If Correlation Doesn't Imply Causation, What Does?

Rob Spekkens

From XKCD comics

Causal Structure in Quantum Theory, Benasque, June 3, 2013

© Albanpis.com

Simpson's Paradox

P(recovery | drug) > P(recovery | no drug)

P(recovery | drug, male) < P(recovery | no drug, male)

P(recovery | drug, female) < P(recovery | no drug, female)

	drug	no drug
male	180/300 = 60%	70/100 = 70%
female	20/100 = 20%	90/300 = 30%
combined	200/400 = 50%	160/400 = 40%

Recovery probability

Simpson's Paradox

Simpson's Paradox

P(recovery | do (drug)) ≠ P(recovery | observe (drug)) causation correlation

What formalism can we use to describe causal relations?

How do we come to have knowledge of causal relations? ("we" = children, scientists, machine learning systems)

How do we come to have knowledge of causal relations in uncontrolled experiments?

CAUSALITY

JUDEA PEARL

Causation, Prediction, and Search

second edition

What is a Causal Model?

Causal Model

Causal Causal-Statistical Structure Parameters

Reichenbach's principle

No correlation without causation!

If X and Y are correlated, then either

- (i) X causes Y
- (ii) Y causes X

(iii) X and Y have a common cause

- (iv) both (i) and (iii)
- (v) both (ii) and (iii)

Causal Model

- Parentless variables are independently distributed
- Conditionals arise from *autonomous* mechanisms

Given a causal model, what sorts of correlations can arise?

P(X, Y, W, S, T) = P(X|S, T, W, Y)P(Y|T, W)P(W)P(S)P(T)

Causal inference algorithms seek to solve the inverse problem

Inferring facts about the causal structure from statistical independences

Given a causal model, what sorts of correlations can arise?

P(X, Y, W, S, T) = P(X|S, T, W, Y)P(Y|T, W)P(W)P(S)P(T)

Def'n: A and B are marginally independent

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(A,B) = P(A)P(B)$$
Denote this
$$(A \perp B)$$

Given a causal model, what sorts of correlations can arise?

P(X, Y, W, S, T) = P(X|S, T, W, Y)P(Y|T, W)P(W)P(S)P(T)

Def'n: A and B are conditionally independent given C

P(A|B,C) = P(A|C) P(B|A,C) = P(B|C) P(A,B|C) = P(A|C)P(B|C)Denote this $(A \perp B|C)$ $(A \perp B|C)$

Markov condition: The joint distribution induced by a causal model is such that every variable X is conditionally independent of its nondescendants given its parents,

 $(X \perp \operatorname{Nondescendants}(X) \mid \operatorname{Parents}(X))$

$$\begin{array}{l} (X_1 \perp X_2) \\ (X_2 \perp \{X_1, X_4\}) \\ (X_3 \perp X_4 \mid \{X_1, X_2\}) \\ (X_4 \perp \{X_2, X_3\} \mid X_1) \\ (X_5 \perp \{X_1, X_2\} \mid \{X_3, X_4\}) \end{array}$$

Semi-graphoid axioms

Symmetry: Decomposition: Weak Union: Contraction:

 $(X \perp Y \mid Z) \Leftrightarrow (Y \perp X \mid Z)$ $(X \perp YW \mid Z) \Rightarrow (X \perp Y \mid Z)$ $(X \perp YW \mid Z) \Rightarrow (X \perp Y \mid ZW)$ $(X \perp Y \mid Z) \text{ and } (X \perp W \mid ZY)$ $\Rightarrow (X \perp YW \mid Z)$

$$(X_1 \perp X_2) (X_2 \perp \{X_1, X_4\}) (X_3 \perp X_4 \mid \{X_1, X_2\}) (X_4 \perp \{X_2, X_3\} \mid X_1) (X_5 \perp \{X_1, X_2\} \mid \{X_3, X_4\})$$

The semi-graphoid axioms then imply

. . .

$$(X_4 \perp X_2 \mid X_1) \\ (\{X_4, X_5\} \perp X_2 \mid \{X_1, X_3\})$$

The values of the causal-statistical parameters can imply further CI relations

Suppose: $X_3 = (X_1 + X_2) \mod 2$ $P(X_2 = 0) = P(X_2 = 1) = \frac{1}{2}$ Then:

 $X_3 \perp X_1$

No Fine-tuning!

A key assumption of causal discovery algorithms

No fine-tuning (a.k.a. stability, a.k.a. faithfulness):

A causal model M is not fine-tuned relative to a probability distribution P if the conditional independences that hold in P continue to hold for any variation of the parameters in M

$(A \perp B|C)$ and no other independence

relations

В Α ? С

 $A \perp B$ $A \perp B \mid C$ $A \perp C$ $A \perp C \mid B$ and no other independence relations

В

Α

?

С

 $\begin{array}{c} A \perp B \\ A \perp B \mid C \\ A \perp C \\ A \perp C \mid B \end{array}$ and no other independence relations

Allowing latent variables in the causal structure

What's given: probability distribution over observed variables

What we must infer: a causal structure over a set of variables that includes the observed variables and may include one or more latent variables

Notational Convention Observed variables: A, B, C,... Latent variables: λ , μ , ν , ...

Does smoking cause lung cancer?

Suppose you also observe

 $S \perp C \mid T$

and no other independences

Latent common cause for S, C and T?

Latent common cause or direct causal relation (or both) between S and C?

So the causal structure must be of the form

Marginal independence between remaining pairs?

So the causal structure must be of the form

 $(S \perp C / T)$

 $\sigma \tau$

Assume one extra piece of data: *S* always precedes *T*

Inferring facts about the causal structure from the strength of correlations
Strength of Correlations

P(X,Y,Z) can have perfect three-way correlation

P(X,Y,Z) is bounded away from perfect three-way correlation

Janzing and Beth, arXiv:quant-ph/0208006 Steudel and Ay, arXiv:1010:5720 Fritz, New J. Phys. 14, 103001 (2012) Branciard, Rosset, Gisin, Pironio, arXiv:1112.4502

Strength of Correlations

Inequalities on P(A, B|X, Y) P(A = B|0, 0) + P(A = B|0, 1) $+P(A = B|1, 0) + P(A \neq B|1, 1) \cdot 3$ where $P(A = B|X, Y) := \sum_{a=b} P(A = a, B = b|X, Y)$

$$P(A \neq B | X, Y) := \sum_{a \neq b} P(A = a, B = b | X, Y)$$

Testing candidate causal structures

The lesson of causal inference for Bell-inequality-violating correlations

Joint work with Christopher Wood

See: arXiv:1208.4119

What are the key assumptions of Bell's theorem?

<u>A "standard" response:</u>

- Realism
- Local causality
- No superdeterminism
- No retrocausation

What is proposed here:

- Reichenbach's principle
- No fine-tuning
- A causal model is a directed acyclic graph supplemented with conditional probabilities

Distinguishing $X \rightarrow Y$ from $Y \rightarrow X$ under assumption of additive noise

Linear functional model with additive noise

distinguish

from

Linear functional model with additive noise

Nonlinear functional model with additive noise

distinguish

Nonlinear functional model with additive noise

Linear fn' + Gaussian X and N

Nonlinear fn' + Gaussian X and N

Hoyer et al. NIPS 21, Vancouver (2009)

Causal inference from correlations on a pair of binary variables

Joint work with Ciaran Lee

Functional Causal Models where A and B have at most two binary variables as parents

Possible Causal structures

В

A

Note: all noise is assumed to come from the root nodes

Possible functional dependences of A and B on their parents

 $egin{aligned} A &=
u \oplus \mu \ A &=
u \oplus \mu \oplus 1 \ A &=
u \mu \ A &=
u \mu \oplus 1 \end{aligned}$

$$B = \lambda \oplus \mu$$

 $B = \lambda \oplus \mu \oplus 1$
 $B = \lambda \mu$
 $B = \lambda \mu \oplus 1$

 $\oplus 1$

Note:	μ	ν	$f = \mu \oplus \nu \oplus \mu \nu$	μ	ν	$g = (\mu \oplus 1)(\nu \oplus 1)$
	0	0	0	0	0	0
	0	1	1	0	1	1
	1	0	1	1	0	1
	1	1	1	1	1	1

$P(A,B) = p_{00}[00] + p_{01}[01] + p_{10}[10] + p_{11}[11]$

μ	ν	λ	$A=\mu\oplus\nu$	$B=\mu\oplus\lambda$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
1	0	0	1	1
1	1	0	0	1
0	1	1	1	1
1	0	1	1	0
1	1	1	0	0

 $P(A,B) = (q_1q_2q_3 + \bar{q}_1\bar{q}_2\bar{q}_3)[00] + (q_1q_2\bar{q}_3 + \bar{q}_1\bar{q}_2q_3)[01]$ $+ (q_1\bar{q}_2q_3 + \bar{q}_1q_2\bar{q}_3)[10] + (\bar{q}_1q_2q_3 + q_1\bar{q}_2\bar{q}_3)[11],$

Quantum Bayesian Inference and Quantum Causal Models

joint work with Matt Leifer

See: arXiv:1107.5849, arXiv:1110.1085

	Classical	Quantum
Joint state	P(R,S)	$ ho_{AB}$
Marginalization	$P(S) = \sum_{R} P(R, S)$	$\rho_B = \text{Tr}_A \rho_{AB}$
Conditional state	P(S R)	$ ho_{B A}$
	$\sum_{S} P(S R) = 1$	$\operatorname{Tr}_B(\rho_{B A}) = I_A$
Belief propagation	$P(S) = \sum_{R} P(S R)P(R)$	$\rho_B = \text{Tr}_A(\rho_{B A}\rho_A)$

R

$$P(R, S) \qquad ????$$

$$P(S|R) = P(R, S)/P(R) \qquad B \qquad ????$$

$$P(S) = \sum_{R} P(S|R)P(R) \qquad A \qquad ????$$

$$P(S) = \Gamma_{R \to S}[P(R)] \qquad \rho_{B} = \mathcal{E}_{A \to B}(\rho_{A})$$

$$P(R,S) \qquad (A - - - B) \qquad \rho_{AB}$$

$$P(S|R) = P(R,S)/P(R) \qquad ????$$

$$P(S) = \sum_{R} P(S|R)P(R) \qquad ????$$

$$P(S) = \Gamma_{R \to S}[P(R)] \qquad ????$$
R

$$P(R, S) \qquad ????$$

$$P(S|R) = P(R, S)/P(R) \qquad B \qquad ????$$

$$P(S) = \sum_{R} P(S|R)P(R) \qquad A \qquad ????$$

$$P(S) = \Gamma_{R \to S}[P(R)] \qquad \rho_{B} = \mathcal{E}_{A \to B}(\rho_{A})$$

$$P(S) = \Gamma_{R \to S}[P(R)]$$

$$P(R,S) = P(R,S)/P(R)$$

$$P(S) = \sum_{R} P(S|R)P(R)$$

$$P(S) = \Gamma_{R \to S}[P(R)]$$

R

$$P(S|R) = P(R,S) \qquad (A - \cdots + B) \quad \rho_{AB}$$

$$P(S|R) = P(R,S)/P(R) \qquad \rho_{B|A} = \rho_A^{-1/2} \rho_{AB} \rho_A^{-1/2}$$

$$P(S) = \sum_R P(S|R)P(R) \qquad \rho_B = \operatorname{Tr}_A(\rho_{B|A} \rho_A)$$

$$P(S) = \Gamma_{R \to S}[P(R)] \qquad \rho_B = \mathfrak{E}_{A \to B}(\rho_A)$$

R ----

S

$$P(R, S)$$
$$P(S|R) = P(R, S)/P(R)$$
$$P(S) = \sum_{R} P(S|R)P(R)$$
$$P(S) = \Gamma_{R \to S}[P(R)]$$

$$\begin{array}{c} \textbf{S} \quad P(R,S) \\ P(S|R) = P(R,S)/P(R) \\ P(S) = \sum_{R} P(S|R)P(R) \\ P(S) = \Gamma_{R \to S}[P(R)] \\ P(S) = \Gamma_{R \to S}[P(R)] \\ P(R,S) \\ P(R,S) \\ P(S|R) = P(R,S)/P(R) \end{array} \qquad \begin{array}{c} \textbf{A} - \cdots - \textbf{B} \quad \rho_{AB} \\ \rho_{B|A} = \rho_{A}^{-1/2} \rho_{AB} \rho_{A}^{-1/2} \\ \rho_{B} = \text{Tr}_{A}(\rho_{B|A}\rho_{A}) \\ \rho_{B} = \mathfrak{E}_{A \to B}(\rho_{A}) \\ \rho_{B|A} \ge 0 \\ \mathfrak{E}_{A \to B} \circ T_{A} \quad \text{is CP} \\ \rho_{AB} \\ \mathfrak{E}_{A \to B} \circ T_{A} \quad \text{is CP} \\ \rho_{AB} \\ \mathfrak{E}_{A \to B} \circ T_{A} \quad \mathfrak{E}_{A} \\ \mathcal{E}_{A \to B} \circ T_{A} \quad \mathfrak{E}_{A} \\ \mathcal{E}_{A} \\ \mathcal{$$

R ----

S

$$\rho_{B|A} \ge 0$$

 $arrho_{B|A}^{T_A} \geq 0$

 $\rho_B = \operatorname{Tr}_A(\rho_{B|A}\rho_A)$

$$P(S) = \sum_{R} P(S|R)P(R)$$

$$P(S|R) = P(R,S)/P(R)$$

P(R,S)

$$\mathbf{A} - \mathbf{B} \quad \rho_{AB} \\ \rho_{B|A} = \rho_A^{-1/2} \rho_{AB} \rho_A^{-1/2}$$

	Conventional expression	In terms of conditional states
Probability distribution for X	P(X)	$ ho_X$
Set of states on A	$\{ ho_x^A\}$	$ ho_{A X}$
POVM on A	$\{E_x^A\}$	$ ho_{X A}$
Channel from A to B	$\mathcal{E}^{A ightarrow B}$	$ ho_{B A}$
Instrument	$\{\mathcal{E}_x^{A ightarrow B}\}$	$ ho_{XB A}$

Conventional expression

In terms of conditional states

Action of quantum channel

$$(A) \longrightarrow (B) \qquad \qquad \rho_B = \mathcal{E}^{A \to B}(\rho_A) \qquad \qquad \rho_B = \operatorname{Tr}_A(\rho_{B|A}\rho_A)$$

Born's rule

$$A \longrightarrow P(Y = y) = \operatorname{Tr}_A(E_y^A \rho_A) \qquad \rho_Y = \operatorname{Tr}_A(\rho_{Y|A} \rho_A)$$

Ensemble averaging

$$A \longrightarrow \rho_A = \sum_x P(X = x) \rho_X^A \qquad \rho_A = \operatorname{Tr}_X(\rho_{A|X} \rho_X)$$

Composition of channels

$$A \longrightarrow B \longrightarrow C \qquad \mathcal{E}^{A \to C} = \mathcal{E}^{B \to C} \circ \mathcal{E}^{A \to B} \qquad \rho_{C|A} = \operatorname{Tr}_B(\rho_{C|B}\rho_{B|A})$$

State update rule

$$P(Y=y)\rho_y^B = \mathcal{E}_y^{A \to B}(\rho_A) \qquad \rho_{YB} = \operatorname{Tr}_A(\rho_{YB|A}\rho_A)$$

Quantum Causal Models

P(A, B|X, Y)= $\sum_{\lambda} P(A|\lambda, X) P(B|\lambda, Y) P(\lambda)$ $\rho_{AB|XY} = \operatorname{Tr}_{\mathcal{S}}(\rho_{A|X\mathcal{S}}\rho_{B|Y\mathcal{S}}\rho_{\mathcal{S}})$

Deriving quantum correlations

A possible line of attack:

Principles about inference \rightarrow Quantum Bayesian inference

+ Assumptions about causal structure

See: Coecke and RWS, Synthese 186, 651 (2012)

Understanding the subset of qubit channels induced by a single qubit ancilla

See: Narang and Arvind, arXiv:quant-ph/0611058

Understanding multipartite entanglement SLOCC classes

See: Walter et al. arXiv:1208.0365

Fin