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Problem / Motivation

I Add an electron to a system that has “negative electron
affinity” or an affinity of zero.

I This system will decay, but it could be long-lived.

I If we want properties (e.g. energy and lifetime) of the anion,
we can not apply DFT in a straightforward way.

DFT(N−2 ) −→ N2 + e−

I DFT brings us back to the neutral ground state so we have no
new initial state for TDDFT.



Problem / Motivation

Rev. Mod. Phys. 64, 383 (1992) Phys. Rev. Lett. 90, 208102



Problem / Motivation

Tools for finding metastable states:

1. Stabilization methods (Taylor)

2. Finite basis sets or potential walls (can’t get lifetimes)

3. Many-body scattering

They present “Special challenges to theory” (Jack Simons):

1. Divergent wavefunctions (densities)

2. Bound-free correlations
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Resonance Wavefunctions / Densities

I A resonance wavefunction is divergent:

Ψ(r) ∼ e ik·r + f (θ, φ) ikr
r2

a solution of the TISE with outgoing boundary conditions.

I However, consider a similarity transformation Ŝ such that
ŜΨres is square integrable, or

ŜΨres(r)→ 0 as r →∞

Then, ŜΨres is a normalizable eigenfunction of,

(ŜĤŜ−1)ŜΨres = (En − (i/2)Γn)ŜΨres



Resonance Wavefunctions / Densities

I One such transformation is the complex-scaling
transformation: r→ re iθ

I The complex-scaled Hamiltonian, Ĥθ, can be diagonalized
with bound-state techniques to find the En = En − (i/2)Γn.

I Since ŜΨres(r)→ 0 as r →∞,

nθ(~r) = 〈ψL
θ |n̂(~r)|ψR

θ 〉

is a “complex density.”

I Is information about a resonance (E and Γ) contained in nθ?
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Density Functional Resonance Theory

The answer is YES for the Lowest Energy Resonance (LER) of an
unbound electronic system.

Phys. Rev. Lett. 98, 093003 (2007)



Density Functional Resonance Theory

DFT

Ĥ, v(r)

n(r) = 〈ψ|n̂(~r)|ψ〉

EGS[n]

vs [n](r)

n(r) =
N∑
i

|φi (r)|2

DFRT

Ĥθ, v(re iθ)

nθ(~r) = 〈ψL
θ |n̂(~r)|ψR

θ 〉

ELER
θ [nθ] = E [nθ]− i

2L
−1[nθ]

vθs [nθ](r) = v(re iθ) + vθHXC[nθ](r)

nθ(r) =
N∑
i

φθ,Li (r)φθ,Ri (r)

Phys. Rev. Lett. 107, 163002 (2011)
J. Phys. Chem. Lett. 1, 407 (2010)



Density Functional Resonance Theory

I 2 soft Coulomb interacting electrons in:

v(x) = a

(
1

1+e−2c(x+d) − 1
1+e−2c(x−d) − e−

x2

b

)
a, b, c , d - constants, λ - interaction strength.
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I The complex-scaled system is solved exactly with finite
differences.

I Also, the complex Kohn-Sham equations self-consistently with
a functional exact up to exchange (excluding correlation).



Density Functional Resonance Theory
The complex density, scaled external potential (dotted line), and
complex Kohn-Sham potential (solid line).
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I A close-coupling scattering calculation (bound state approx)
gives an error of 22% in the resonance energy, comparable to
our DFRT exchange-only results.

Phys. Rev. Lett. 107, 163002 (2011)
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Derivative Discontinuities

I The exact XC potential of an open system jumps
discontinuously as the particle number crosses an integer.

I But what happens at the specific integer value that is the
maximum number of bound electrons (Jmax)?

æ

æ

æ

æ

à

à

à à

Jmax

(Jmax+1)
HJmax- 1)

HJmax- 2)

-I2

-I1 - A

N

E
HN

L



DFRT for Fractional Particle Number

I We write the complex ensemble energy and density as:

E θ(N) = [1− (N − J)]E θJ + (N − J)E θJ+1

nNθ (r) = [1− (N − J)] nJθ (r) + (N − J)nJ+1
θ (r)

for a fractional particle number N (J < N < J + 1).

I We also need to know about the orbital energies and lifetimes
of the DFRT Kohn-Sham system (discussed on my poster).

Submitted 2011, arXiv:1111.1934



Derivative Discontinuities

I Consider our model potential,
v(x), with parameters that
permit only a 1 electron
bound state and a 2 electron
resonance.

I vθ
XC

is evaluated on an
ensemble density that
integrates to a fractional
number (N) on either side of
Jmax = 1.
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Derivative Discontinuities
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Derivative Discontinuities

0 1 2 3 4 5 6 7
−1

0

1

2

x

R
e
(v

x
c

θ
)

 

 

N=0.999

N=1.001

N=1.003

N=1.020

N=1.050

I At integers below Jmax only the real part of vθ
XC

experiences a
jump because the chemical potential experiences a purely real
jump.

I At Jmax both the real and imaginary parts of vθ
XC

jump
discontinuously.

Submitted 2011, arXiv:1111.1934
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Future Work

I An implementation of DFRT for real systems is under
construction. (See David Strubbe for the Octopus DFRT
tutorial at Benasque 2014)

I Can the Runge-Gross theorem be extended to complex
densities? (Ask me at March Meeting)

I photo-induced resonances
I high energy resonances
I photo absorption of metastable systems
I etc...

I What else can we learn about metastable systems from nθ
(Reactivity)?



Conclusions

I DFRT (an analog of KS-DFT) can give the in-principle exact
resonance energy and lifetime for the LER of a system.

I DFRT could help us learn more about problems in
approximate DFT
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Density Functional Resonance Theory (DFRT)

I Goal: establish an analog of Kohn Sham DFT that provides
the in-principle exact LER density along with its energy and
lifetime.

I To find nθ(r), we complex-scale,

Ĥv = T̂ + V̂ee +
∫
drn̂(r)v(r)

by multiplying all electron coordinates by e iθ, diagonalize Ĥθ
v ,

and calculate nθ(r) = 〈ΨL
θ |n̂(r)|ΨR

θ 〉, where |ΨR
θ 〉 and 〈ΨL

θ | are
right and left eigenstates corresponding to the LER.

I The LER’s lifetime L is given by (−2Im(Eθ))−1,

Eθ[nθ] = E [nθ]− i
2L
−1[nθ]



Density Functional Resonance Theory (DFRT)

I The “Kohn-Sham” potential, vθs (r), is defined such that its N
occupied complex orbitals {φθi (r)} yield the interacting
LER-density via

nθ(r) =
N∑
i=1

〈φθ,Li |n̂(r)|φθ,Ri 〉

I The complex Kohn-Sham equations are:(
ĥ1 − εi −ĥ2 − 2τ−1

i

ĥ2 + 2τ−1
i ĥ1 − εi

)(
Re(φθi )
Im(φθi )

)
= 0 ,

where ĥ1 = −1
2 cos(2θ)∇2 + Re(vθs (r)), and

ĥ2 = 1
2 sin(2θ)∇2 + Im(vθs (r)).

I The set of {εi} and {τi} provide the orbital resonance
energies and lifetimes of the Kohn-Sham particles.



Density Functional Resonance Theory (DFRT)

I We write Eθ[nθ] as:

Eθ[nθ] = T θ
s [nθ] +

∫
dr nθ(r)v(re iθ) + E θH[nθ] + E θXC[nθ]

and require: T θ
s [nθ] = e−2iθTs [nθ] and E θH[nθ] = e−iθEH[nθ].

I The complex variational principle along with the assumption
that the orbitals used to construct the density can be
expanded in an orthonormal basis leads to:

δEθ[nθ]/δnθ − µ
∫
drnθ(r) = 0 .

I Performing the variation in Eθ[nθ] and comparing with the
Kohn-Sham equations,

vθs (r) = v(re iθ) + e−iθvH[nθ](r) + vθXC[nθ](r) ,

where vθXC[nθ](r) = δE θXC[nθ]/δnθ(r)|LER.



DFRT for Fractional Particle Number

I Define an ensemble of pure states of the non-Hermitian
Hamiltonian:

Γ̂θ =
∑
i

|ΨR
θ,i 〉pi 〈ΨL

θ,i |

where the sum of the probabilities pi is defined to be 1.

I The constained search universal functional is:

F θLL[nθ] = min
Γ̂θ→nθ

(
Re
−2Im

)
Tr
[
Γ̂θ(e−2iθT̂ + V̂ θ

ee)
]

I And the ensemble energy is:

E θ[nθ] = min
nθ

(
Re
−2Im

)(
F θLL[nθ] +

∫
dr nθ(r)v(re iθ)

)



Orbital Energies and Lifetimes

System: Decay Channel: εθH
Bound J-electron No decay −I
Metastable (J + 1)-electron J electron bound state (−A− Γ

2
i) + εth

Metastable (J + 1)-electron Multiple Multiple contributions

εθH, KS-DFRT HOMO energy
I , Positive ionization potential of a J-electron system
εth, KS “threshold energy” defined below
A, Negative electron affinity of a J-electron system
Γ, (J + 1)-electron resonance width (inverse lifetime)

Submitted 2011, arXiv:1111.1934


