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Motivation: building accurate templates for GVV detection

Binaries of compact objects (black holes and/or neutron stars) are one of the most promising sources of GW
that we hope to detect with the advanced versions of LIGO/Virgo and with a future space-based detector.

Successfully extracting the very weak signal from the noise and estimating the parameters of the source with

good precision can be achieved using matched filtering techniques provided that we have a very accurate
modelling of the waveform.

The post-Netwtonian approximation scheme enables to compute such accurate waveforms as an expansion
in v/c for the inspiral phase. For non-spinning compact binaries, such templates are known to 3.5 PN order
for the phase (3PN for the amplitude). The contributions from these high orders have a significant effect on
parameter estimation (see Arun et al. 2005)
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PN approximation scheme (1/3)
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PN approximation scheme (2/3)
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PN approximation scheme (2/3)
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PN approximation scheme (2/3)

Both expansions are valid. A matching procedure provides an
expression of the multipole moments as integrals over the
matter and the gravitational fields in the source.
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PN approximation scheme (3/3)

In practice, the calculation is divided into two (coupled) sub-problems

(" . . . )
Computation of the dynamics up to n-th PN order (near-zone resolution of the Einstein eqs)

Newtonian-like equation of motion

dv! .1 I 1 1 . 1
dtl = An + C—2A1PN T C_4A2PN T35 T C—6A3PN T +O(8)
Gmw\ /3
quasi-circular orbits in the CM frame == ( 3 ) ~ O(1/c?)
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- J
4 D
Computation of the radiation up to n-th PN order
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Finally, the balance equation o T T provides the phase evolution




Progress of the spin PN computations: dynamics

We redefine our spin variable as S = ¢ Sphys = XGm2

so that S is of Newtonian order for maximally spinning compact objects.
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Progress of the spin PN computations: Radiation

So far, a wave generation formalism has only been derived in the harmonic gauge formulation
(although EFT on the way (cf Porto (06))
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Description of the system: pole-dipole formalism

Effective description in terms of spinning point particles: pole-dipole approximation
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We work with the covariant Tulczyjew supplementary spin condition S*“p, =0 and we
restrict to effects linear in the spins. The equations of motion reduce to
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Such a point particle description has to be supplemented with some UV regularization procedure.
(Hadamard regularization, dimensional regularization)



Tests of the result

*Existence of |0 conserved integrals of the motion
(when neglecting radiation reaction terms)

Energy, Linear Momentum, Angular Momentum, Center of Mass Position
Determined using the method of undetermined coefficients

el orentz invariance

The harmonic gauge condition is manifestly Lorentz invariant so our equation of
motion must take the same form in two frames related to one another by a boost

¢ Jest-mass limit

Recover the motion of a test mass around Kerr and of a spinning test mass around
Schwarzschild (linear effects in spin)

*Equivalence with the ADM result

Extended the “contact’ transformation
1

= 1 1.5PN 1 2PN 1 2.5PN 1 3PN 3.5PN
Vi=Xd gy Y Y Y gy O

together with the relation between both spin variables



Reduction of the result

We first rewrite our result in term of spin variables S’ of conserved Euclidian norm §;;5"S7 = 57
. . . . . . dS,
The spin evolution equations reduce to simple precession equations I Q; X5 2; up to 3PN

Conserved spins are secularly constant at spin orbit level (required for Taylor approximants)

We then reduce to the center of mass frame defined by P* = 0,G' =0

X=Y1—Y2 S=S1+9S,
Everything is expressed in terms of r = |x] and S, S
5= (o )
V =V — Vo, mao mi

Finally, we are mostly interested in quasi-circular orbits

The emission of GW circularizes the orbit. We look for solutions for which the separation r only varies due
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Flux calculation

The flux can be expressed in terms of the (derivatives of) multipole moments
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Contribution to the matches
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Match between waveforms with and without 3.5PN SO corrections (+3PN SO tail) computed with
Advanced LIGO noise curve (TaylorF2, typically 1.4+10 M systems so no need for NR)

Comparable picture for other approximants. Need to push the series further!

Computation of the 4PN SO tail term in the flux Marsat, Bohe, Blanchet, Buonanno arXiv:1307.6793
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SO tail contributions (non-linearities in the
propagation of the waves)



Phase estimates

LIGO/Virgo 1.4Mg + 1.4Mg 10Me + 1.4Mg 10Ma + 10Mg
Newtonian 15952.6 3558.9 598.8

1PN 439.5 212.4 59.1

1.5PN|—210.3 + 65.6Kx1x1 + 65.6k2x2 | —180.9 + 114.0k1x1 + 11.7k2x2 | —51.2 + 16.0k1x1 + 16.0k2X2
2PN 9.9 9.8 4.0

25PN| —11.749.3k1x1 + 9.3k2X2 —20.0 4+ 33.8k1x1 + 2.9x2X2 —7.14+5.7ck1x1 + 5.Tr2X2
3PN 2.6 —3.2r1x1 — 3-2k2X2 2.3—13.2k1x1 — 1.3Kk2X2 2.2 —2.6r1x1 — 2.6K2X2

3.5PN —0.94+1.9k1x1 + 1.9x2Xx2 —1.84+11.1k1x1 + 0.8Kk2X2 —0.8+ 1.7k1x1 + 1.7Tr2X2
4PN| (NS) — 1.5k1x1 — 1.5k2X2 (NS)—8.0k1x1 — 0.7k2Xx2 (NS) — 1.5k1x1 — 1.5K2X2

TABLE 1. Spin-orbit contributions to the number of gravitational-wave cycles Naw = (¢max —
®min) /7. For binaries detectable by ground-based detectors LIGO/Virgo, we show the number of
cycles accumulated from wpi, = 7™ X 10Hz t0 wmax = wisco = ¢/ (63/ 2Gm). For each compact
object we define the magnitude x4 and the orientation k4 of the spin by S4 =G mi X A S, and
ki =Su-£ For comparison, we give all the non-spin contributions up to 3.5PN order, but the

non-spin 4PN terms (NS) are yet unknown. We neglect all the spin-spin terms.

crude phase estimate, no match, T2
... but comparable magnitude




Conclusions

We have computed the NNLO spin-orbit effects (3.5PN for maximally
spinning bodies) in the dynamics of the binary and in the emitted flux .

These new corrections produce significant mismatches with previous lower
order waveforms at least in certain regions of parameter space. They have to
be incorporated into the data-analysis pipelines.

We have also computed the NLO spin-orbit contribution to the tail effect
which seems to be (crude estimate!) of comparable magnitude...






PN iteration of the Einstein’s equations in harm gauge
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The metric is parametrized via a set of «potentials»
3 2 4
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90z':——Vi—§R 16 Yi+ = WZJV + = V2V +0(9),
c3 cd c’

2 8 V3 R 16

which obey inhomogeneous flat d’Alembertian equations sourced by T#” and by the lower order potentials

LV = 417G o o = (TOO + Tii)/c2 DWZJ = —4nG (Uij — 5ij0'k:k) - (92‘/8]‘/

At IPN, with . — 70i At 2PN, g
D‘/z = —4rG oF) o =1 /C with O35 = T

In the near zone, solution computed with the retarded inverse d’Alembertian (PN expansion of the retardations)
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Effect of the spin on the inspiral

L
The components of the spins that
are orthogonal to the orbital plane
change the inspiral rate, i.e. in
particular the phase

aligned spins
slower inspiral

anti-aligned spins
faster inspiral
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1.1 |

Equal Mass

Anti-Aligned
) ) Sping o
The components of the spins in the 1 Non-Spinnin -
orbital plane cause the orbital plane
to precess: strong amplitude
modulations
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taken from Arun, Buonanno, Faye, Ochsner (09)




Spin '~ power counting”

Gm
The spin of a rotating compact body is of the order of Strue ~ Ml Uspin With [ ~ —
C
| | | Gm?
—> For maximally rotating bodies, VUspin ™~ € so  Sirue ~ X is formally 0.5 PN
C
—> For slowly rotating bodies, Vspin <K C so Otrue s formally | PN

We adopt the following spin (re-)definition S = ¢ Strue = XG?TLQ

—> For maximally rotating objects, our spin variable is Newtonian

With this definition, the spin enters the Newtonian-like equation of motion at the following orders:

i
dvj

i 1 1 L i 1 i
1 AN+ C_2A1PN T 0_31% 1.5PN T A [ oPN T ?SZPN} T3 { + 1% 2-5PN}

o5
1

; i 1 ;
T o { 3PN T éSSPN} + = { + z% 3.5PN} + O(8)



Hadamard regularization of the potentials

The point particle description has to be supplemented with some UV regularization procedure to make sense of

F(y1), /F(X)5(X —y1) d’x, /F(X) d’x for functions F singular at the positions of the particles (typically the potentials

or their derivatives). F(x) = Z ri fo(n1) + o(r?) r =[x —y1|
ap<a<n n; — (X — Y1)/7“1

For most of the calculation, the pure Hadamard-Schwartz (pHS) prescription proved sufficient

df
e Hadamard partie finie (¥)1 = / 4—7:f0(n1)

e Compact support integrals /F(x)51 d’x = (F);

R a+3
* For non-compact support integrals ps,, /d3x F = lim / Pxrv Y 2 /dQlfa +1In <i> /dQlf_g +14¢2
s=0 | JR3\B; (s)UB2(s) 51

a+3<0 a+ 3

e Gel'Fand-Shilov formula for homogeneous functions to compute the distributional parts of the derivatives

AN G )l G ) ["f] AP7LO(nr—2p Sirap—an)
i\ Jm (C+m)! 22

when |+m is even
=10 p—1)l(m — 2p>!(HlT—m + p)! 0 otherwise

However, for one of the terms needed to compute the acceleration, namely 9;1Y;"C , the pHS regularization yields
an ambiguous result.

’ 1 3ndk — §ik r : . 5k
(8j]€Y;~NC)1 = _EPf‘Sla‘SQ /d3X 1 3 S?,IZC + lIl (—1> ((3njlk — 53k>S§C) + — (ngc)l

Ty S1 1 3

the final pHS result depends on sy and ]



