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P(recovery | drug)  >  P(recovery | no drug) 

 

P(recovery | drug, male)  <  P(recovery | no drug, male) 

 

P(recovery | drug, female)  <  P(recovery | no drug, female) 

 

Simpsonôs Paradox 

drug no drug 

male 180/300 = 60% 70/100 = 70% 

female 20/100 = 20% 90/300 = 30% 

combined 200/400 = 50% 160/400 = 40% 

Recovery probability 



gender 

treatment recovery 

Simpsonôs Paradox 



P(recovery | do (drug))   Í  P(recovery | observe (drug) ) 

Simpsonôs Paradox 

correlation causation 



What formalism can we  use to describe causal relations? 
 

How do we come to have knowledge of causal relations?  
όάǿŜέ Ґ ŎƘƛƭŘǊŜƴΣ ǎŎƛŜƴǘƛǎǘǎΣ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ǎȅǎǘŜƳǎ) 

 
How do we come to have knowledge of causal relations in 

uncontrolled experiments? 
 





What is a Causal Model? 



X Y 

T S 

W 

Causal  
Structure 

Causal-Statistical 
 Parameters 

Causal Model 



wŜƛŎƘŜƴōŀŎƘΩǎ principle   
No correlation without causation! 
 
If X and Y are correlated, then either  
(i)  X causes Y 
(ii)  Y causes X 
(iii) X and Y have a common cause 
(iv) both (i) and (iii) 
(v) both (ii) and (iii) 

 
 



ÅParentless variables are independently distributed 
 

ÅConditionals arise from autonomous mechanisms 
 

X Y 

T S 

W 

Causal  
Structure 

Causal-Statistical 
 Parameters 

Causal Model 



Given a causal model, what sorts of correlations can arise? 

X Y 

T S 

W 

Causal inference algorithms seek to solve the inverse problem 



Inferring facts about the causal structure from 
statistical independences 



5ŜŦΩƴ: A and B are marginally independent 

Denote this 

Given a causal model, what sorts of correlations can arise? 

X Y 

T S 

W 



5ŜŦΩƴ: A and B are conditionally independent given C 

Denote this 

Given a causal model, what sorts of correlations can arise? 

X Y 

T S 

W 



A C B 

A C 

B 

A 6? C
(A ? CjB)

(A 6? CjB)

A 6? C
(A ? CjB)

A C 

B 

A 6? C

fork 

chain 

confounded  
cause 

A C 

B 

A ? Ccollider 
(A 6? CjB)

A C 

B 

D 

(A 6? CjB)

A 6? C

(A ? CjB; D)

Pair of forks 



Markov condition: The joint distribution induced by a causal 
model is such that every variable X is conditionally independent 
of its nondescendants given its parents, 
   

X1 

X4 X3 

X5 

X2 



X1 

X4 X3 

X5 

X2 

The semi-graphoid axioms then imply 

Semi-graphoid axioms 



X 3 ? X 1

The values of the causal-statistical parameters can imply 
further  CI relations 

X1 

X4 X3 

X5 

X2 
Suppose: 

Then: 



A B 

C 

? A ? B

and no other 
independence 

relations 



No Fine-tuning! 

A B 

C 

A B 

C 

? 

A ? B

and no other 
independence 

relations 

P (A)

P (B )

P (CjA; B )

P (C)

P (B jC)

P (A jB ; C)



No fine-tuning (a.k.a. stability, a.k.a. faithfulness): 
A causal model M is not fine-tuned relative  to a probability 
distribution P if the conditional independences that hold in P 
continue to hold for any variation of the parameters in M 

A key assumption of causal discovery algorithms 
 



and no other 
independence 

relations 

(A ? B jC)
A B 

C 

? 



and no other 
independence 

relations 

A B 

C 

A B 

C 

A B 

C 

A B 

C 

(A ? B jC)



A ? B

and no other 
independence 

relations 

A B 

C 

? 
A ? B j C



A B 

C 

A B 

C 

A B 

C 

A ? B

and no other 
independence 

relations 

A ? B j C



²ƘŀǘΩǎ ƎƛǾŜƴΥ ǇǊƻōŀōƛƭƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ ƻǾŜǊ ƻōǎŜǊǾŜŘ ǾŀǊƛŀōƭŜǎ 
 
What we must infer: a causal structure over a set of variables 
that includes the observed variables and may include one or 
more latent variables 
 
 
Notational Convention 
hōǎŜǊǾŜŘ ǾŀǊƛŀōƭŜǎΥ !Σ .Σ /ΣΧ 
Latent variables: ¸ , ¹ , ºΣ Χ 

Allowing latent variables in the causal structure 
 



S C   ? 

Suppose you also observe 

S 6? C

S ? C j T

and no other independences 

S C 

°  
? 

Does smoking cause lung cancer?  



¸  

Latent common cause for S, C and T? 

(S  C | T) 



Latent common cause or direct causal relation 
(or both) between S and C? 

(S  C | T) 

¸  

¸  ¸  



So the causal structure 
must be of the form 

(S  C | T) 



Marginal independence between remaining pairs? 

(S  C | T) 



means 

So the causal structure 
must be of the form 

(S  C | T) 



Assume one extra piece of data:  S always precedes T 

(S  C | T) 



Inferring facts about the causal structure from 
the strength of correlations 



Y X 

Z 

¸  

Y X 

Z 
¹  

º  

¸  

P(X,Y,Z) can have perfect 
three-way correlation 

P(X,Y,Z) is bounded away 
from perfect three-way 

correlation 

Strength of Correlations 

Janzing and Beth, arXiv:quant-ph/0208006 
Steudel and Ay, arXiv:1010:5720 
Fritz, New J. Phys. 14, 103001 (2012)  
Branciard, Rosset, Gisin, Pironio, arXiv:1112.4502 



Strength of Correlations 

A B 

X Y 

¸  

P(A = B j0;0) + P(A = B j0;1)

Inequalities on P(A,B|X,Y) 

where 

+ P(A = B j1;0) + P(A 6= B j1; 1) · 3

P(A = B jX;Y) :=
P

a= b P(A = a; B = bjX; Y)

P(A 6= B jX ; Y) :=
P

a6= b P(A = a; B = bjX ; Y)



Y X 

Z 
¹  

º  

¸  

A B 

X Y 
¸  

Inequalities on P(X,Y,Z)  

Inequalities on P(A,B,X,Y)  

άLƴǎǘǊǳƳŜƴǘŀƭ ƛƴŜǉǳŀƭƛǘƛŜǎέ 
(Chap. 8 of Pearl)  

Assumptions 
about causal 

structure 

Testing candidate causal structures 



The lesson of causal inference  
for Bell-inequality-violating correlations 

 
Joint work with Christopher Wood 

 
See: arXiv:1208.4119 



E 

X Y 

A B 

Q: For the observed correlations P(A,B,X,Y) 
what are the independences? 

(X  Y), (A  Y | X), (B  X | Y) 

A: The set generated by 



E 

X Y 

A B 

A B 

X Y 

X ? Y

X ? B jY
A ? Y jX ? 



E 

X Y 

A B 
X ? Y

X ? B jY
A ? Y jX

A B 

X Y 

¸  

¸  



E 

X Y 

A B 
+ strength of 

correlation 

X ? Y

X ? B jY
A ? Y jX

A B 

X Y 

¸  

¸  



E 

X Y 

A B 
+ strength of 

correlation 

X ? Y

X ? B jY
A ? Y jX

¸  

No causal 

explanation 

without  

fine-tuning! 



²Ƙŀǘ ŀǊŜ ǘƘŜ ƪŜȅ ŀǎǎǳƳǇǘƛƻƴǎ ƻŦ .ŜƭƭΩǎ ǘƘŜƻǊŜƳΚ 

! άǎǘŀƴŘŀǊŘέ ǊŜǎǇƻƴǎŜΥ 
ÅRealism 
ÅLocal causality 
ÅNo superdeterminism 
ÅNo retrocausation 

What is proposed here: 
ÅwŜƛŎƘŜƴōŀŎƘΩǎ principle 
ÅNo fine-tuning 
ÅA causal model is a directed 

acyclic graph supplemented 
with conditional probabilities 

A B 

X Y 

¸  ¹  

A B 

X Y 
¸  

A B 

X Y 

¸  



Distinguishing X Ą Y from Y Ą X  
under assumption of additive noise 



X 

Y Y = ®X + N

N 

P(X )

P(N )

Linear functional model with additive noise 

X = ®0Y + N 0

Y 

X 

bΩ 

P(Y )

P(N 0)

distinguish 

from 



Gaussian  
X and N 

NonGaussian 
X and N 

X 

Y Y = ®X + N

N 

P(X )

P(N )

Linear functional model with additive noise 

Hoyer et al. NIPS 21, Vancouver (2009) 



Y = f (X ) + N

X 

Y 

N 

P(X )

P(N )

Nonlinear functional model with additive noise 

X = f 0(Y) + N 0

Y 

X 

bΩ 

P(Y )

P(N )

distinguish 

from 



Y = f (X ) + N

X 

Y 

N 

P(X )

P(N )

Linear fnΩ 
 + Gaussian 

X and N 

Nonlinear fnΩ 
+ Gaussian 

X and N 

Nonlinear functional model with additive noise 

Hoyer et al. NIPS 21, Vancouver (2009) 



Causal inference 
from correlations on a pair of binary variables 

 
Joint work with Ciaran Lee 



Functional Causal Models where A and B have 
 at most two binary variables as parents 

Possible Causal structures 

Note: all noise is assumed to come 
from the root nodes 



Possible functional dependences of A and B on their parents 

A = º © ¹

A = º © ¹ © 1

A = º ¹

A = º ¹ © 1

B = ¸ © ¹

B = ¸ © ¹ © 1

B = ¸ ¹

B = ¸ ¹ © 1

Note: 



P(A;B) = p00[00] + p01[01] + p10[10] + p11[11]



A = º © ¹ B = ¸ © ¹



A = º © ¹ B = ¸ © ¹
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[00] 

[11] 

[01] 

[10] 

B = º (A © 1) © 1 A = º © ¹

B = º ¹

A = ¹ © 1

B = ¸ ¹ © 1





A = B © º
A = º © ¹

B = ¹



B = A © º A = ¹

B = ¹ © ¸





A = ¹ º

B = ¹ ¸

Consistent with 

A = ¹ º

B = ¹ ¸ © 1

Consistent with 

Inside Outside 



Consistent with Consistent with 

A = ¹ © º

B = ¹ ¸

Inside Outside 

A = ¹ © º

B = ¹ ¸ © 1



B = ¸ © ¹

Consistent with 

Inside 

A = º © ¹



B = ¸ © ¹

Consistent with 

Outside 

A = º © ¹



Quantum Bayesian Inference  

and Quantum Causal Models  
 

joint work with Matt Leifer 

 

See: arXiv:1107.5849, arXiv:1110.1085 
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Probability distribution for X 

Set of states on A 

POVM on A 

Channel from A to B 

Instrument 

P(X ) ½X

f ½A
x g ½A jX

f EA
x g ½X jA

EA ! B ½B jA

f EA ! B
x g ½X B jA

Conventional 

expression 

In terms of conditional 

states 



P(Y = y)½B
y = EA ! B

y (½A )

½A =
P

x P(X = x)½A
x

½A = TrX (½A jX ½X )

P(Y = y) = TrA (EA
y ½A ) ½Y = TrA (½Y jA ½A )

EA ! C = EB ! C ±EA ! B ½C jA = TrB (½C jB ½B jA )

½Y B = TrA (½Y B jA ½A )

Ensemble averaging 

Bornôs rule 

Composition of channels 

State update rule 

Conventional 

expression 
In terms of 

conditional states 

Action of quantum channel 

½B = TrA (½B jA ½A )½B = EA ! B (½A )A B 

A X 

A Y 

A B C 

A B 
Y 



A B 

X Y 

¸  

P ( X )

P ( Y )

P ( ¸ )

P ( A j¸ ; X )

P ( B j¸ ; Y )

½X

½Y

½S
½A jX S
½B jY S

A B 

X Y 

S

Quantum Causal Models 

P ( A; B jX ; Y )

=
P

¸ P ( A j¸ ; X ) P ( B j¸ ; Y ) P ( ¸ )

½AB jX Y

= T rS( ½A jX S½B jY S½S)



Deriving quantum correlations 

 

A possible line of attack: 

Principles about inference Ą  Quantum Bayesian inference 

+ Assumptions about causal structure 

 

 

See: Coecke and RWS, Synthese 186, 651 (2012) 

 



Understanding the subset of qubit channels induced by a single qubit 

ancilla 

A B 

C 

See: Narang and Arvind, arXiv:quant-ph/0611058 



Understanding multipartite entanglement SLOCC classes 

See: Walter et al. arXiv:1208.0365 


