LU)V - u(r,t)s,

where the viscosity coefficients are defined as Fourier transforms:

n,.(rtt)= I—n(n w)e )




5 Nonlinear TDCDFT: “1D” systems

Consider a 3D system which is uniform along two directions
> can transform xc vector potential into scalar potential:

Ve (2,1) =V,e 28 (2,0) + V¢ (2,1)

with the memory-dependent xc potential

VXC (Z t) _ j‘dz Oye, zz(Z t)

n(z,t)




@ The xc memory kernel

Assuming that the system has been in the ground state (with zero velocity)
for t<0, the zz component of the xc stress tensor is

t
0o (Z,1) = [ d'Y (n(Z',1),t =) V,u(Z',1')
0
where the memory kernel is given by

Y(n,t—t") = gn(n,t—t’) +<(n,t—t')

Using the definition of the viscosity coefficients, one finds explicitly

Im f - (w) cos[w(t —t')]

. 4 n° rdw

Y(nt-t) =2 . (0)-—]
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static xc shear modulus
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@ The xc memory kernel: elastic limit

If the memory kernel was a constant:

Z VZ’ t
VY (z,t) ==Y [dz' —Z—|dt'u,.(z,t’
£ @)= [az o nsdtu @)

Integrated velocity field
IS the displacement field

In the case where the memory kernel is a constant, the
memory-dependent xc potential is in sync with the local
displacement field. It therefore gives rise to purely elastic

xc forces.
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The xc memory kernel

H.O. Wijewardane and C.A.Ullrich, PRL 95, 086401 (2005)
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@ xc potential with memory: simple model

n(z,t) = ZES cos{%j{ﬁ Asin at sin(zTﬂﬂ

— n(z,1) /\
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@ xc potential with memory: full TDKS calculation
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@ ...out where does the energy go?

» The system is not driven by external fields, so the energy
should be conserved.

» In linear response calculations of atomic excitation energies,
the VK functional gives a finite linewidth, which is unphysical.

R. D’Agosta and G. Vignale,
PRL 96, 016405 (2006)

e collective motion along z is coupled
to the in-plane degrees of freedom

e the x-y degrees of freedom act like
a reservoir

-

el : : :
e Ly e decay into multiple particle-hole
4T . .
‘ Z ! ‘ > h
s excitations

This is the situation for infinite systems. But what about finite systems?



Example: two electrons on a 2D quantum strip

hard walls
periodic
—> II —>| boundaries
. (traveling waves)
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Charge-density oscillations

L
C.A. Ullrich, JCP 125, 234108 (2006)



@ Example: two electrons on a 2D quantum strip

initial-state
density
E)
= t
z exac
5
= Y A\ N LDA

z (a.)

e Compare exact calculation (time-dependent CI) with TDKS
e Initial state: constant electric field, which is suddenly switched off
e After switch-off, free propagation of the charge-density oscillations
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@ 2D quantum strip: time-dependent dipole moment
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e Exact calculations give a beating pattern of d(t), due to a superposition of
dipole oscillations involving single and double excitations

e Recurrence time increases with length of the strip

e To modulate d(t), the exact V,(t) alternately damps and drives the system

e ALDA misses the beating pattern since it has no multiple excitations



2D quantum strip: ALDA+M
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e d(t) is exponentially damped

e Unlike the exact V, (1), the
VK functional only damps,
but does not drive back
(only accounts for retardation)

e The VK functional cannot tell
that the system is finite. It
treats the system locally like
a homogeneous electron gas.

e infinite recurrence time
emerges in the thermo-
dynamic limit of the system

e damping of d(t) is due to
decoherence, involving many
excitations with a continuous
spectrum



@ Summary first part

e In the nonlinear, real-time domain, the frequency dependence
of the XC stress tensor translates into memory dependence

e We solved TDKS equations with memory for charge-density
oscillations in quantum well

e The VK functional causes dissipation, where energy gets
transferred into incoherent multiple particle-hole excitations

e Model calculations for 2D quantum strip show how the exact
TDKS xc potential causes multiple excitations by its
nonadiabatic behavior (driving and damping).

e The VK functional misses this behavior, but becomes correct in
the thermodynamic limit (infinite system size and particle number).



@ TDDFT in the Lagrangian frame (L-TDDFT)

V. Tokatly, PRB 71, 165104 and 165105 (2005), and TDDFT book (Ch. 25)
C.A.U. and I.V. Tokatly, PRB 73, 235102 (2006); I.V. Tokatly, PRB 75, 125105 (2007)

e use a reference frame that
/@ moves with the fluid.
RELTX" e basic variables: positions of
:—_?, , fluid elements and their
rt It deformations
J e nonlinear coordinate
transformation | = r(g,t)

8r(§’t) _ V(I’(ﬁ,t),t), I’(Q,O) =§ Lagrangian

ot coordinate
B O r.t) o rt Cauchy’s deformation tensor
0 (r,t) = o (1Y) 06, (1) in the laboratory frame
or. or. (a functional of the velocity)

' J

n(r,t) =/g(r,t) n,(&(r.1))




@ TDDFT in the Lagrangian frame: stress tensor

anc N
ot

C _
+Vj(viAxc,j _vijc,i): ij ch,ij[gij]

—P. — 'KS  (stress tensor of interacting minus

P —P
where . i; ] ] kinetic stress tensor of KS system)

» This is a formally exact time-dependent many-body theory.
The interacting stress tensor is of course only approximately known.

» For small gradients of gij , the xc stress tensor is a spatially local_
functional of §;; (buta nonlocal functional in time).

This is the exact extension of LDA into the dynamical regime.
In general, it contains both elastic and dissipative effects.



@ The small deformation approximation

xc 1j (t) PxﬁLDA (t)5u

t ' 5ij ’ ’ ’ 5ij ' _
"‘Jdt 7Kxc(t_t)®kk(t)+/uxc(t_t) _? @kk(t)
0o L i
ou. 8U-
rt)=— ‘ and ou=vV
@u( ) 6r. ar t

J |

in the regime of small deformations, we recover the
nonlinear form of VK-TDCDFT (i.e., ALDA+M), where

u.=—lon, K, =—-lwf (shearand bulk moduli)

e This puts nonlinear VK-TDCDFT on firm grounds.
e Remember, the deformations are small, but the velocities can be large.



@ Nonlinear elastic approximation

If we neglect dissipation, a nonlinear local approximation for the
stress tensor can be rigorously derived:

2 _ [=ckn| N _ off I
Peij = 3 Jij \/EEXC E + L (0u)Ex E
Kin 713 e | ot 8/3 e |
where  E ;' (n)=3n [ nxj/?’ j and E'(n)=-3n ( nX5°/3 ]

and Lij iIs a known function.

» Exact dynamical LDA in the high-frequency limit, for any deformation
» For small deformations, this reduces to the purely elastic
high-frequency limit of VK-TDCDFT.
» deviations of the deformation tensor g from o; can be viewed
as a measure of nonadiabaticity.



@ L-TDDFT versus VK-TDCDFT: simple “1D” models

C.A.Ullrich and 1.V. Tokatly, PRB 73, 235102 (2006)

)G ) and oc)-{ %

let N (.f)—Tcos (T_gj

and choose analytical expressions for V(&,t) and Xx(&,t)

which can easily be inverted.

sloshing mode breathing mode




L-TDDFT versus TDCDFT: simple “1D” models
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L-TDDFT versus TDCDFT: high-frequency limit

sloshing

breathing
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e in the high-frequency limit,
the elastic approximation for
L-TDDFT becomes the exact
dynamical extension of the LDA
(for all deformations)

e for small deformations, TDCDFT
becomes exact (for all frequencies)

e for largest amplitudes, TDCDFT
deviates:
<2.5% for sloshing mode
~100% for breathing mode

The nonlinear TDCDFT remains
good for moderate deformations!




@ Breakdown of the ALDA

L-TDDFT in the high-frequency, purely elastic limit (w>>w),)
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Summary second part

» Arigorous formulation of local time-dependent xc effects
IS established by TDDFT in the Lagrangian frame

» VK-TDCDFT emerges as small-deformation approximation.

» Nonadiabatic effects are both elastic and dissipative.
It depends on the frequency which effect is more important.

» The ALDA breaks down when the electronic density
rapidly undergoes large deformations.

» A more general formulation of Lagrangian TDDFT has
recently become available: TDDefFT (TD deformation
functional theory), including vector potentials (Tokatly 2007).



... and finally...
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