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INTRODUCTION

@ In GR spacetime singularities are generic (Hawking &
Penrose) and they are usually cloacked by horizons
(Cosmic Censorship).

@ GR: stationary black holes (endpoint of grav. collapse)
must be axisymmetric (Hawking '72). Asympt. flat black
holes in GR are simple.

@ Non-asympit. flat black holes can be very complicated:
“cosmological” black holes have appearing/disappearing
apparent horizons (McVittie, generalized McVittie, LTB,
Husain-Martinez-Nufiez, Fonarey, ...). Interaction between
black hole and cosmic “background”.

@ Scalar-tensor, f(R) gravity, higher order gravity, low-energy
effective actions for quantum gravity, etc.: Birkhoff’s
theorem is lost.
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Prototype: Brans-Dicke theory (Jordan frame)
~ ~ wo & N N
SBD - /d4X vV —39 I}pR - ?Ov'u@v,ugp + Lm(gp,ww)

@ Hawking '72: endpoint of axisymmetric collapse in this
theory must be GR black holes. Result generalized for
spherical symmetry only by Bekenstein + Mayo ’96,
Bekenstein '96, + bits and pieces of proofs.

@ What about more general theories?

Ser — / d4xr[ w)w ¥ — V() + L@ )

This action includes metric and Palatini f(R) gravity
inportant for cosmology.
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A SIMPLE PROOF

This work (T.P. Sotiriou & VF 2012, Phys. Rev. Lett. 108,
081103): extend result to general scalar-tensor theory

Ssr = [ dxv/=G[oR ~ 0080 - V() + L@ v)]

we require
@ asymptotic flatness (collapse on scales « Hg1): © = o
asr— +oo, V(po) =0, ¢oV'(¢o)=2V(¢0)
@ stationarity (endpoint of collapse).
Use Einstein frame g, — g = ¢ 9w, ¢ — ¢ with

_J2w(p) +3 de
do = T? (w# —-3/2)

brings the action to
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1 A
Ser — / G| — IOV 0~ (D) + Ln(Gy )]
where U(¢) = V(y)/¢?. Field egs. are
SR w¥) (& & 1o ergc
R#V — ERQ#V = 7 <V;L90VV(P - EQHV VASOV)‘(P)
1 TSN ~ 2 V(QO) ~
3 (V,pr - QWDSO) T2y 9o
(Cw+3)0p = —w' VVap+o V' =2V,

Q = Q(p) — same symmetries as in the J. frame:
o ¢# timelike Killing vector (stationarity)
e (" spacelike at spatial infinity (axial symmetry).
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Consider, in vacuo, a 4-volume V bounded by the horizon H,
two Cauchy hypersurfaces Sy, So, and a timelike 3-surface at
infinity
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multiply O¢ = U'(¢) by U, integrate over V —
/V d*x/=g U'(¢)0¢ = /V d*x/=g U?(¢)
rewrite as
/V d*xy/=g [U"(6)V 6V 16 + U2(9)]
- /a LEXVIRU @90
where n* =normal to the boundary, h =determinant of the

induced metric h,,, on this boundary. Split the boundary into its

constituents [, = [ + [, + Jhorizon T Jr—oo NOW, [g = =[5,
fr:oo = O’ fhorizon dSX\/W U’(gb)nﬂvu(;ﬁ = 0 because of the
symmetries.

— [ d*xy/=g [U"(¢)V ¢V ,0 + U?(9)] = 0.
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Since U? > 0, V¢ (orthogonal to both &, ¢* on H) is
spacelike or zero, and U"(¢) > 0 for stability (black hole is the
endpoint of collapse!), it must be V,¢ = 0inV and U'(¢g) = 0.
For ¢ =const., theory reduces to GR, black holes must be
Kerr.

@ Metric f(R) gravity is a special case of BD theory with
w=0and V #£0.

@ for w = —3/2, vacuum theory reduces to GR, Hawking’s
theorem applies (Palatini f(R) gravity is a special BD
theory with w = —3/2 and V # 0).

Exceptions not covered by our proof:

@ theories in which w — oo somewhere

@ theories in which ¢ diverges (at co or on the horizon)
ex: maverick solution of Bocharova ef al. ‘80 (unstable).

@ Proof extends immediately to electrovacuum/conformal
matter (T = 0).
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CONCLUSIONS

@ Even though Birkhoff’s theorem is lost, black holes which
are the endpoint of axisymmetric gravitational collapse
(and asympt. flat) in general scalar-tensor gravity are the
same as in GR (i.e., Kerr-Newman). Proof extends to
electrovacuum.

@ Exceptions (exact solutions) are unphysical or unstable
solutions which cannot be the endpoint of collapse, or do
not satisfy the Weak/Null Energy Condition.

@ Proof is simple!

@ Asymptotic flatness is a technical assumption, but can’t
eliminate it at the moment. Excludes “large” primordial
black holes in a “small” universe.

@ What about more general theories with other degrees of
freedom?
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