
Outline
Quantum Dynamics

Nonadiabatic quantum dynamics with trajectories
TSH-TDDFT-based local control theory

Nonadiabatic molecular dynamics coupled to time
dependent external potentials

Ivano Tavernelli

Laboratory of Computational Chemistry and Biochemistry

Lausanne (Switzerland)

TDDFT workshop 2012
Benasque, Spain

January 15, 2012

Ivano Tavernelli Nonadiabatic molecular dynamics coupled to time dependent external potentials



Outline
Quantum Dynamics

Nonadiabatic quantum dynamics with trajectories
TSH-TDDFT-based local control theory

1 Quantum Dynamics
Why Quantum Dynamics?
Trajectory-based solution of QD

2 Nonadiabatic quantum dynamics with trajectories
a. Potential energy surfaces and forces with TDDFT
b. Trajectory-based quantum dynamics
c. Nonadiabatic couplings in TDDFT
d. Coupling with external fields and local control

3 TSH-TDDFT-based local control theory
What is local control?
Application of LCT

Ivano Tavernelli Nonadiabatic molecular dynamics coupled to time dependent external potentials



Outline
Quantum Dynamics

Nonadiabatic quantum dynamics with trajectories
TSH-TDDFT-based local control theory

Why Quantum Dynamics?

Nonadiabatic effects requires quantum nuclear dynamics

The nuclear dynamics cannot be described by a single classical trajectory (like
in the ground state -adiabatically separated- case)

Branching is crucial.
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Nonadiabatic dynamics: Multi-trajectory solutions

K. Na, R.E. Wyatt, Physics Letters A 306, 97 (2002)
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Starting point
The starting point is the molecular time-dependent Schrödinger equation:

ĤΨ(r ,R, t) = i~ ∂
∂t

Ψ(r ,R, t)

where Ĥ is the molecular time-independent Hamiltonian and Ψ(r ,R, t) the
total wavefunction (nuclear + electronic) of our system.

In mixed quantum-classical dynamics the nuclear dynamics is described by a
swarm of classical trajectories (taking the limit ~→ 0 for the nuclear wf).
Ansätze

Ψ(r ,R, t)
Born-−−−−→
Huang

∞X
j

Φj (r ; R)Ωj (R, t)

Ψ(r ,R, t)
Ehrenfest−−−−−−→ Φ(r ; R, t)Ω(R, t) exp

»
i
~

Z t

t0
Eel (t

′)dt′
–

Ψ(r ,R, t)
Exact-−−−−−→

decomp.
Φ(r , t)Ω(R, t)
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On-the-fly nonadiabatic dynamics with trajectories
a. Potential energy surfaces

Computed on-the-fly using linear response TDDFT

b. Propagation of the nuclear wavepacket
The wavepacket dynamics is replaced by the time-propagation of a swarm
of trajectories. We consider two options:

- Classical trajectories driven by forces computed as gradient of the
TDDFT PESs

- Quantum (Bohmian) trajectories driven by classical and quantum
potentials both computed within TDDFT

c. Nonadiabatic couplings between the PESs
Transition between PESs governed by the nonadiabatic couplings derived
from TDDFT

d. Coupling with the environment
Coupling with external (static and time-dependent) fields at TDDFT level
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LR-TDDFT - Energies and forces

Using the linear response orbitals (perturbative solution: Sternheimer
1951)

NX
j=1

(Hσ
0 δij − εij )|φ′I ,jσ〉+Qσ δvσSCF

I |φiσ〉 = ωI |φ′I ,iσ〉

Using the virtual Kohn-Sham orbital expansion (Casida formulation)»
A(ω) B(ω)
B(ω) A(ω)

– »
xI
yI

–
= ωI

»
C 0
0 −C

– »
xI
yI

–
Analytic excited state forces (using the Lagrange multiplier formalism)

dEtot [c{0}, x , y ]

dη
=

dEKS [c{0}]
dη

+
dω[c{0}, x , y ]

dη
[J. Hutter, JCP, 118, 3928 (2003)]

Solution always within the adiabatic approximation (no memory kernel)
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Trajectory based solution of the nuclear dynamics
In trajectory based solutions of the quantum dynamics we obtain a Newton-like
equation of motion for the nuclei

Mβ
d2Rβ
(dtJ)2 = −∇β

"
E J

el (R) +QJ(R, t) +
X

I

DJI (R, t)

#

QJ(R, t): adiabatic quantum potential

DJI (R, t): nonadiabatic couplings

1. NonAdiabatic Ehrenfest Dynamics (mean-field one-trajectory solution)
2. NonAdiabatic Bohmian Dynamics (NABDY) provides an exact solution

for the two extra terms: Q and DJI . [PCCP, 13, 3231 (2011)]

3. Trajectory Surface Hopping Dynamics (TSH) is derived from the so called
Independent Trajectory Approximation (ITA) together with [Tully, JCP, 1971]

~→ 0 for the action (classical trajectories: Q = 0)
stochastic (phenomenological) description of the couplings
DJI : trajectory surface hopping algorithm.
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The NABDY solution [B. Curchod]

Inserting Ψ(r ,R, t) =
P

I ΦI (r ,R)ΩI (R, t) in the time-dependent Schrödinger
equation and multiply from the left by Φ∗J(r ; R) we get (integration over r),

i~Ω̇J(R, t) =−
∑
γ

~2

2Mγ
∇2
γΩJ(R, t) + E el

J (R)ΩJ(R, t)

+
∑
γI

~2

2Mγ
Dγ

JI (R)ΩI (R, t)−
∑
γ,I 6=J

~2

Mγ
dγJI (R)∇γΩI (R, t),

where
dγJI (R) =

R
{Φ∗J(r ; R) [∇γΦI (r ; R)]} dr are the first order nonadiabatic

coupling elements (NACs)

Dγ
JI (R) =

R ˘
Φ∗J(r ; R)

ˆ
∇2
γΦI (r ; R)

˜¯
dr are the second order NACs.

The electrons are “static” (non explicit time-dependence in ΦI (r ,R)).

[B.F.E. Curchod, IT, U.Rothlisberger, PCCP, 13, 3231 (2011)]
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With the polar representation: ΩJ(R, t) = AJ(R, t)e
i
~ SJ (R,t) we obtain, after

separating real and imaginary parts (in the adiabatic representation),

−
∂SJ (R, t)

∂t
=
X
γ

1

2Mγ

`
∇γSJ (R, t)

´2 + Eel
J (R)−

X
γ

~2

2Mγ

∇2
γAJ (R, t)

AJ (R, t)
+
X
γI

~2

2Mγ
DγJI (R)

AI (R, t)

AJ (R, t)
<
h
eiφ
i

−
X
γ,I 6=J

~2

Mγ
dγJI (R)

∇γAI (R, t)

AJ (R, t)
<
h
eiφ
i

+
X
γ,I 6=J

~
Mγ

dγJI (R)
AI (R, t)

AJ (R, t)
∇γSI (R, t)=

h
eiφ
i

and

∂AJ (R, t)

∂t
=−

X
γ

1

Mγ
∇γAJ (R, t)∇γSJ (R, t)−

X
γ

1

2Mγ
AJ (R, t)∇2

γSJ (R, t)

+
X
γI

~
2Mγ

DγJI (R)AI (R, t)=
h
eiφ
i
−
X
γ,I 6=J

~
Mγ

dγJI (R)∇γAI (R, t)=
h
eiφ
i

−
X
γ,I 6=J

1

Mγ
dγJI (R)AI (R, t)∇γSI (R, t)<

h
eiφ
i
,

where φ = 1
~ (SI (R, t)− SJ (R, t)).

[R.E. Wyatt, C.L. Lopreore, G Parlant, JCP, 114, 5113 (2001) (diabatic representation);
J.C. Burant, J.C. Tully, JCP, 112, 6097 (2000) (classical limit)]
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Time evolution of SJ(R, t) (phase)

The phase (∼ classical action) evolves according to

−
∂SJ (R, t)

∂t
=
X
γ

1

2Mγ

`
∇γSJ (R, t)

´2 + Eel
J (R)−

X
γ

~2

2Mγ

∇2
γAJ (R, t)

AJ (R, t)
+
X
γI

~2

2Mγ
DγJI (R)

AI (R, t)

AJ (R, t)
<
h
eiφ
i

−
X
γ,I 6=J

~2

Mγ
dγJI (R)

∇γAI (R, t)

AJ (R, t)
<
h
eiφ
i

+
X
γ,I 6=J

~
Mγ

dγJI (R)
AI (R, t)

AJ (R, t)
∇γSI (R, t)=

h
eiφ
i

This is the equivalent of the classical Hamilton-Jacobi equation (first two
terms) for the action S(R, t), augmented with two additional parts of quantum
nature of order ~ and ~2:

3rd term: quantum potential QJ(R, t) describing all quantum effects
within a state and introducing nonlocality.

4th to 6th term: nonadiabatic quantum potential DIJ(R, t) describing
interstate contributions.
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Time evolution of SJ(R, t) (phase)

Applying the gradient with respect to the nucleus β on both sides we get

∇β
∂SJ(R, t)

∂t
+
X
γ

` 1
Mγ
∇γSJ(R, t) · ∇γ

´
∇βSJ(R, t) =

−∇β
»
E J

el (R) +QJ(R, t) +
X

I

DIJ(R, t)

–

After moving to the Lagrangian frame and using the HJ definition of the
momenta ∇βSJ(R, t) = PJ

β , we obtain a Newton-like equation of motion

Mβ
d2Rβ
(dtJ)2 = −∇β

"
E J

el (R) +QJ(R, t) +
X

I

DIJ(R, t)

#

describing the time evolution (trajectory) of the Rβ components of a fluid
element with collective variable R. (d/dtJ = ∂/∂t +

P
γ ∇γSJ(R, t)/Mγ · ∇γ).
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Time evolution of AJ(R, t) (amplitude)

The amplitudes evolve according to

∂AJ (R, t)

∂t
=−

X
γ

1

Mγ
∇γAJ (R, t)∇γSJ (R, t)−

X
γ

1

2Mγ
AJ (R, t)∇2

γSJ (R, t)

+
X
γI

~
2Mγ

DγJI (R)AI (R, t)=
h
eiφ
i
−
X
γ,I 6=J

~
Mγ

dγJI (R)∇γAI (R, t)=
h
eiφ
i

−
X
γ,I 6=J

1

Mγ
dγJI (R)AI (R, t)∇γSI (R, t)<

h
eiφ
i
,

It corresponds to the continuity equation for the density probability on state J,
augmented by three nonadiabatic terms describing the amplitude change of
state J due to the coupling with the other states.
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Nonadiabatic Quantum Hydrodynamics

These are Quantum Hydrodynamic (nonadiabatic) equations (QHE)

8>>>>>><>>>>>>:

dρ0

dt
= −ρ0∇ · v0 + P0I

dS0

dt
=

1
2
Mv2

0 − (V0 + Q0 + D0I )

dr0

dt
= v0 =

1
M

∇S0

8>>>>>><>>>>>>:

dρI

dt
= −ρI ∇ · v I + PI0

dSI

dt
=

1
2
Mv2

I − (VI + QI + DI0)

dr I

dt
= v I =

1
M

∇SI

where ρI (R, t) = A2
I (R, t)

QI (R, t) = − ~2

2M
1

AI (R, t)
∇2AI (R, t) the quantum potential

P0I Density coupling term
DIJ Phase coupling term

Solution by characteristics = Bohmian trajectoties
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Gaussian wavepacket on an Eckart potential (Ek = 3/4V )
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Approximate solution to the node problem in 1D
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Tully’s model 1 (x2)

Figure: Population dynamics on the double well potential. We used 3112 trajectories for TSH, 314
for NABDY dynamics, and 8192 grid points for the exact propagation scheme (k = 32 a.u. in all cases).
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Bohmian Quantum Hydrodynamics: H2 + H collision

[B.F.E. Curchod, IT, U.Rothlisberger, PCCP, 13, 3231 (2011)]

Current and future developments
of NABDY:

X Extension to higher
dimensions (configuration
space)

X Off-grid propagation of the
amplitudes

- Implementation in CPMD

Ivano Tavernelli Nonadiabatic molecular dynamics coupled to time dependent external potentials



Outline
Quantum Dynamics

Nonadiabatic quantum dynamics with trajectories
TSH-TDDFT-based local control theory

a. Potential energy surfaces and forces with TDDFT
b. Trajectory-based quantum dynamics
c. Nonadiabatic couplings in TDDFT
d. Coupling with external fields and local control

TSH nonadiabatic MD (~→ 0 for ΩI (R, t) and more)
[E. Tapavicza, B. Curchod]

There is no derivation of TSH dynamics. The fundamental hypothesis beyond
TSH is that it is possible to design a dynamics that consists of:

classical (adiabatic) time evolution of the nuclear trajectories on adiabatic
states solution of the Schrödinger equation for the electronic sub-system
propagation of a “quantum” amplitude, Cα

k (t), associated to each PES, k

Ψα(r ,R, t) =
∞X
k

Cα
k (t)Φk(r ; R)

(the label α is to recall that we have a different contribution from each
different trajectory.)
transitions (hops) of the trajectories between electronic states according
to a stochastic algorithm, which depends on the nonadiabatic couplings
and the amplitudes Cα

k (t)

See also: J. Tully, Faraday discussion, 110, 407 (1998) and B. Curchod, U.
Rothlisberger, IT, in preparation.
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TSH nonadiabatic MD (~→ 0 for ΩI (R, t) and more)

The main claim of TSH is that, the collection of a large enough set of
independent trajectories gives an accurate representation of the nuclear wave
packet

ρCL
k (Rα, tα) =

Nα
k (Rα, dV , tα)

Ntot

1
dV
∼ |Ωk(Rα, tα)|2 ∼ |Cα

k,Rα,tα |2

Inserting

Ψα(r ,R, t) =
∞X
k

Cα
k (t)Φk(r ; R)

into the time-dependent Schrödinger equation for the electrons and after some
rearrangement, we obtain:

i~Ċα
k (t) =

X
j

Cα
j (t)(Hkj − i~Ṙ

α · dαkj )

with Hkj = δkj 〈Φk(r ; R)|Ĥel |Φj (r ; R)〉 ← Densityfunctionalized (LR-TDDFT)
(In the adiabatic representation, we have Hkk = Eel

k and Hkj = 0.)
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On-the-fly TDDFT/TSH: photo-excited CH2NH+
2

Protonated formaldimine as a model
compound for the study of the
isomerization of retinal.

Photo-excitation promotes
the system mainly into S2.

Relaxation involves at least 3
states:
S0 (GS), S1 and S2.

[E. Tapavicza, I. T., U. Rothlisberger,
PRL, 98, 023001 (2007);
THEOCHEM, 914, 22 (2009)]
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The quest for matrix elements 〈Φ|O|Ψ〉 in TDDFT

TDDFT energies and forces are available since a decade, but in order to
perform nonadiabatic dynamics (TSH or Bohmian) one needs to express
nonadiabatic coupling elements (NAC) and nonadiabatic coupling vectors
(NACV)

dγJ0[Φ0,ΦJ ] =
〈Φ0|∇H|ΦJ〉

∆EJ0

dγJ0[ρ, δρ] =?

as a functional of the electronic density ρ(r) or, equivalently, of the occupied
Kohn-Sham orbitals {φi (r)}.

Additional care is required for the case of matrix elements between pairs of
excited states, which calculation goes beyond simple linear response theory

oγJI (τ) = 〈ΦI |O|ΦJ〉 .
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Auxiliary wavefunctions for LR-TDDFT
It is possible to express linear response quantities within TDDFT using a set of
auxiliary many-electron wavefunctions.

- I.T., E. Tapavicza, U. Rothlisberger, JCP, 130, 124107 (2007)

- I.T., B. F. E. Curchod, U. Rothlisberger, JCP, 131, 196101 (2009)

- I.T., B. F. E. Curchod, A. Laktionov, U. Rothlisberger, JCP, 133, 194104 (2010)

They are given as a linear combination of singly excited Slater determinants
The auxiliary many-electron wavefunctions (AX WF)

ψ̃I [{φ·}] =
X
iaσ

c I
iaσ â†aσ âiσψ̃0[{φ·}]

with

c I
iaσ ≡

s
S−1

iaσ

ω0I
e I
iaσ

where ψ̃0[{φ·}] is the Slater determinant of all occupied KS orbitals {φiσ}Ni=1,
and â†aσ , âiσ are the creation (of virtual orbitals, φaσ) and annihilation
operators.
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Applications of the AX WF

The nonadiabatic coupling elements at the mid step t + δt/2 of a
TDDFT MD dynamics can therefore be calculated as

Ṙ · d0I |t+δt/2[{φ·}] =
D
ψ̃0(r ; R(t))

˛̨̨
∇R

˛̨̨
ψ̃I (r ; R(t))

E
· Ṙ =

D
ψ̃0(r ; R(t))

˛̨̨ ∂
∂t

˛̨̨
ψ̃I (r; R(t))

E
'

1
2δt

h
〈ψ̃0(r ; R(t))|ψ̃I (r ; R(t + δt))〉 − 〈ψ̃0(r ; R(t + δt))|ψ̃I (r ; R(t))〉

i
The nonadiabatic coupling vectors

d0I [{φ·}] = 〈ψ̃0(R)|∇R|ψ̃I (R)〉 =
〈ψ̃0(R)|∇RH|ψ̃I (R)〉

EI (R)− E0(R)

The transition dipole matrix elements

µ0I [{φ·}] = 〈ψ̃0(R)|µ̂|ψ̃I (R)〉 = −eω−1/2
0I r†S−1/2eI
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Matrix elements for pairs of excited states

The equations for the NACVs are obtained from the one-to-one (or
residue-by-residue) mapping between

B β
(αβγ)
MBPT (ω1, ω2)[Ψ0,Ψ1,Ψ2] : MBPT second-order polarizability

B β
(αβγ)
TDDFT (ω1, ω2)[ρ, δρ]: TDDFT second-order polarizability.

(SOS representation of β(αβγ)
TDDFT through bosonization (HA) of the KS

excitation operators).

The same procedure used in the derivation of the matrix elements between
ground and excited states can be followed for the calculation of the second
order response matrix elements 〈ΨI |Ô|ΨJ〉, where both states ΨI and ΨJ are
linear response excited states.
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MBPT second-order polarizability

Within the many-body formulation of quantum mechanics in second
quantization, the SOS second-order density-density response function is
obtained using a perturbative approach applied to the molecular Hamiltonian
and reads 1

β
(αβγ)
MBPT (ω1, ω2) =

1
2

MX
IJ=1

X
perm(ω1,ω2)

"
µ

(α)
J µ

(β)
−JIµ

(γ)
−I

(ΩJ − ω1 − ω2)(ΩI − ω1)
+

µ
(α)
J µ

(β)
−JIµ

(γ)
−I

(ΩJ + ω2)(ΩI + ω1 + ω2)
+

µ
(α)
JI µ

(β)
−Jµ

(γ)
−I

(ΩJ + ω2)(ΩI − ω1)

#

with µ(α)
J = 〈Ψ0|µ(α)|ΨJ〉 and µ(α)

−JI = 〈ΨJ |µ(α)|ΨI 〉.

1J. F. Ward, Rev. Mod. Phys. 37, 1 (1965); B. J. Orr, J. F. Ward, Mol. Phys. 20, 513 (1971).
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TDDFT second-order polarizability
The second-order TDDFT density response functions are given by 2

β
(2)(ω1, ω2, r, r

′
, r ′′) =

X
IJK

V ′′−IJKµI (r)µ−J (r ′)µ−K (r ′′)sI sJ sK
(ΩI − ω1 − ω2)(ΩJ − ω1)(ΩK − ω2)

−
1

2

X
IJ

µ−IJ (r)µI (r ′)µ−J (r ′′)sI sJ
(ΩI − ω1 − ω2)(ΩJ − ω1)

−
1

2

X
IJ

µ−IJ (r)µI (r ′)µ−J (r ′′)sI sJ
(ΩI − ω1 − ω2)(ΩJ − ω2)

−
1

2

X
IJ

µIJ (r)µ−I (r ′)µ−J (r ′′)sI sJ
(ΩI − ω1)(ΩJ − ω2)

where
sI = sign(I ),
I , J,K = ±1,±2, . . . ,
V ′′IJK are the second-order coupling terms between excited states
ξI are the eigenvectors of the LR-TDDFT eigenvalue equations

L ξI = ΩI ξI .

2S. Tretiak and S. Mukamel, Chem. Rev., 102, 3171 (2002); S. Tretiak and V. Chernyak, J Chem

Phys, 119, 8809 (2003); I. T, B.F.E. Curchod, A. Laktionov, and U. Rothlisberger, J. Chem. Phys., 133,

194104 (2010)..
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TDDFT second-order polarizability
Required quantities: 3

V ′′IJK =
1
2
Tr
ˆ
(I − 2ρ0)

`
(ξJξK + ξKξJ)V ′′(ξI )+

+ (ξI ξJ + ξJξI )V ′′(ξK ) + (ξI ξK + ξKξI )V ′′(ξJ)
´˜

with

V ′′(ξI )(r)ξJ = V ′[ξI ](r)ξJ + V ′′nl [ξI , ξJ ](r)ρ0(r)

V ′[ξI ](r) =

Z
dr ′ fxc [ρ](r , r ′)ξI (r ′)

V ′′nl [ξI , ξJ ](r) =

Z
dr ′
Z

dr ′′gxc [ρ](r , r ′, r ′′)ξI (r ′)ξJ(r ′′)

and
ρI ,JK (r) = −ξI (ξJξK + ξKξJ)(r) .

3S. Tretiak and S. Mukamel, Chem. Rev., 102, 3171 (2002); S. Tretiak and V. Chernyak, J Chem

Phys, 119, 8809 (2003); I. T, B.F.E. Curchod, A. Laktionov, and U. Rothlisberger, J. Chem. Phys., 133,

194104 (2010)..
Ivano Tavernelli Nonadiabatic molecular dynamics coupled to time dependent external potentials



Outline
Quantum Dynamics

Nonadiabatic quantum dynamics with trajectories
TSH-TDDFT-based local control theory

a. Potential energy surfaces and forces with TDDFT
b. Trajectory-based quantum dynamics
c. Nonadiabatic couplings in TDDFT
d. Coupling with external fields and local control

TDDFT second-order polarizability

Using the following definition of the dipole matrices

µI = Tr([ρ0, ξI ][µ, ρ0])

µIJ = Tr([ρ0, ξI ][µ, ξJ ])

the second-order polarizability within TDDFT becomes

β
(αβγ)(ω1, ω2) =−

MX
IJK=−M

V ′′−IJKµ
(α)
I µ

(β)
−Jµ

(γ)
−K sI sJ sK

(ΩI − ω1 − ω2)(ΩJ − ω1)(ΩK − ω2)
+

1

2

MX
IJ=−M

µ
(β)
−IJµ

(α)
I µ

(γ)
−J sI sJ

(ΩI − ω1 − ω2)(ΩJ − ω1)

+
1

2

MX
IJ=−M

µ
(β)
−IJµ

(α)
I µ

(γ)
−J sI sJ

(ΩI − ω1 − ω2)(ΩJ − ω2)
+

1

2

MX
IJ=−M

µ
(α)
IJ µ

(β)
−I µ

(γ)
−J sI sJ

(ΩI − ω1)(ΩJ − ω2)

where α, β, γ ∈ {x , y , z}, and µ−IJ is the transition dipole between states I
and J for which µI = µ∗−I and µ−IJ = µ∗−JI

However, this is NOT a SOS formula (coupling terms V ′′−IJK ).
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Bosonization of the TDDFT second order response
Mukamel, Tretiak, Chernyak and Berman propose a classical system of coupled
harmonic oscillators (bosons) that shares the same linear and second-order
response properties of TDDFT.X

σ

ĉ†rσ ĉsσ −→
X
σ

c̃†rσ c̃sσ

Comparing term-by-term βSOS
MBPT with β(B) SOS

TDDFT

〈Ψ0|
X
σ

ĉ†rσ ĉsσ|Ψ0〉 = (ρ0)rs

〈Ψ0|
X
σ

ĉ†rσ ĉsσ|Ψ
(1)
I 〉 = (ξI )rs

〈Ψ0|
X
σ

ĉ†rσ ĉsσ|Ψ
(2)
IJ 〉 =

1p
1 + δIJ

h
([[ξI , ρ0], ξJ ])rs +

X
K>0

“ V
′′
IJ−K (ξK )rs

ΩI + ΩJ − ΩK
−

V
′′
IJK (ξ

†
K )rs

ΩI + ΩJ + ΩK

”i

〈Ψ(1)
I |

X
σ

ĉ†rσ ĉsσ|Ψ
(1)
J 〉 = (ρ0)rsδIJ + ([[ξ

†
I , ρ0], ξJ ])rs +

X
K>0

V
′′
−IJ−K (ξK )rs

ΩJ − ΩI − ΩK
−

V
′′
I−J−K (ξ

†
K )rs

ΩJ − ΩI + ΩK

”

where ξ†I = ξ−I .
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The auxiliary many-electron wavefunction approach

Considering only terms up to second order in Z I where (Z I ∼ X I + Y I ) we
compare results for 〈ΨJ |Ô|ΨI 〉 obtained using the “bosonization” (B) and the
“auxiliary wavefunctions” (AX) schemes:

〈ΨJ
ia|Ô|Ψ

I
jb〉B =− Tro(Y †JOoY I ) + Trv (X JOvX †I )− Tro(X †IOoX J) + Trv (Y IOvY †J)

〈ΨJ
ia|Ô|Ψ

I
jb〉AX =

X
ia

X
jb

cJ†
ia c I

jb〈Ψ̃
J
ia|Ô|Ψ̃

I
jb〉

=
h
Trv (XβOvX †I ) + Trv (Y βOvX †I ) + Trv (XβOvY †I ) + Trv (Y βOvY †I )

i
−

h
Tro(X †IOoX J) + Tro(X †IOoY J) + Tro(Y †IOoX J) + Tro(Y †IOoY J)

i
.

The second solution is more symmetric with respect to the ph and hp
transitions than the one obtained from the bosonization (AX contains terms of
the form X IOY J .

In "TDA" (B = 0) the two solutions coincide.
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Nonadiabatic couplings between excited states

The (AX) representation of the matrix elements 〈ΨJ
ia|Ô|ΨI

jb〉 is used to
compute nonadiabatic coupling vectors between excited states along
nonadiabatic trajectories. 4

〈ΨJ
ia|∇RĤ|ΨI

jb〉 =
X
ab

(X †J XI + X †J YI + Y †J XI + Y †J YI )ab〈φb|∇RĤ|φa〉

−
X
ij

(XIX †J + YIX †J + XIY †J + YIY †J )ji 〈φi |∇RĤ|φj 〉 .

The numerical evaluation of the matrix elements 〈φb|∇RĤ|φa〉 is done as in
the case of couplings with the ground state.

4I.T., E. Tapavicza, U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009); I. T, B.F.E. Curchod,
A. Laktionov, and U. Rothlisberger, J. Chem. Phys., 133, 194104 (2010).
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the
xc-functional used

dkj [{φ·}] = 〈Φ̃k(R)|∇R|Φ̃j (R)〉

Protonated formaldimine: nonadiabatic coupling vectors d01 with LR-
TDDFT/TDA.
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the
xc-functional used

dkj [{φ·}] = 〈Φ̃k(R)|∇R|Φ̃j (R)〉

Protonated formaldimine: nonadiabatic coupling vectors d12 with LR-
TDDFT/TDA.
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Coupling with the environment
Explicit (time-dependent) laser fields QM/MM static coupling with liquid and

solid phases

... optimal control ...

[A. Laio, J. VandeVondele, and U. Rothlisberger, J. Chem.
Phys. 116, 6941 (2002); A. Laio, J. VandeVondele, and
U. Rothlisberger, J. Phys. Chem. B, 106, 7300, (2002);
M. Colombo et al. CHIMIA 56, 11 (2002)].
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Environment (QM/MM) and sampling is crucial
Calculation of the QM/MM coupling using δρLR−TDDFT (r):
IT, B. Curchod, U. Rothlisberger, Chem. Phys. 391, 101 (2011).

M. Cascella, M.A. Cuendet, I.T., U. Rothlisberger, JPC B, 111, 10248 (2007)

Ivano Tavernelli Nonadiabatic molecular dynamics coupled to time dependent external potentials



Outline
Quantum Dynamics

Nonadiabatic quantum dynamics with trajectories
TSH-TDDFT-based local control theory

a. Potential energy surfaces and forces with TDDFT
b. Trajectory-based quantum dynamics
c. Nonadiabatic couplings in TDDFT
d. Coupling with external fields and local control

Coupling with td electric fields [B. Curchod]

The Interaction Hamiltonian

In the Born-Oppenheimer approximation for the separation of electronic and
nuclear degrees of freedom (which is assumed in Tully’s dynamics), the total
(non relativistic) Hamiltonian is given by

Htot = Hmol + Hrad + Hint

where the interaction Hamiltonian (with no spin-magnetic field contributions)
is obtained from the standard prescription p → p − eA/c,

Hint =
X

i

»
− e
2mc

(pi · A(r i , t) + A(r i , t) · pi ) +
e2

2mc2 A(r i , t)A(r i , t)

–
.

The vector potential is of the form A = A0ε
λe−ik·r+iωt
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In the dipole approximation, the TSH equations

i~ĊJ =
X

I

CI (HJI − i~Ṙ · d JI )

become
i~ĊJ =

X
I

CI (HJI − i~Ṙ · d JI + iωJI
A0

c
· µJI e

iωt) .

In addition, a classical electrostatic interaction term of the form

Enucl (Rα) = −
X
K

ZKRK · E(t) ,

with E(t) = − 1
c
∂
∂t A(t) is added to the potential energy of the nuclei, which,

according to Tully’s scheme, follow a "classical" trajectory on a single PES
with possible surface hops according to the hopping probability gJI .

[Ref : IT, BFE Curchod, U. Rothlisberger, PRA, 81, 052508 (2010)]
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Quantum optimal control theory

Optimal control theory can be formulated in the framework of Ehrenfest
mean-field and semiclassical approaches.

Like in the solution of the semiclassical path-integral equations
(Pechukas), QOCT requires the self-consistent solution of forward and
backward propagation of Schrödinger-like equations:

i
∂

∂t
ψ(t) = [H0 − µε(t)]ψ(t) , i.c. ψ(0) = ψ0

i
∂

∂t
χ(t) = [H0 − µε(t)]χ(t) , i.c. χ(T ) =

∂O
∂ψ∗(T )

α(t)ε(t) = −Im〈χ(t)µ|ψt〉

where O is the to-be-optimized quantity, ψ(r) is the system wavefunction, ε(t) is the
shaped laser field, α(t) is a “switching function", and χ(r , t) is an auxiliary
wavefunction.

D. Kammerlander, A. Castro, M. A. L. Marques, PRA 83, 043413 (2011)
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Local control theory [B. Curchod, T. Penfold]

Local control, is formulated in the framework of Trajectory Surface
Hopping (TSH).

The time evolution of the expectation value of an arbitrary operator Ô
(Heisenberg representation) is given by

Ȯ(t) =
i
~

∫
Ψ∗(r ,R, t)[Ĥ0, Ô]Ψ(r ,R, t) dr dR

+
i
~

∫
Ψ∗(r ,R, t)[Ĥint , Ô]Ψ(r ,R, t) dr dR

The evolution of the state population operator P̂I = |I 〉〈I | in a time
dependent electric field E (t) is then (assuming [Ĥ0, µ̂] = 0)

ṖI (t) = −E (t)
i
~
=
[∫

Ψ∗(r ,R, t)[µ̂, P̂I ]Ψ(r ,R, t) dr dR
]
.
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Local control theory

Control is achieved by tuning the temporal evolution of E(t) in a way to
maximize the population of a target state.

Using the TSH for the total molecular wavefunction

Ψα(r ,R, t) =
∞X
J

Cα
J (t)ΦJ(r ; R)

for a given trajectory α, the population time evolution simplifies to

ṖI (t) = −2Eα(t)
X

J

=[Cα∗
J µJIC

α
I (t)]

Is is now evident that choosing a field of the form
E(t) = −λ

X
J

= [Cα
I (t)Cα∗

J µIJ)]

will ensure that PI (t) always increases in time.

T. J. Penfold, G. A. Worth, C. Meier, Phys. Chem. Chem. Phys. 12, 15616 (2010).
B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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Application: Photoexcitation of LiF in the bound state S2

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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Effect of a generic polarized pulse
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LC pulse: efficient population transfer and stable excitation
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Π pulse vs. optimized pulse (LC)

Ivano Tavernelli Nonadiabatic molecular dynamics coupled to time dependent external potentials



Outline
Quantum Dynamics

Nonadiabatic quantum dynamics with trajectories
TSH-TDDFT-based local control theory

What is local control?
Application of LCT

Comparison with wavepacket propagation (MCTDH)

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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Local control on proton transfer (in gas phase)
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Local control on proton transfer (with one water molecule)
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Local control on proton transfer (comparison)

gas phase with one water molecule
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Implementations & documentation

CPMD TDDFT/TSH (QM/MM + external EM field) available free of charge
(for academics) from www.cpmd.org

Turbomol Version by Vlasta Bonacic-Koutecky
Turbomol Implementation in the group of F. Furche (by Enrico Tapavicza). Soon

available in the official release of the code.
CP2K Hopefully in the near future.

PetaChem Collaboration with Todd Martinez
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Thank you for your attention
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