Lattice field theory with dual variables

Christof Gattringer
Karl-Franzens-Universität Graz, Austria

Ydalia Delgado Mercado, Thomas Kloiber, Alexander Schmidt

```
NPB }869\mathrm{ (2013) }5
PLB }720\mathrm{ (2013) }21
Comp. Phys. Comm. }184\mathrm{ (2013) }153
PRD }86\mathrm{ (2012) }09450
PoS LATTICE2012 }09
```


Euclidean path integral, complex action problem and dual representation

- Vacuum expectation values with Feynman's path integral:

$$
\langle O\rangle=\frac{1}{Z} \int D[\psi] e^{-S[\psi]} O[\psi]
$$

- In a Monte Carlo simulation observables are computed as averages over field configurations ψ distributed according to

$$
P[\psi]=\frac{1}{Z} e^{-S[\psi]}
$$

- For finite chemical potential μ the action $S[\psi]$ is complex and the Boltzmann factor cannot be used as probability weight in a stochastic process.

Rewriting a system in terms of new variables where only real and positive terms appear in the partition sum could overcome the complex action problem.

Charged scalar field

- Continuum action:

$$
S=\int d^{4} x\left[-\phi(x)^{*} \triangle \phi(x)+\left[m^{2}-\mu^{2}\right]|\phi(x)|^{2}+\lambda|\phi(x)|^{4}\right]+i \mu N
$$

- Action on the lattice:

$$
\begin{aligned}
& S=\sum_{x}\left[\kappa\left|\phi_{x}\right|^{2}+\lambda\left|\phi_{x}\right|^{4}-\sum_{j=1}^{3}\right.\left(\phi_{x}^{\star} \phi_{x+\widehat{j}}+\phi_{x}^{\star} \phi_{x-\widehat{j}}\right) \\
&\left.-\phi_{x}^{\star} e^{-\mu} \phi_{x+\widehat{4}}-\phi_{x}^{\star} e^{\mu} \phi_{x-\widehat{4}}\right] \\
& \kappa=8+m^{2}
\end{aligned}
$$

Dual representation - I

- Expand the individual nearest neighbor terms:

$$
\begin{aligned}
e^{e^{-\mu \delta_{\nu, 4} \phi_{x}^{\star} \phi_{x+\hat{\nu}}}}=\sum_{j_{x, \nu}=0}^{\infty} \frac{\left(e^{-\mu \delta_{\nu, 4}}\right)^{j_{x, \nu}}}{\left(j_{x, \nu}\right)!}\left(\phi_{x}\right)^{j_{x, \nu}}\left(\phi_{x+\widehat{\nu}}^{\star}\right)^{j_{x, \nu}} \\
e^{e^{\mu \delta_{\nu, 4} \phi_{x}^{\star} \phi_{x-\widehat{\nu}}}}=\sum_{\bar{j}_{x, \nu}=0}^{\infty} \frac{\left(e^{\mu \delta_{\nu, 4}}\right)^{\bar{j}_{x, \nu}}}{\left(\bar{j}_{x, \nu}\right)!}\left(\phi_{x}\right)^{\bar{j}_{x, \nu}}\left(\phi_{x-\widehat{\nu}}^{\star}\right)^{\bar{j}_{x, \nu}}
\end{aligned}
$$

- Idea: Use the $j_{x, \nu}$ and $\bar{j}_{x, \nu}$ as the new degrees of freedom.
- Remaining ϕ-integrals at a site x :

$$
\int_{\mathbb{C}} d \phi_{x} e^{-\kappa\left|\phi_{x}\right|^{2}-\lambda\left|\phi_{x}\right|^{4}}\left(\phi_{x}\right)^{F(j, \bar{j})}\left(\phi_{x}^{\star}\right)^{\bar{F}(j, \bar{j})}
$$

$F_{x}(j, \bar{j}), \bar{F}_{x}(j, \bar{j}) \in \mathbb{N}_{0}$ are linear combinations of the j and \bar{j} variables attached to the site x. They correspond to the total j, \bar{j}-flux at x.

Dual representation - II

- Using $\phi_{x}=r e^{i \theta}$ the integrals at a site x read:

$$
\begin{aligned}
& \int_{\mathbb{C}} d \phi_{x} e^{-\kappa\left|\phi_{x}\right|^{2}-\lambda\left|\phi_{x}\right|^{4}}\left(\phi_{x}\right)^{F(j, \bar{j})}\left(\phi_{x}^{\star}\right)^{\bar{F}(j, \bar{j})}= \\
& \int_{0}^{\infty} d r r^{F_{x}+\bar{F}_{x}+1} e^{-\kappa r^{2}-\lambda r^{4}} \int_{-\pi}^{\pi} d \theta e^{i \theta\left[F_{x}-\bar{F}_{x}\right]}=\mathcal{I}\left(F_{x}+\bar{F}_{x}\right) \delta\left(F_{x}-\bar{F}_{x}\right)
\end{aligned}
$$

- At every site there is a weight factor $\mathcal{I}\left(F_{x}+\bar{F}_{x}\right)$ and a constraint.
- The constraint $\delta\left(F_{x}-\bar{F}_{x}\right)$ forces the total flux $F_{x}-\bar{F}_{x}$ at x to vanish.
- The structure can be simplified by using linear combinations $k_{x, \nu} \in \mathbb{Z}$ and $l_{x, \nu} \in \mathbb{N}_{0}$ of the original variables $j_{x, \nu}$ and $\bar{j}_{x, \nu}$.
- Only the $k_{x, \nu}$ are subject to constraints.
- The original partition function is mapped exactly to a sum over configurations of the dual variables $k_{x, \nu} \in \mathbb{Z}$ and $l_{x, \nu} \in \mathbb{N}_{0}$:

$$
Z=\sum_{\{k, l\}} \mathcal{W}(k, l) \mathcal{C}(k)
$$

- Weight factor (real and positive):

$$
\begin{aligned}
\mathcal{W}(k, l) & =\prod_{x, \nu} \frac{1}{\left(\left|k_{x, \nu}\right|+l_{x, \nu}\right)!l_{x, \nu}!} \\
& \times \prod_{x} e^{-\mu k_{x, 4}} \mathcal{I}\left(\sum_{\nu}\left[\left|k_{x, \nu}\right|+\left|k_{x-\widehat{\nu}, \nu}\right|+2\left(l_{x, \nu}+l_{x-\widehat{\nu}, \nu}\right)\right]\right)
\end{aligned}
$$

- Constraint (only for k-variables):

$$
\mathcal{C}(k)=\prod_{x} \delta\left(\sum_{\nu}\left[k_{x, \nu}-k_{x-\widehat{\nu}, \nu}\right]\right)
$$

Admissible configurations are loops:

- Constraint from the integration over the $\mathrm{U}(1)$ phases:

$$
\forall x: \quad f_{x}=\sum_{\nu}\left[k_{x, \nu}-k_{x-\widehat{\nu}, \nu}\right]=0
$$

- Admissible configurations of dual variables are oriented loops of flux:

- Chemical potential gives different weight to forward and backward temporal flux. Particle number $=$ net winding number of k-flux.
- The nearest neighbor terms can be gauged:

$$
e^{-\mu \delta_{\nu, 4} \phi_{x}^{\star} U_{\nu, x} \phi_{x+\widehat{\nu}}}=\sum_{j_{x, \nu}=0}^{\infty} \frac{\left(e^{-\mu \delta_{\nu, 4}}\right)^{j_{x, \nu}}}{\left(j_{x, \nu}\right)!}\left(U_{\nu, x}\right)^{j_{x, \nu}}\left(\phi_{x}\right)^{j_{x, \nu}}\left(\phi_{x+\widehat{\nu}}^{\star}\right)^{j_{x, \nu}}
$$

- Additional weight factor in the final form of the dual representation:

$$
\prod_{x, \nu}\left(U_{x, \nu}\right)^{k_{x, \nu}}
$$

- Loops are dressed with gauge transporters.

Scalar QED / U(1) gauge Higgs model with 2 flavors

Continuum action:

$$
\begin{aligned}
S= & \int d^{4} x\left\{-\phi(x)^{*}\left[\partial_{\nu}+i A_{\nu}(x)\right]\left[\partial_{\nu}+i A_{\nu}(x)\right] \phi(x)\right. \\
& \left.+\left[m_{\phi}^{2}-\mu_{\phi}^{2}\right]|\phi(x)|^{2}+\lambda_{\phi}|\phi(x)|^{4}\right\}+i \mu_{\phi} N_{\phi} \\
+ & \int d^{4} x\left\{-\chi(x)^{*}\left[\partial_{\nu}-i A_{\nu}(x)\right]\left[\partial_{\nu}-i A_{\nu}(x)\right] \chi(x)\right. \\
& \left.+\left[m_{\chi}^{2}-\mu_{\chi}^{2}\right]|\chi(x)|^{2}+\lambda_{\chi}|\chi(x)|^{4}\right\}+i \mu_{\chi} N_{\chi}
\end{aligned} \quad \begin{aligned}
& +\frac{1}{4} \int d^{4} x F_{\rho \sigma} F_{\rho \sigma}
\end{aligned}
$$

Adding dynamical gauge fields in the dual representation

- Two copies of the loop sum integrated over gauge fields:

$$
\begin{aligned}
Z & =\sum_{\{k, l, \bar{k}, \bar{l}\}} \mathcal{W}_{\phi}(k, l) \mathcal{W}_{\chi}(\bar{k}, \bar{l}) \mathcal{C}(k) \mathcal{C}(\bar{k}) \\
& \times \int D[U] \exp \left(\beta \sum_{x, \rho<\sigma} \operatorname{Re} U_{x, \rho} U_{x+\hat{\rho}, \sigma} U_{x+\hat{\sigma}, \rho}^{\star} U_{x, \sigma}^{\star}\right) \prod_{x, \nu}\left(U_{x, \nu}\right)^{k_{x, \nu}-\bar{k}_{x, \nu}}
\end{aligned}
$$

- Expansion of the Boltzmann factor

$$
e^{\beta U_{x, \rho} U_{x+\hat{\rho}, \sigma} U_{x+\hat{\sigma}, \rho}^{\star} U_{x, \sigma}^{\star}}=\sum_{p_{x, \rho \sigma}} \frac{\beta^{p_{x, \rho \sigma}}}{\left(p_{x, \rho \sigma}\right)!}\left[U_{x, \rho} U_{x+\hat{\rho}, \sigma} U_{x+\hat{\sigma}, \rho}^{\star} U_{x, \sigma}^{\star}\right]^{p_{x, \rho \sigma}}
$$

... leads to new integer valued dual variables $p_{x, \rho \sigma}$ on the plaquettes.

- Integrating the gauge fields $d U_{x, \sigma}$ gives rise to new constraints that connect $p_{x, \rho \sigma}, k_{x, \nu}$ and $\bar{k}_{x, \nu}$ at each link.

Dual form of the partition function:

The original partition sum is mapped exactly to a sum over loop and surface configurations:

$$
Z=\sum_{\{p, k, l, \bar{k}, \bar{l}\}} \mathcal{W}_{G}(p) \mathcal{W}_{\phi}(k, l) \mathcal{W}_{\chi}(\bar{k}, \bar{l}) \mathcal{C}_{L}(p, k, \bar{k}) \mathcal{C}_{S}(k) \mathcal{C}_{S}(\bar{k})
$$

$\mathcal{W}_{G}(p)$: plaquette-based weight factor for gauge variables p $\mathcal{W}_{\chi}(k, l), \mathcal{W}_{\phi}(\bar{k}, \bar{l})$, : link-based weight factor for matter variables k, l, \bar{k}, \bar{l} $\mathcal{C}_{L}(p, k, \bar{k})$: link-based constraint \Rightarrow gauge surfaces $\mathcal{C}_{S}(k), \mathcal{C}_{S}(\bar{k})$: site-based constraint \Rightarrow matter loops

$$
\begin{aligned}
\mathcal{C}_{L}[p, k, \bar{k}] & =\prod_{x, \nu} \delta\left(\sum_{\rho: \nu<\rho}\left[p_{x, \nu \rho}-p_{x-\hat{\rho}, \nu \rho}\right]-\sum_{\rho: \nu>\rho}\left[p_{x, \rho \nu}-p_{x-\hat{\rho}, \rho \nu}\right]+k_{x, \nu}-\bar{k}_{x, \nu}\right) \\
\mathcal{C}_{S}[k] & =\prod_{x} \delta\left(\sum_{\nu=1}^{4}\left[k_{x-\hat{\nu}, \nu}-k_{x, \nu}\right]\right)
\end{aligned}
$$

Suitable worm algorithms

An admissible configuration:

Chemical potential favors flux forward in time.

Generalized worm algorithm for gauge Higgs systems:

Worm starts by inserting a unit of matter flux. Adding segments transports both the site and link defects across the lattice

Algorithm was tested in the 1-flavor $\mathrm{U}(1)$ model and in a \mathbb{Z}_{3} gauge Higgs model at finite μ. Clearly outperforms local dual update.

Bulk observables

- Bulk observables are obtained as derivatives of the free energy with respect to the parameters.
- They have the form of averages and fluctuations of the dual variables.
- Observables related to the particle number:

$$
n=\frac{T}{V} \frac{\partial \ln Z}{\partial \mu}=\frac{1}{N_{s}^{3} N_{t}} \frac{\partial \ln Z}{\partial \mu} \quad, \quad \chi_{n}=\frac{\partial n}{\partial \mu}
$$

- Observables related to field expectation values:

$$
\left.\left.\langle | \phi\right|^{2}\right\rangle=\frac{-T}{V} \frac{\partial \ln Z}{\partial \kappa}=\frac{-1}{N_{s}^{3} N_{t}} \frac{\partial \ln Z}{\partial \kappa} \quad, \quad \chi_{\phi}=\frac{\left.-\left.\partial\langle | \phi\right|^{2}\right\rangle}{\partial \kappa}
$$

- Dual forms:

$$
\left.n=\frac{1}{N_{s}^{3} N_{t}}\left\langle\sum_{x} k_{x, 4}\right\rangle \quad,\left.\quad\langle | \phi\right|^{2}\right\rangle=\frac{1}{N_{s}^{3} N_{t}}\left\langle\sum_{x} \frac{\mathcal{I}\left(f_{x}+2\right)}{\mathcal{I}\left(f_{x}\right)}\right\rangle
$$

Checks - I

Simulation with dual variables can be checked with high precision: (here for $\beta=\infty$)

Checks - II

Comparison to conventional simulation:

$$
\left(\mu_{\phi}=\mu_{\chi}=0, \kappa_{\phi}=\kappa_{\chi}=9.0, \lambda_{\phi}=\lambda_{\chi}=0.0\right)
$$

Phase diagram

Bulk observables at $\mu=0$

Using: $\kappa_{\phi}=\kappa_{\chi}=M, \lambda_{\phi}=\lambda_{\chi}=1.0$

Phase diagram at $\mu=0$

Turning on chemical potential

A point in the confining phase: $\kappa_{\phi}=\kappa_{\chi}=5.73, \lambda_{\phi}=\lambda_{\chi}=1.0, \beta=0.75$

Silver blaze region that ends in a strong first order transition leading back into the Higgs phase.

Turning on chemical potential

A point in the Higgs phase: $\kappa_{\phi}=\kappa_{\chi}=5.325, \lambda_{\phi}=\lambda_{\chi}=1.0, \beta=0.85$

Massless excitations in the Higgs phase \rightarrow no Silver blaze behaviour.

Spectroscopy with dual variables

Spectroscopy for the charged scalar at finite density

- Zero momentum propagator

$$
\begin{aligned}
C(t) & =\sum_{\vec{x}}\left\langle\phi_{\vec{x}, t} \phi_{\hat{0}, 0}^{*}\right\rangle \propto e^{-E_{0} t} \\
\left\langle\phi_{y} \phi_{z}^{*}\right\rangle & =\frac{1}{Z} \int D[\phi] e^{-S} \phi_{y} \phi_{z}^{*}=\frac{Z_{y, z}}{Z}
\end{aligned}
$$

- Dual representation of the partition sum $Z_{y, z}$ with two insertions:

$$
\begin{aligned}
Z_{y, z} & =\sum_{\{k, l\}} \prod_{x, \nu} \frac{1}{\left(\left|k_{x, \nu}\right|+l_{x, \nu}\right)!l_{x, \nu}!} \prod_{x} \delta\left(\sum_{\nu}\left[k_{x, \nu}-k_{x-\widehat{\nu}, \nu}\right]-\delta_{x, y}+\delta_{y, z}\right) \\
& \times \prod_{x} e^{-\mu k_{x, 4}} \mathcal{I}\left(\sum_{\nu}\left[\left|k_{x, \nu}\right|+\left|k_{x-\widehat{\nu}, \nu}\right|+2\left(l_{x, \nu}+l_{x-\widehat{\nu}, \nu}\right)\right]+\delta_{x, y}+\delta_{y, z}\right)
\end{aligned}
$$

- Admissible configurations in $Z_{y, z}$:

Closed loops of flux plus an open string of flux connecting y and z.

Worm strategy for correlators

- Since $Z_{y, z}$ consists of closed loop plus a single open string, every step of the worm corresponds to an admissible configuration for some $Z_{u, v}$.
- In our propagators we project to zero momentum, i.e., the spatial lattice indices are summed.
- To compute $C(t)$ one simply evaluates the temporal distance t of head and tail of the worm at every step and $C(t)$ is obtained as a histogram.
- Propagator in the continuum:

$$
C(t)=\int \frac{d p_{4}}{2 \pi} \frac{e^{i p_{4} t}}{\left[p_{4}-i(m-\mu)\right]\left[p_{4}+i(m+\mu)\right]}
$$

- Asymmetry between forward and backward propagation:

$$
C(t) \propto \begin{cases}e^{-(m-\mu) t} & \text { for } t>0 \\ e^{+(m+\mu) t} & \text { for } t<0\end{cases}
$$

Excellent agreement indicates that the finite density propagators computed from the dual representation are under control. $\left(16^{3} \times 100, m=1, \lambda=0\right)$

Propagators at non zero coupling

Asymmetric propagation for $\mu<\mu_{c} \simeq 0.17$. Condensation ($=$ constant propagator) for μ above $\mu_{c} .\left(16^{3} \times 100, \kappa=7.44, \lambda=1\right)$

- Considerable progress was made towards rewriting several systems in representations where the partition sum has only real and positive terms.
- Dual degrees of freedom are surfaces for gauge fields and loops for matter.
- Constraints for dual variables can be handled with worm-type algorithms.
- Interesting new algorithmic options when surfaces have boundaries.
- Spectroscopy is under control.
- Systems may serve as solved test cases for other approaches.

