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Quantum Dynamics

Why Quantum Dynamics?

Nonadiabatic effects requires quantum nuclear dynamics

The nuclear dynamics cannot be described by a single classical trajectory (like
in the ground state -adiabatically separated- case)

Photoproduct
Photoproduct 10toprocue

Reactive

Branching is crucial.
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gy surfaces and forces with TDDFT
quantum dynamics
Nonadiabatic quantum dynamics with trajectories ol \[¢ i iplings in TDDFT
i ernal fields and local control

K. Na, R.E. Wyatt, Physics Letters A 306, 97 (2002)
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. Potential energy surfaces and forces with TDDFT
. Trajectory-based quantum dynamics

. Nonadiabatic couplings in TDDFT

Nonadiabatic quantum dynamics with trajectories
. Coupling with external fields and local control

Starting point

The starting point is the molecular time-dependent Schrédinger equation:

Aw(r,R,t) = ih%\ll(r, R, 1)

where H is the molecular time-independent Hamiltonian and Y(r,R,t) the
total wavefunction (nuclear 4 electronic) of our system.

In mixed quantum-classical dynamics the nuclear dynamics is described by a
swarm of classical trajectories (taking the limit i — O for the nuclear wf).

Ansatze

W(r,R,t) =2, Z¢(rR (R, )

Huang

. ot
W(r, R, t) St o (r; R, £)Q(R, t) exp [é/ Ee/(t')dt’}
to

W(r, R, t) =2, o(r, t)Q(R, t)

decomp.
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a. Potential energy surfaces

Computed on-the-fly using linear response TDDFT

b. Propagation of the nuclear wavepacket
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a. Potential energy surfaces
Computed on-the-fly using linear response TDDFT

b. Propagation of the nuclear wavepacket

The wavepacket dynamics is replaced by the time-propagation of a swarm
of trajectories. We consider two options:
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Computed on-the-fly using linear response TDDFT

b. Propagation of the nuclear wavepacket
The wavepacket dynamics is replaced by the time-propagation of a swarm
of trajectories. We consider two options:
- Classical trajectories driven by forces computed as gradient of the

TDDFT PESs
- Quantum (Bohmian) trajectories driven by classical and quantum

potentials both computed within TDDFT
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c. Nonadiabatic couplings between the PESs
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of trajectories. We consider two options:

- Classical trajectories driven by forces computed as gradient of the
TDDFT PESs

- Quantum (Bohmian) trajectories driven by classical and quantum
potentials both computed within TDDFT

c. Nonadiabatic couplings between the PESs

Transition between PESs governed by the nonadiabatic couplings derived
from TDDFT
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On-the-fly nonadiabatic dynamics with trajectories

a. Potential energy surfaces

Computed on-the-fly using linear response TDDFT

b. Propagation of the nuclear wavepacket
The wavepacket dynamics is replaced by the time-propagation of a swarm
of trajectories. We consider two options:

- Classical trajectories driven by forces computed as gradient of the
TDDFT PESs

- Quantum (Bohmian) trajectories driven by classical and quantum
potentials both computed within TDDFT

c. Nonadiabatic couplings between the PESs

Transition between PESs governed by the nonadiabatic couplings derived
from TDDFT

d. Coupling with the environment
Coupling with external (static and time-dependent) fields at TDDFT level
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. Potential energy surfaces and forces with TDDFT
. Trajectory-based quantum dynamics

Nonadiabatic quantum dynamics with trajectories . Nonadiabatic couplings in TDDFT
. Coupling with external fields and local control

LR-TDDFT - Energies and forces

@ Using the linear response orbitals (perturbative solution: Sternheimer
1951)

N
D (HS i — €)1 jo) + Q7 6V |io) = wil bl ic)
j=1

@ Using the virtual Kohn-Sham orbital expansion (Casida formulation)

23 B k=6 %] B

@ Analytic excited state forces (using the Lagrange multiplier formalism)

dEo:[cF, x, y] _ dEks[c{®]  dw[c{}, x,y]
dn B dn + dn
[J. Hutter, JCP, 118, 3928 (2003)]
@ Solution always within the adiabatic approximation (no memory kernel)
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. Potential energy surfaces and forces with TDDFT
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Nonadiabatic quantum dynamics with trajectories

Trajectory based solution of the nuclear dynamics

In trajectory based solutions of the quantum dynamics we obtain a Newton-like
equation of motion for the nuclei

d’R
Mﬁﬁ =~V |E(R)+ Qi(R,t) + > _ Du(R, t)
1

QJ(R, t): adiabatic quantum potential
Dui(R, t): nonadiabatic couplings
1. NonAdiabatic Ehrenfest Dynamics (mean-field one-trajectory solution)

2. NonAdiabatic Bohmian Dynamics (NABDY) provides an exact solution
for the two extra terms: Q and Dy;. [PccP, 13, 3231 (2011)]

3. Trajectory Surface Hopping Dynamics (TSH) is derived from the so called
Independent Trajectory Approximation (ITA) together with [Tully, JCP, 1971]
e h — 0 for the action (classical trajectories: Q = 0)
e stochastic (phenomenological) description of the couplings
Dy trajectory surface hopping algorithm.
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The NABDY solution [B. Curchod]

Inserting W(r, R, t) = >, ®;(r, R)u (R, t) in the time-dependent Schrédinger
equation and multiply from the left by ®%(r; R) we get (integration over r),

ihQy(R, t) = — Z S V2§2J(R t) + ES'(R)Q(R, t)

5
K2 K2
+y o Dn(R)u(R. 1) > - du(RIVAu(R. 1),
vl 7 v,1#J v
where
° d( f {®5(r; R) [V,®(r; R)]} dr are the first order nonadiabatic

couplmg elements (NACs)
@ DJ(R) = [{®3(r;R) [V3®(r; R)]} dr are the second order NACs.

The electrons are “static” (non explicit time-dependence in ®;(r, R)).

[B.F.E. Curchod, IT, U.Rothlisberger, PCCP, 13, 3231 (2011)]
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With the polar representation: Q (R, t) = AJ(R, t)ehSJ(R ') we obtain, after
separating real and imaginary parts (in the adiabatic representation),

8S4(R, t)
ot

o h2 V2A(R,t) h? Al(R, t) i¢
722% VSR 0)* 4 S TR =2 o AR ;2% R et ]

h2 VA (R, t) i h 1(R, t) i
-3 Edj,(R)mm[e ]+7%JM—de,(R)mvvs,(R 63 [¢]

OA4(R, t) 1 1 >
—_— == —V4AJ(R, 1)V Sy(R, t) — ——AJ(R, )V S(R, t
ot 2 VARV SI R = 3 S ANR T SH(R. 0

. h .
*sz G(RIAIR, £)S [¢] va’;Jde],(R)va,(R,t)s [¢7¢]

-3 M—dj,(R)A,(R, )V, S/(R, )R [e"ﬂ,
N

v, 14

where ¢ = %(S,(R, t) — Sy(R, t)).

[R.E. Wyatt, C.L. Lopreore, G Parlant, JCP, 114, 5113 (2001) (diabatic representation);
J.C. Burant, J.C. Tully, JCP, 112, 6097 (2000) (classical limit)]
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. Potential energy surfaces and forces with TDDFT
. Trajectory-based quantum dynamics

Nonadiabatic quantum dynamics with j i . Nonadiabatic couplings in TDDFT
. Coupling with external fields and local control

Time evolution of S)(R, t) (phase)

The phase (~ classical action) evolves according to

8Sy(R,t) 2, pel n? VAR 1) (R 8) 1 i
T ot ZMW( 7Sa(R. )" + Ej mk; 2M,, AS(R. 1) 2,: 2m, DR, R[]
h? VAAIR t) 1 g a (AR D) ip
- R0 P + ' (R V. 51(R, )3 [ef¢
A«Xl;u M, dj,(R) A,(R. 1) { } A{X[;{J dy( )AJ( e 1(R, t) { }

This is the equivalent of the classical Hamilton-Jacobi equation (first two
terms) for the action S(R, t), augmented with two additional parts of quantum

nature of order /i and K2:
3 term: quantum potential Q,(R, t) describing all quantum effects
within a state and introducing nonlocality.

4" to 6 term: nonadiabatic quantum potential Dy, (R, t) describing
interstate contributions.
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Time evolution of S)(R, t) (phase)

Applying the gradient with respect to the nucleus 3 on both sides we get

9S4(R, t) 1
WT+; (3 V2SR, 1) - V) Vs Su(R, 1) =

— Vg |:E:/(R) + QJ(R, t) + ZDU(R, t):|
1

After moving to the Lagrangian frame and using the HJ definition of the
momenta V3S,(R, t) = P%, we obtain a Newton-like equation of motion
d’Rg

*(de)?

= —VB

EJ(R) + Qu(R,t) + Y Du(R,t)

describing the time evolution (trajectory) of the Rz components of a fluid
element with collective variable R. (d/dt’ = d/dt + >, V4Si(R, t)/ My - V).
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. Potential energy surfaces and forces with TDDFT
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Time evolution of Ay(R,t) (amplitude)

The amplitudes evolve according to

BAJ(R, t) 1 1 )
_ == —V~A (R, t)V~Sy(R, t) — AJ(R, t)VIS,(R, t
ot 2 VAR OV SIR ) = 5 - AR OV Sy(R, )
h ~ o~ [Lid ho ~ [lio
+3° —— D} (R)AI(R, )3 [e } -3 d},(R)V1Al(R, ) [e }
T 2My ~iars My

1
-3 - S (RAR, VS (R, )R {e"},
PEA RAeT

It corresponds to the continuity equation for the density probability on state J,
augmented by three nonadiabatic terms describing the amplitude change of
state J due to the coupling with the other states.
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Nonadiabatic Quantum Hydrodynamics

These are Quantum Hydrodynamic (nonadiabatic) equations (QHE)

dro dpy

=—poV - P =—pV- P
p PO vo + Pos ot pI vi+ Pjo
dSo 1 5 ds; 1,
= =M - (V, D, = =M —(V D
o 5> Mvo (Vo + Qo + Do) . 5 Mvj (Vi + Q + Do)
dro 1 dr 1
— =—vog=—VS — =—v,=—-VS§
dt vo =y Ve dt r=m v

where  p(R,t) = A?(R7 t)
1

" 2M A((R, t)

Pos  Density coupling term

Qi(R,t) = V2Ai(R,t) the quantum potential

D;; Phase coupling term

Solution by characteristics = Bohmian trajectoties
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b. Trajectory-based quantum dynamics

Nonadiabatic quantum dynamics with trajectories c. Nonadiabatic couplings in TDDFT

d. Coupling with external fields and local control

Gaussian wavepacket on an Eckart potential (Ex = 3/4V)
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Approximate solution to the node problem in 1D
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Potential energy surfaces and forces with TDDFT

. Trajectory-based quantum dynamics
. Nonadiabatic couplings in TDDFT
Coupling with external fields and local control

Tully’s model 1 (x2)

1
001 , A; /\ )
0oL ! H g S S |
o |3 i I S ]
Q = Y I\ )
T ) S A S G !
@ 2 | i
> 08— = |
= f
{
_8 0 - - - /
E 0.7 -10 0 yfau] ' 20 ’! TSH —
/ =--u Exact
* . / o+ NABDY
B /
SHR Sl NS
06 * g .
. I i | I .
0 500 1000 1500
Time [a.u.]

Flng €. Population dynamics on the double well potential. We used 3112 trajectories for TSH, 314
for NABDY dynamics, and 8192 grid points for the exact propagation scheme (k = 32 a.u. in all cases).
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Bohmian Quantum Hydrodynamics: H, + H collision

space)

V' Off-grid propagation of the
amplitudes

v cerart
i [ Pe -
i) ’ » 157,
b S o2 v 5
@ / S
= " 1 —
g r e 55:11 = Current and future developments
< / =--= Exact o
RIS ¥ NABDY | 4 2 of NABDY:
- g 8
= AL s 1 @
el ,/ &
~ | i e Tl 1 \ | 3 .8 ) X
& i 00 250 300 ) v' Extension to higher
5} t i Time [a.u.] |l 2 . . . .
5 3 i 3 dimensions (configuration
Q
3
=]
=
=
<
=
=}
Z

- Implementation in CPMD

de----HZ) [a.u.]

[B.F.E. Curchod, IT, U.Rothlisberger, PCCP, 13, 3231 (2011)]
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TSH nonadiabatic MD (A — 0 for (R, t) and more)

[E. Tapavicza, B. Curchod]

There is no derivation of TSH dynamics. The fundamental hypothesis beyond
TSH is that it is possible to design a dynamics that consists of:

@ classical (adiabat“ical time evolution of the nuclear trajectories on adiabatic
states solution of the Schrodinger equation for the electronic sub-system
@ propagation of a “quantum” amplitude, Cg(t), associated to each PES, k

Ve(r, R, t) = i CE(t)0k(r; R)
k

(the label « is to recall that we have a different contribution from each
different trajectory.)

@ transitions (hops) of the trajectories between electronic states according
to a stochastic algorithm, which depends on the nonadiabatic couplings
and the amplitudes C(t)

See also: J. Tully, Faraday discussion, 110, 407 (1998) and B. Curchod, U.
Rothlisberger, IT, in preparation.
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TSH nonadiabatic MD (A — 0 for (R, t) and more)

The main claim of TSH is that, the collection of a large enough set of
independent trajectories gives an accurate representation of the nuclear wave
packet

Ng(R®,dV,t*) 1

CL a Lo
R =
K (R%, %) New  dV

~ (R, %) ~ | Gl e o |
Inserting
W (r,R,t) Z t)®i(r; R)

into the time-dependent Schrddinger equatlon for the electrons and after some
rearrangement, we obtain:

thk(t)—ZCa )(Hij — ihR™ - d5y)

with Hy; = 0k (®(r; R)|Her|®;(r; R)) — Densityfunctionalized (LR-TDDFT)
(In the adiabatic representation, we have Hy = Eke/ and H;; =0.)
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On-the-fly TDDFT/TSH: photo-excited CHyNHZ

Protonated formaldimine as a model
compound for the study of the %__Q:
isomerization of retinal. (™

- 10 - : ‘ : '
Photo-excitation promotes

the system mainly into S».

Relaxation involves at least 3
states:
So (GS), 51 and 52.

Energy (eV)

[E. Tapavicza, I. T., U. Rothlisberger,
PRL, 98, 023001 (2007);
THEOCHEM, 914, 22 (2009)]

40 60 80 100
Time (fs)
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The quest for matrix elements (®|O|W) in TDDFT

TDDFT energies and forces are available since a decade, but in order to
perform nonadiabatic dynamics 2TSH or Bohmian) one needs to express

nonadiabatic coupling elements (NAC) and nonadiabatic coupling vectors
(NACV)

(Po|VH|®,)

d]o [¢07 q)J] = N

djolp, 6p] =7

as a functional of the electronic density p(r) or, equivalently, of the occupied
Kohn-Sham orbitals {¢;(r)}.

Additional care is required for the case of matrix elements between pairs of
excited states, which calculation goes beyond simple linear response theory

0),(1) = ($,|0]®,).
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. Potential energy surfaces and forces with TDDFT
. Trajectory-based quantum dynamics
Nonadiabatic quantum dynamics with j i

. Nonadiabatic couplings in TDDFT
. Coupling with external fields and local control

Auxiliary wavefunctions for LR-TDDFT

It is possible to express linear response quantities within TDDFT using a set of
auxiliary many-electron wavefunctions.

- LT., E. Tapavicza, U. Rothlisberger, JCP, 130, 124107 (2007)
- LT., B. F. E. Curchod, U. Rothlisberger, JCP, 131, 196101 (2009)

I.T., B. F. E. Curchod, A. Laktionov, U. Rothlisberger, JCP, 133, 194104 (2010)

They are given as a linear combination of singly excited Slater determinants
e auxiliary many-electron wavefunctions (AX WF)

"Zl[{ﬁzﬁ}] = Z CiIaU 32031‘01/30[{45-}]

iac

with
-1
iac e!

Clad 1aoc
Wol

where 9o[{¢.}] is the Slater determinant of all occupied KS orbitals {¢;s} ¥ ;,

and 3, , 3, are the creation (of virtual orbitals, $.,) and annihilation
operators.
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Applications of the AX WF

@ The nonadiabatic coupling elements at the mid step t + dt/2 of a
TDDFT MD dynamics can therefore be calculated as

R dorlerse/al(6 ] = (Folr RO | V| drlr R - & = (Fo(r: RE)| = [ d1(r: R())
~ o [(Walrs RO R(t -+ 51))) — (Folr: R(t + 50)Iin(r: R()) |
@ The nonadiabatic coupling vectors

(1Po(R)|VrH|(i(R))

dor[{6.3] = (Yo(R) Vi (R)) = “=2 oo =F o5

@ The transition dipole matrix elements

tror {611 = (o (R)|A (R)) = —ewy,/2ris /2,
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Matrix elements for pairs of excited states

THE JOURNAL OF CHEMICAL PHYSICS 133, 194104 (2010)

Nonadiabatic coupling vectors for excited states within time-dependent
density functional theory in the Tamm-Dancoff approximation and beyond

Ivano Tavernelli,*’ Basile F. E. Curchod, Andrey Laktionov, and Ursula Rothlisberger

The equations for the NACVs are obtained from the one-to-one (or
residue-by-residue) mapping between

> ﬁﬁgg-),-(wl,wz)[\llo,\lll,\llz] : MBPT second-order polarizability

o> ﬁfgg}T(wl,wz)[p, dp): TDDFT second-order polarizability.

(SOS representation of BTDD,__T through bosonization (HA) of the KS
excitation operators).

The same procedure used in the derivation of the matrix elements between
ground and excited states can be followed for the calculation of the second

order response matrix elements (W;|O|W,), where both states W; and W, are
linear response excited states.
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MBPT second-order polarizability

Within the many-body formulation of quantum mechanics in second
quantization, the SOS second-order density-density response function is
obtained using a perturbative approach applied to the molecular Hamiltonian

and reads !

(ap ) Z Z M(O‘)M( J)N(’Y)
Bl\jllépr w1, u)2 — "
2 1J=1 perm(ws,w2) (Q — w1 — w2) (2 — w1)

1502, 1) 1§91 )

(s + w2)(Q + w1 + w2) * (2 + w2) (U — w1)

with u8™) = (Wo (W) and 1), = (W, |u@|w)).

1J. F. Ward, Rev. Mod. Phys. 37, 1 (1965); B. J. Orr, J. F. Ward, Mol. Phys. 20, 513 (1971).
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TDDFT second-order polarizability

The second-order TDDFT density response functions are given by 2

VY ki (Dp— g (F )k (F')sisysk _(Ng (P p—g(r)sys,
B<z)(m1,wz,r,r',r”):z Z ik ka(r) (r") (r'") _ By (g (F)p— s (r)sysy

1
ok (1 — w1 —w2)( —w1)(Qk —w2) 297 (Y — w1 — w2)(Q —w1)

1~ poag (g (g (Fsysy 1~ pag(p— g (P g (r")sysy

297 (Q —w1 —w2)( —w2) 297 (2 — w1)(Qy — w2)

where
@ s, =sign(/),
© I, JK=41+2 ...,
@ V)« are the second-order coupling terms between excited states
@ ¢ are the eigenvectors of the LR-TDDFT eigenvalue equations

LE =& .

2S. Tretiak and S. Mukamel, Chem. Rev., 102, 3171 (2002); S. Tretiak and V. Chernyak, J Chem
Phys, 119, 8809 (2003); I. T, B.F.E. Curchod, A. Laktionov, and U. Rothlisberger, J. Chem. Phys., 133,
194104 (2010)..
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TDDFT second-order polarizability

Required quantities: 3

Vi =3 Tr[(1 = 200) (26 + ExE)V" (@) +

+ (&€& + €58V (Ek) + (&ik + €&V (£1))]

with
V(&) (r)és = V'[EN(r)Es + Vail&r, €](r)po(r)
VIl = [ dr' felol(rr)ee)
Ve £(r) = / dr’ / dr’gelol(r. v (Ve
and

prak(r) = —&(Esék + Ex&a)(r) .

3S. Tretiak and S. Mukamel, Chem. Rev., 102, 3171 (2002); S. Tretiak and V. Chernyak, J Chem
Phys, 119, 8809 (2003); I. T, B.F.E. Curchod, A. Laktionov, and U. Rothlisberger, J. Chem. Phys., 133,
194104 (2010)..
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TDDFT second-order polarizability

Using the following definition of the dipole matrices

;= Tr([po, &1, po])
My = Tr([poafl][lj’v £J])

the second-order polarizability within TDDFT becomes

M VHIJK”‘(IQ)”‘(—S.)I"L(—FYI)(S’SJSK M u(f},)_m(,a)“(j_),s,s_,

(aB) _
B (w1, w2) = — + =
' k= (U — w1 —w2)(Qy — w1)(Qk —w2) 2 ;5 () — w1 — w2)(Q — wi1)

I M 18), ™) sy 1M 80,

2 5 Q) —wr —w2)(Q —w2) 2 5, () — wa)(y — wa2)

where a, 8,v € {x,y, z}, and p_,, is the transition dipole between states /
and J for which p, = p*, and p_,, = p”*

However, this is NOT a SOS formula (coupling terms V", ().
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Bosonization of the TDDFT second order response

Mukamel, Tretiak, Chernyak and Berman propose a classical system of coupled

harmonic oscillators (bosons) that shares the same linear and second-order
response properties of TDDFT.

At ~f =
§ CroCso — CroCso
o o

Comparing term-by-term 3

. B)SOS
wBpT With fei

TDDFT

(Wol > el 2olVo) = (po)rs

(ol S el 2o [wiM)

(&)rs

" "
Vis—k(Ek)rs Visk (Ef)rs
At A (2) 1J—K 1IK\SKk
wol > Ay = , pol, > -
{Vol e Vi) T+01 [([[E' pol EJ])”+K>°(Q,+QJ79K Q,+QJ+QK)]

1" 2
. Vi ks Vg k(Ef)rs
WIS el en V) = (po)rsdis + (€] pol, €51 + > ——22 w(&rdre Viea—r(E)

o U - — K QJ79,+QK)

where 57 =&
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The auxiliary many-electron wavefunction approach

Considering only terms up to second order in Z; where (Z; ~ X; + Y/) we

compare results for (W;|O|W,) obtained using the “bosonization” (B) and the
“auxiliary wavefunctions” (AX) schemes:

(VL0 s == Tro(Yi06Y)) + Tr(X 00 X)) — Tro(X] 0o X ) + Tr (Y0, Y1)
. ) A
(WLIOIWL) ax =D75 " el el (U010,
ia jb

= [Trv(xﬂovxj) + T (Y0, X 1) + T (X 30, Y1) + Trv(Y@OVY))]
- [Tro(xjooxj) + Tro(X[ 00 Y ) + Tro(Y1 00X ) + Tro(onoYJ)] .
The second solution is more symmetric with respect to the ph and hp

transitions than the one obtained from the bosonization (AX contains terms of
the form X,0Y .

In "TDA" (B = 0) the two solutions coincide.
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Nonadiabatic couplings between excited states

The (AX) representation of the matrix elements (\Ué|@\\llj'-b> is used to
compute nonadiabatic coupling vectors between excited states along
nonadiabatic trajectories. 4

(WLIVRAIWS) = (XIXi + X] i+ YIXi + Y] Y1)as (65| VRH|¢a)
ab
=X + YiX) + XY+ YY)l VRHIS) -

U

The numerical evaluation of the matrix elements (¢,|VrH|¢.) is done as in
the case of couplings with the ground state.

4|.T., E. Tapavicza, U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009); I. T, B.F.E. Curchod,
A. Laktionov, and U. Rothlisberger, J. Chem. Phys., 133, 194104 (2010).
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the

xc-functional used . .
dii[{#-}] = (P«(R)|Vr|®;(R))

PBE MR-CISD

Protonated formaldimine:  nonadiabatic coupling vectors do1 with LR-
TDDFT/TDA.
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the

xc-functional used . .
dii[{#-}] = (P«(R)|Vr|®;(R))

PBE PBEO0 MR-CISD

Protonated formaldimine: nonadiabatic coupling vectors di» with LR-
TDDFT/TDA.
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Coupling with the environment

QM/MM static coupling with liquid and

Explicit (time-dependent) laser fields solid phases

detector

. optimal control ...

o od e e
oo IS

[A. Laio, J. VandeVondele, and U. Rothlisberger, J. Chem.
/ é Phys. 116, 6941 (2002); A. Laio, J. VandeVondele, and
4 A U. Rothlisberger, J. Phys. Chem. B, 106, 7300, (2002);
- v M. Colombo et al. CHIMIA 56, 11 (2002)].
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Environment (QM/MM) and sampling is crucial

Calculation of the QM/MM coupling using §p"%~TPPFT (r):
IT, B. Curchod, U. Rothlisberger, Chem. Phys. 391, 101 (2011).

T T T 40
65 , o 5
¥ . ~
v 17 35 _
| )
5 ] £l
- :
L 30 EQ/ g
20 £ R
=18
5
g
do2s )
3
_________________ ) &
3
L 20

2
Energy [eV]
HOMO-4 HOMO-5 HOMO-8

e
i

M. Cascella, M.A. Cuendet, I.T., U. Rothlisberger, JPC B, 111, 10248 (2007)

LUMO
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Coupling with td electric fields [B. Curchod]

The Interaction Hamiltonian

In the Born-Oppenheimer approximation for the separation of electronic and
nuclear degrees of freedom (which is assumed in Tully's dynamics), the total
(non relativistic) Hamiltonian is given by

Htot - Hmol + Hrad + Hint

where the interaction Hamiltonian (with no spin-magnetic field contributions)
is obtained from the standard prescription p — p — eA/c,

2

e e
Hine = Z {—ﬂ(pi CA(ri, )+ Ari 1) - p) + 5 Alri, DA(r, 1)

The vector potential is of the form A = Agete k- rHivt
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In the dipole approximation, the TSH equations
ihCy = C(Hu —ihR-dy)
I
become A
hCy = Ci(Hu — ihR - dy + iwy = - pye™?).
1hCy Z,: 1(Hy —i Jl+lelC pye’)
In addition, a classical electrostatic interaction term of the form

Enucl Ra _ ZZKRK ( )

with E(t) = —2 2 A(t) is added to the potential energy of the nuclei, which,

according to Tully’s scheme, follow a "classical" trajectory on a single PES
with possible surface hops according to the hopping probability gy;.

[Ref: IT, BFE Curchod, U. Rothlisberger, PRA, 81, 052508 (2010)]
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Nonadiabatic qu i i j i . Nonadiabatic couplings in TDDFT
d. Coupling with external fields and local control

Radiation damage in DNA Protein/DNA interaction
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Collaboration: T. Penfold and M. Chergui

lvano Tavernelli diabatic molecular dynamics coupled to time dependen



What is local control?
Application of LCT

TSH-TDDFT-based local control theory

Quantum optimal control theory

Optimal control theory can be formulated in the framework of Ehrenfest
mean-field and semiclassical approaches.

Like in the solution of the semiclassical path-integral equations
(Pechukas), QOCT requires the self-consistent solution of forward and
backward propagation of Schrddinger-like equations:

l%w(t) = [Ho - ,ue(t)]z/)(t)7 ic. w(o) — o
i%"(t) — [Ho — pe(Ox(8), ic. x(T)= -2

()
a(t)e(t) = —Im(x(t)ule)

where O is the to-be-optimized quantity, ¢(r) is the system wavefunction, €(t) is the
shaped laser field, «(t) is a “switching function", and x(r, t) is an auxiliary
wavefunction.

D. Kammerlander, A. Castro, M. A. L. Marques, PRA 83, 043413 (2011)
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TSH-TDDFT-based local control theory

Local control theory [B. Curchod, T. Penfold]

Local control, is formulated in the framework of Trajectory Surface
Hopping (TSH).

The time evolution of the expectation value of an arbitrary operator O
(Heisenberg representation) is given by

_!
“h
i

+ %/W*(r, R, t)[Hine, O1V(r, R, t) dr dR

O(t) /w*(r, R, t)[Fo, OlV(r, R, t) dr dR

The evolution of the state population operator 2; = |/)(/] in a time
dependent electric field E(t) is then (assuming [Ho, i] = 0)

Py(t) = —E(1);9 [/ V*(r, R, t)[f1, P/]¥(r, R, t) dr dR| .
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TSH-TDDFT-based local control theory

Local control theory

Control is achieved by tuning the temporal evolution of E(t) in a way to
maximize the population of a target state.

Using the TSH for the total molecular wavefunction
v*(r, R, t)fzcj )b ,(r; R)

for a given trajectory «, the populatlon time evolution simplifies to
Pi(t) = —2E°() D S[CT "y G (1))
J

Is is now evident that choosing a field of the form
= _/\Z [P (1) CT " )]

will ensure that P;(t) always increases in time.

T. J. Penfold, G. A. Worth, C. Meier, Phys. Chem. Chem. Phys. 12, 15616 (2010).
B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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Application: Photoexcitation of LiF in the bound state S,

Energy (eV)

1 1.5 2 25 3 3.5
Li-F/A
B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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TSH-TDDFT-based local control theory

Effect of a generic polarized pulse

1
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What is local control?

Application of LCT

LC pulse: efficient population transfer and stable excitation

-31.4

)
n

ECI J (hartree)
o
o =

2
IC,(V)
(=]

<
)
G

)
o
o
Fo

u
o
Q
o

E(t) (a.

-0.02
-0.04

- Driving state

NI —" |

100 200

Time (fs)

lvano Tavernelli

Nonadiabatic molecular dynamics coupled to time dependen
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TSH-TDDFT-based local control theory

[ pulse vs. optimized pulse (LC)
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Comparison with wavepacket propagation (MCTDH)
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B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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Local control on proton transfer (in gas phase)
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What is local control?

Application of LCT

Local control on proton transfer
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Local control on proton transfer
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TSH-TDDFT-based local control theory

Local control on proton transfer (with one water molecule)
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Local control on proton transfer (with one water molecule)
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Local control on proton transfer (comparison)

gas phase with one water molecule
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Implementations & documentation

CPMD TDDFT/TSH (QM/MM + external EM field) available free of charge
(for academics) from www.cpmd.org

CPMD

Turbomol Version by Vlasta Bonacic-Koutecky

Turbomol Implementation in the group of F. Furche (by Enrico Tapavicza). Soon
available in the official release of the code.

CP2K Hopefully in the near future.
PetaChem Collaboration with Todd Martinez
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