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INTRODUCTION

In GR spacetime singularities are generic (Hawking &
Penrose) and they are usually cloacked by horizons
(Cosmic Censorship).
GR: stationary black holes (endpoint of grav. collapse)
must be axisymmetric (Hawking ’72). Asympt. flat black
holes in GR are simple.
Non-asympt. flat black holes can be very complicated:
“cosmological” black holes have appearing/disappearing
apparent horizons (McVittie, generalized McVittie, LTB,
Husain-Martinez-Nuñez, Fonarev, ...). Interaction between
black hole and cosmic “background”.
Scalar-tensor, f (R) gravity, higher order gravity, low-energy
effective actions for quantum gravity, etc.: Birkhoff’s
theorem is lost.
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Prototype: Brans-Dicke theory (Jordan frame)

SBD =

∫
d4x

√
−ĝ
[
ϕR̂ − ω0

ϕ
∇̂µϕ∇̂µϕ+ Lm(ĝµν , ψ)

]
Hawking ’72: endpoint of axisymmetric collapse in this
theory must be GR black holes. Result generalized for
spherical symmetry only by Bekenstein + Mayo ’96,
Bekenstein ’96, + bits and pieces of proofs.
What about more general theories?

SST =

∫
d4x

√
−ĝ
[
ϕR̂ − ω(ϕ)

ϕ
∇̂µϕ∇̂µϕ− V (ϕ) + Lm(ĝµν , ψ)

]
This action includes metric and Palatini f (R) gravity
inportant for cosmology.
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A SIMPLE PROOF

This work (T.P. Sotiriou & VF 2012, Phys. Rev. Lett. 108,
081103): extend result to general scalar-tensor theory

SST =

∫
d4x

√
−ĝ
[
ϕR̂ − ω(ϕ)

ϕ
∇̂µϕ∇̂µϕ− V (ϕ) + Lm(ĝµν , ψ)

]
we require

asymptotic flatness (collapse on scales� H−1
0 ): ϕ→ ϕ0

as r → +∞, V (ϕ0) = 0, ϕ0 V ′(ϕ0) = 2V (ϕ0)

stationarity (endpoint of collapse).
Use Einstein frame ĝµν → gµν = ϕ ĝµν , ϕ→ φ with

dφ =

√
2ω(ϕ) + 3

16π
dϕ
ϕ

(ω 6= −3/2)

brings the action to
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SST =

∫
d4x
√
−g
[ R

16π
− 1

2
∇µφ∇µφ− U(φ) + Lm(ĝµν , ψ)

]
where U(φ) = V (ϕ)/ϕ2. Field eqs. are

R̂µν −
1
2

R̂ĝµν =
ω(ϕ)

ϕ2

(
∇̂µϕ∇̂νϕ−

1
2

ĝµν ∇̂λϕ∇̂λϕ
)

+
1
ϕ

(
∇̂µ∇̂νϕ− ĝµν�̂ϕ

)
− V (ϕ)

2ϕ
ĝµν ,

(2ω + 3) �̂ϕ = −ω′ ∇̂λϕ∇̂λϕ+ ϕV ′ − 2V ,

Ω = Ω(ϕ) −→ same symmetries as in the J. frame:
• ξµ timelike Killing vector (stationarity)
• ζµ spacelike at spatial infinity (axial symmetry).
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Consider, in vacuo, a 4-volume V bounded by the horizon H,
two Cauchy hypersurfaces S1, S2, and a timelike 3-surface at
infinity
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multiply �φ = U ′(φ) by U ′, integrate over V −→∫
V

d4x
√
−g U ′(φ)�φ =

∫
V

d4x
√
−g U ′2(φ)

rewrite as ∫
V

d4x
√
−g
[
U ′′(φ)∇µφ∇µφ+ U ′2(φ)

]
=

∫
∂V

d3x
√
|h|U ′(φ)nµ∇µφ

where nµ =normal to the boundary, h =determinant of the
induced metric hµν on this boundary. Split the boundary into its
constituents

∫
V =

∫
S1

+
∫
S2

+
∫

horizon +
∫

r=∞ Now,
∫
S1

= −
∫
S2

,∫
r=∞ = 0,

∫
horizon d3x

√
|h|U ′(φ)nµ∇µφ = 0 because of the

symmetries.

−→
∫
V

d4x
√
−g
[
U ′′(φ)∇µφ∇µφ+ U ′2(φ)

]
= 0 .
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Since U ′2 ≥ 0, ∇µφ (orthogonal to both ξµ, ζµ on H) is
spacelike or zero, and U ′′(φ) ≥ 0 for stability (black hole is the
endpoint of collapse!), it must be ∇µφ ≡ 0 in V and U ′(φ0) = 0.
For φ =const., theory reduces to GR, black holes must be
Kerr.

Metric f (R) gravity is a special case of BD theory with
ω = 0 and V 6= 0.
for ω = −3/2, vacuum theory reduces to GR, Hawking’s
theorem applies (Palatini f (R) gravity is a special BD
theory with ω = −3/2 and V 6= 0).

Exceptions not covered by our proof:

theories in which ω →∞ somewhere
theories in which ϕ diverges (at∞ or on the horizon)
ex: maverick solution of Bocharova et al. ’80 (unstable).
Proof extends immediately to electrovacuum/conformal
matter (T = 0).
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CONCLUSIONS

Even though Birkhoff’s theorem is lost, black holes which
are the endpoint of axisymmetric gravitational collapse
(and asympt. flat) in general scalar-tensor gravity are the
same as in GR (i.e., Kerr-Newman). Proof extends to
electrovacuum.
Exceptions (exact solutions) are unphysical or unstable
solutions which cannot be the endpoint of collapse, or do
not satisfy the Weak/Null Energy Condition.
Proof is simple!
Asymptotic flatness is a technical assumption, but can’t
eliminate it at the moment. Excludes “large” primordial
black holes in a “small” universe.
What about more general theories with other degrees of
freedom?
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