Federico Mescia

ECM & ICC, Universitat de Barcelona

✓ **BIG News:** November 2012, first evidence of $B_s \rightarrow \mu^+ \mu^-$ from LHCb

⇒ PANIC: the measured Br^{exp}($B_s \rightarrow \mu\mu$) = (3.2 ± 1.5)10⁻⁹ is close to the <u>SM</u>, BrSM($B_s \rightarrow \mu\mu$) = (3.3 ± 0.3)10⁻⁹

✓ **NEWS**: information from $B \rightarrow K \mu \mu$ and $B \rightarrow K^* \mu \mu$ soon available BaBar & LHCb - 2012:

 \bigcirc NO PANIC: Br($B \rightarrow K^{(*)} \mu \mu$) and Br($B_s \rightarrow \mu \mu$) sensitive to different "b-> s couplings"

IV Workshop on Fermions and Extended Objects on the Lattice: June 16-22 (2013), Benasque ✓ Introduction:

➡ What is Flavor Physics in the Standard Model ?

- Status of Flavor Physics searches (Babar, Belle, Tevatron, LHcb):
 - -> Today, it is fair to say: small deviations from the SM expected !

✓ Future perspectives: *b*->*s* modes "unexplored corner"

Contemporal Content of the set of b->s processes!

BIG CHALLENGE: hadronic uncertainties => Lattice QCD

goal: control QCD at low energy at a few percent, by numerical simulation

***** Potentialities of $B \rightarrow K \mu \mu$ vs $B_s \rightarrow \mu \mu$

Theory and Exp. information on $B \rightarrow K \mu \mu$ is still poor!

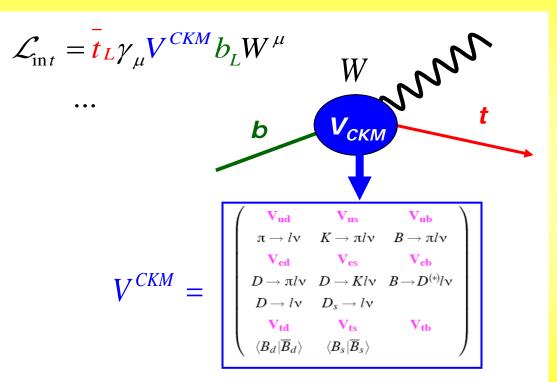
Complementary info also from $B \rightarrow K^* \mu \mu$: richer "b-> s couplings"

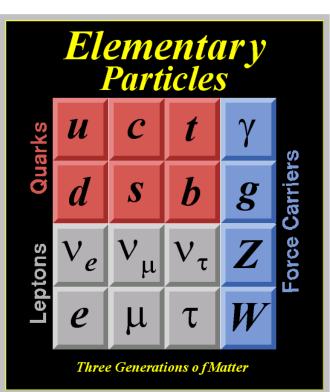
✓ Introduction:

SWhat is Flavor Physics in the Standard Model?

Elementar y Particles U С Quarks Carriers d S b g Ve Vµ Force V_{τ} Leptons Ζ μ e τ Three Generations of Matter

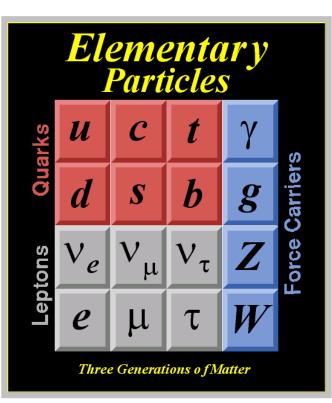
 <u>Flavour Transitions</u>: Weak interactions violate flavour: CKM matrix and CP violation



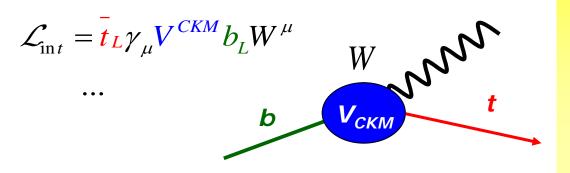


 <u>Flavour Transitions</u>: Weak interactions violate flavour: CKM matrix and CP violation

macroscopic picture (effective couplings after ewsb)



 <u>Flavour Transitions</u>: Weak interactions violate flavour: CKM matrix and CP violation

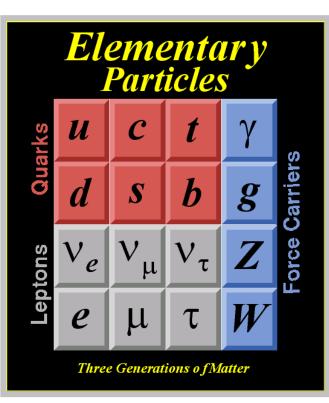


microscopic picture? =>*LHC job* the Higgs mechanism!

> **2 open options:** Linear or Non-Linear Higgs realisation?

Techni C
Little H.
Extra D.

ATLAS-CMS (2012): Higgs evidence!



Flavour Transitions: Weak interactions violate flavour: CKM matrix and CP violation

microscopic picture?

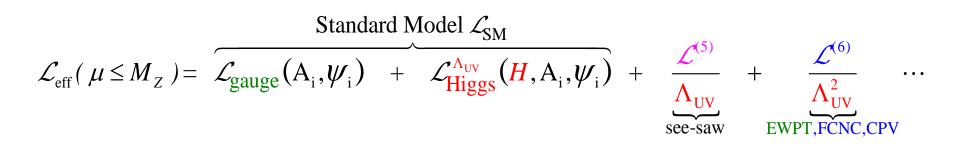
ad hoc description in the SM

$$\underbrace{\mathsf{D}_{\mu}H^{+}\mathsf{D}^{\mu}H - V(H^{+}H)}_{\text{ewsb sector}}$$

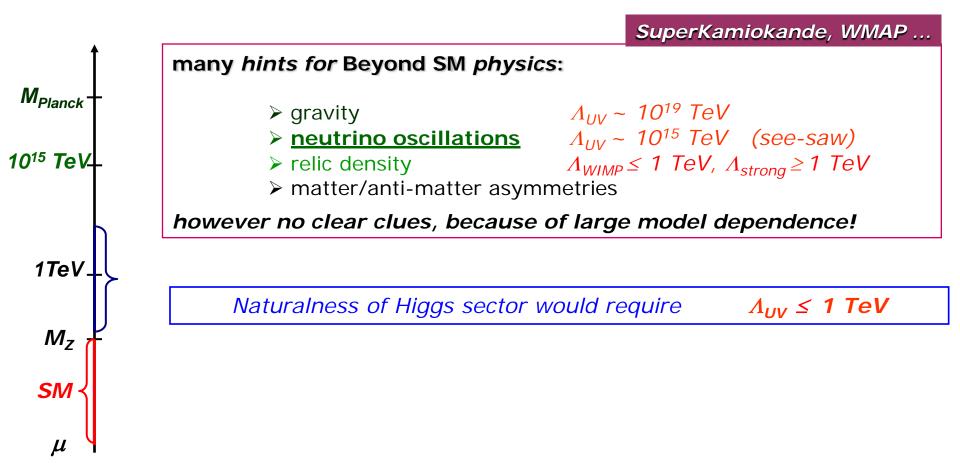
+ $\underline{\mathbf{Y}^{ij}}\boldsymbol{H}\boldsymbol{\psi}_{\mathrm{L}}\boldsymbol{\psi}_{\mathrm{R}}$ + h.c

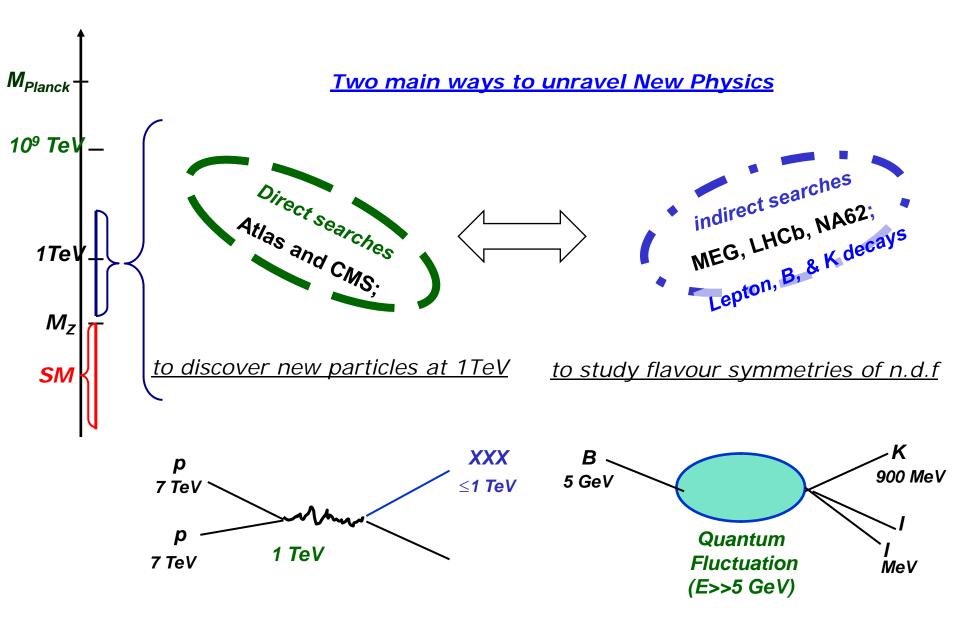
flavour sector

<u>1. not stable under radiative corrections;</u>



BUT, as effective theory below M_{Planck} , how large is the SM Λ_{UV} cut-off?





✓ Introduction:

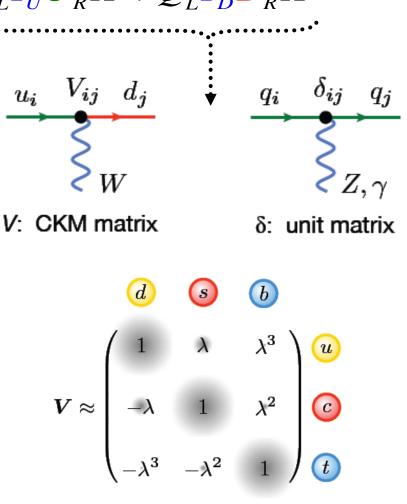
Status of Flavor Physics searches (Babar, Belle, Tevatron, LHCb):

 $\mathcal{L}_{SM} = \mathcal{L}_{gauge}(A_i, Q_i) + \overline{Q}_L Y_U U_R H + \overline{Q}_L Y_D D_R \tilde{H}$

 ✓ Spectacular confirmation of the CKM model as the dominant source of flavor and CP violation

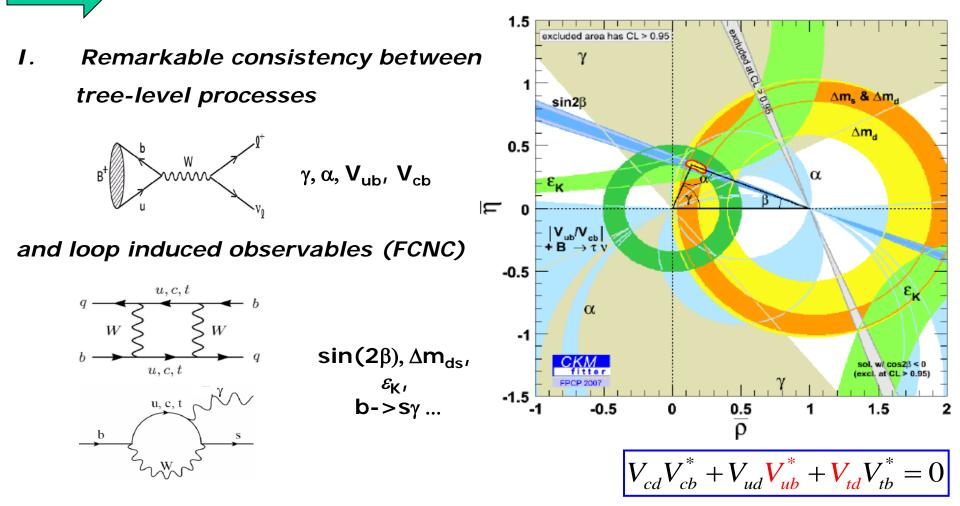
 ✓ Flavor-violating interactions encoded in <u>Yukawa coupling to Higgs boson</u>

✓ Suppression of flavor-changing neutral currents (FCNCS) and CP violation in quark sector due to *unitarity of CKM matrix, small mixing angles, and GIM mechanism*.



 $\lambda \approx 0.22$: Cabibbo angle

Flavour Physics and the quark sector in picture



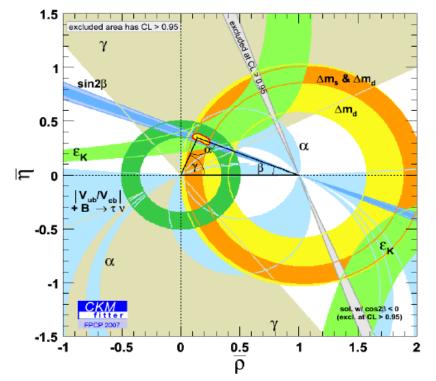
II. Remarkable consistency between

CPV and CPC observables

Nowadays, we have a good knowledge of the physical couplings of the quark Yukawa sector: (6 masses + 4 CKM angles)

What about BSM effects?

The absence of dominant New Physics signals in FCNCs implies strong constraints on flavour pattern BSM

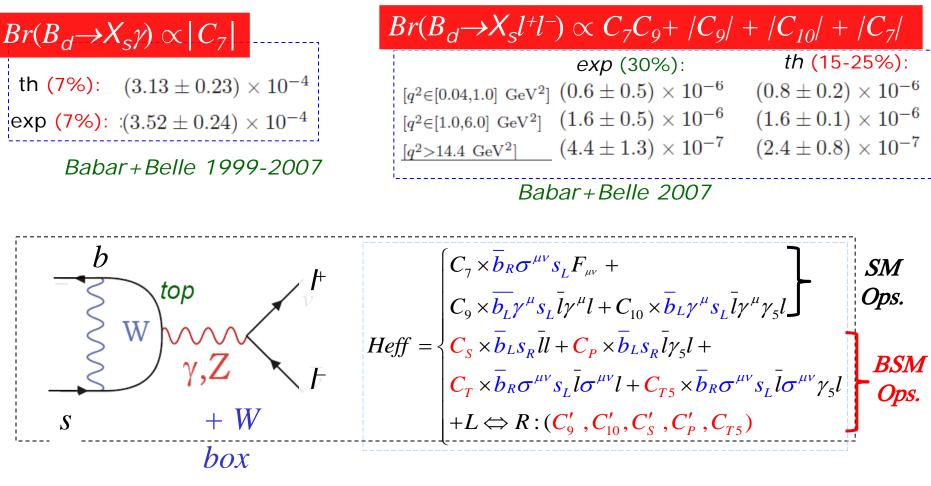


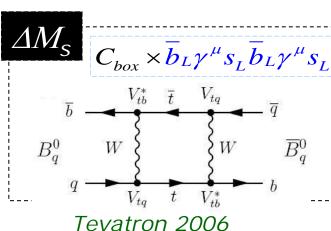
Past studies are mostly on b->d (and s->d) FCNC transitions

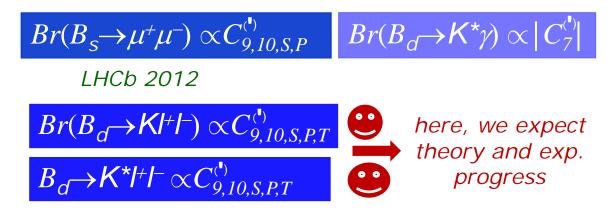
b->s transitions -> possible "rich" ground for new test!

[®] Deal with QCD at low energy – no perturbation theory

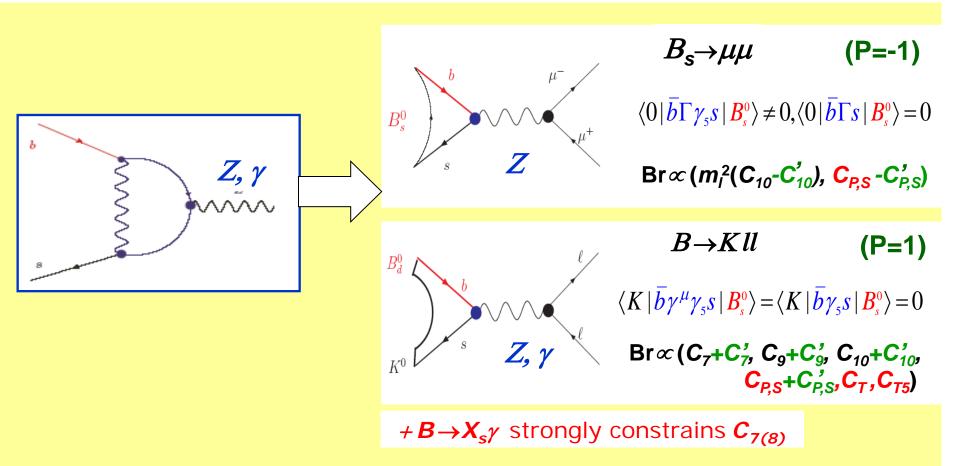
✓ Future perspectives: FCNC *b*->*s* modes "unexplored corner"







<u>Theory: Effective lagrangian at $\mu \sim m_b$ </u>



$$\begin{split} L_{eff} &= C_7 \overline{b} \sigma_L^{\mu\nu} s F_{\mu\nu} + C_7' \overline{b} \sigma_R^{\mu\nu} s F_{\mu\nu} + C_9 \left(\overline{b} \gamma_L^{\mu} s \right) \overline{\ell} \gamma^{\mu} \ell + C_9' \left(\overline{b} \gamma_R^{\mu} s \right) \overline{\ell} \gamma^{\mu} \ell \\ &+ C_{10} \left(\overline{b} \gamma_L^{\mu} s \right) \overline{\ell} \gamma^{\mu} \gamma_5 \ell + C_{10}' \left(\overline{b} \gamma_R^{\mu} s \right) \overline{\ell} \gamma^{\mu} \gamma_5 \ell + C_s' \left(\overline{b} Ls \right) \overline{\ell} \ell + C_s' \left(\overline{b} Rs \right) \overline{\ell} \ell \\ &+ C_P \left(\overline{b} Ls \right) \overline{\ell} \gamma_5 \ell + C_P' \left(\overline{b} Rs \right) \overline{\ell} \gamma_5 \ell + C_T \left(\overline{b} \sigma_L^{\mu\nu} s \right) \overline{\ell} \sigma^{\mu\nu} \ell + C_T' \left(\overline{b} \sigma_R^{\mu\nu} s \right) \overline{\ell} \sigma^{\mu\nu} \ell \end{split}$$

SM operators

GOAL: calculate Matrix elements of 2-quark operators between hadrons (decay constants & Form factors)

$$O_{7} = \overline{b}_{R} \sigma^{\mu\nu} s_{L} F_{\mu\nu}$$

$$O_{9} = (\overline{b}\gamma_{L}^{\mu}s) \overline{\ell}\gamma^{\mu}\ell$$

$$O_{10} = (\overline{b}\gamma_{L}^{\mu}s) \overline{\ell}\gamma^{\mu}\gamma_{5}\ell$$

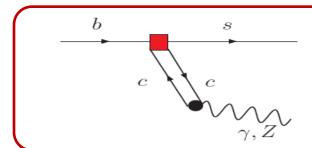
$$O_{2} = (\overline{b}\gamma_{L}^{\mu}c) (\overline{c}\gamma_{L}^{\mu}s)$$

$$BSM \ operators$$

$$s_{(P)} = (\overline{b}_{R}s_{L}) \overline{\ell}\ell_{S(P)}, O_{T} = (\overline{b}_{R}\sigma^{\mu\nu}s_{L}) \overline{\ell}\sigma^{\mu\nu}\ell$$

$$+L \leftrightarrow R$$

Charm Loops



Under control (to some extent) at low and large q^2 , out of resonance region

O

Khodjamirian's talk

 $B_s \rightarrow \mu \mu$

$$\begin{split} L_{eff} &= C_7 \overline{b} \sigma_L^{\mu\nu} s F_{\mu\nu} + C_7' \overline{b} \sigma_R^{\mu\nu} s F_{\mu\nu} + C_9 \left(\overline{b} \gamma_L^{\mu} s \right) \overline{\ell} \gamma^{\mu} \ell + C_9' \left(\overline{b} \gamma_R^{\mu} s \right) \overline{\ell} \gamma^{\mu} \ell \\ &+ C_{10} \left(\overline{b} \gamma_L^{\mu} s \right) \overline{\ell} \gamma^{\mu} \gamma_5 \ell + C_{10}' \left(\overline{b} \gamma_R^{\mu} s \right) \overline{\ell} \gamma^{\mu} \gamma_5 \ell + C_s \left(\overline{b} Ls \right) \overline{\ell} \ell + C_s' \left(\overline{b} Rs \right) \overline{\ell} \ell \\ &+ C_P \left(\overline{b} Ls \right) \overline{\ell} \gamma_5 \ell + C_P' \left(\overline{b} Rs \right) \overline{\ell} \gamma_5 \ell + C_T \left(\overline{b} \sigma_L^{\mu\nu} s \right) \overline{\ell} \sigma^{\mu\nu} \ell + C_T' \left(\overline{b} \sigma_R^{\mu\nu} s \right) \overline{\ell} \sigma^{\mu\nu} \ell \end{split}$$

$$\langle \mu \mu | L_{eff} | B_s^0 \rangle = \langle 0 | \overline{b} \Gamma s | B_s^0 \rangle \langle \mu \mu | \overline{\ell} \Gamma \ell | 0 \rangle$$

Hadronic Uncertainties
Lattice QCD

Only one hadronic parameter: f_{Bs}

 $B_s \rightarrow \mu \mu$

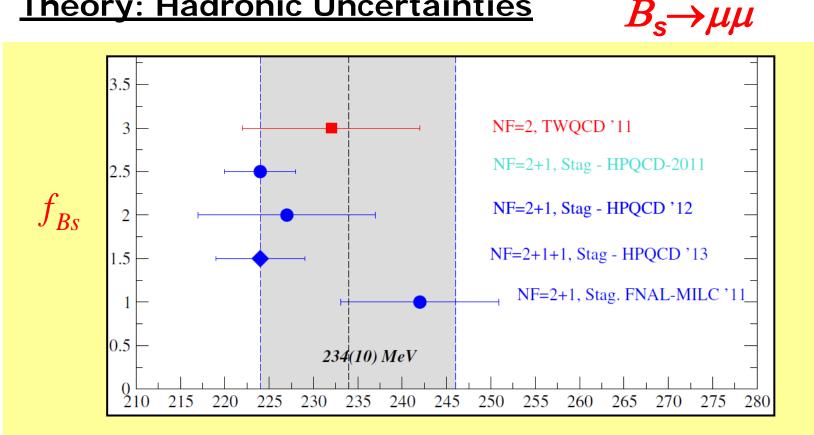
$$\langle 0 | \overline{b} \gamma^{\mu} \gamma_{5} s | B_{s}^{0} \rangle = i p^{\mu} f_{Bs}$$

$$\langle 0 | \overline{b} \gamma_{5} s | B_{s}^{0} \rangle = -i f_{Bs} M_{Bs}^{2} / m_{b}$$

 $f_{Bs} = (234 \pm 10) \,\mathrm{MeV}$

4% hadronic uncertainty Lattice: ETMC, MILC, HPQCD

 $Br(B_s \rightarrow \mu\mu)^{SM} = (3.3 \pm 0.3) \times 10^{-9} (6.5\%)$



Only one hadronic parameter: f_{Rs}

 $B_s \rightarrow \mu \mu$

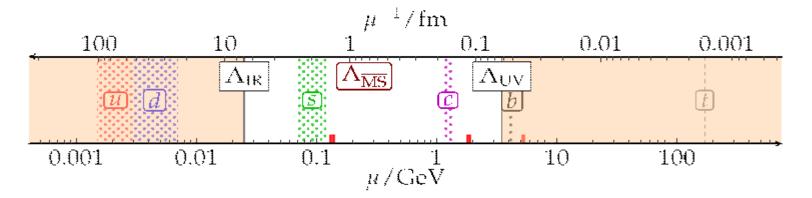
$$\langle 0 | \overline{b} \gamma^{\mu} \gamma_5 s | B_s^0 \rangle = i p^{\mu} f_{Bs} \qquad f_{Bs} = (234 \pm 10) \text{MeV}$$

$$\langle 0 | \overline{b} \gamma_5 s | B_s^0 \rangle = -i f_{Bs} M_{Bs}^2 / m_b \qquad \text{4\% hadronic uncertaint}$$

nty Lattice: ETMC, MILC, HPQCD

 $Br(B_s \rightarrow \mu\mu)^{SM} = (3.3 \pm 0.3) \times 10^{-9} (6.5\%)$

Challenge of B-physics: the multi scale-problem of QCD



hierarchy of disparate physical scales to be covered:

$$\begin{split} \Lambda_{\text{IR}} \,=\, L^{-1} \,\ll\, \mathfrak{m}_{\pi} \,,\, \ldots \,,\, \mathfrak{m}_{\text{D}} \,,\, \mathfrak{m}_{\text{B}} \,\ll\, \mathfrak{a}^{-1} \,=\, \Lambda_{\text{UV}} \\ \\ \left[\,O(e^{-L\mathfrak{m}_{\pi}} \,) \Rightarrow L \gtrsim \frac{4}{\mathfrak{m}_{\pi}} \sim 6 \, \text{fm} \,\right\} \,\,\curvearrowright \,\, L/\mathfrak{a} \gtrsim 120 \,\,\curvearrowleft \,\, \left\{ \,\mathfrak{am}_{\text{D}} \lesssim \frac{1}{2} \Rightarrow \,\mathfrak{a} \approx 0.05 \, \text{fm} \,\right\} \end{split}$$

Currently a⁻¹<4 GeV, **b** quarks cannot be directly simulate at their physical mass due to large discretization errors (a m_b « 1)

effective theories: like NRQCD action

 \Box simulate heavy quark in the charm region and extrapolate to the B + HQET \Box

Comments:

Discretized NRQCD action

Quite Sophisticated procedure!

○ larger set of $1/(am_Q)$ corrections on the lattice w.r.t the continuum

 $>O[\alpha_s^n/(am_Q)]$ divergences to be subtracted to get the continuum limit

> On the other hand, large experience from MILC/FNAL/HPQCD

Successful strategy for f_B comparing with unquenched results from other approaches

 $B \rightarrow K l l$

 $B \rightarrow K l l$

Dominant uncertainties come from the form 3 factors: $f_+(q^2)$, $f_0(q^2)$, $f_T(q^2)$

$$\langle B(p)|\bar{b}\gamma^{\mu}s|K(k)\rangle = (p^{\mu} + k^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}(f_{+}(q^{2}) + \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}f_{0}(q^{2})$$

$$\langle B(p)|\bar{b}\sigma^{\mu\nu}s|K(k)\rangle = \frac{if_{T}}{m_{B} + m_{K}}[(p^{\mu} + k^{\mu})q^{\nu} - (p^{\nu} + k^{\nu})q^{\mu}]$$

♦
$$C_{9,10}^{(\prime)} \to f_+(q^2), f_0(q^2), C_{S,P}^{(\prime)} \to f_0/m_b \quad C_7^{(\prime)} \to f_T,$$

• Wide range of $q^2 = [0, (m_B - m_K)^2] \rightarrow$ Opportunities for different nonperturbative techniques: Lattice QCD – relative th. error 30% -> large room for improvement

$$\langle \mu \mu | L_{eff} | B_s^0 \rangle = \langle K | \overline{b} \Gamma s | B_s^0 \rangle \langle \mu \mu | \overline{\ell} \Gamma \ell | 0 \rangle$$

 $B \rightarrow K l l$

 $B \rightarrow K l l$

Dominant uncertainties come from the form 3 factors: $f_+(q^2)$, $f_0(q^2)$, $f_T(q^2)$

$$\langle B(p)|\bar{b}\gamma^{\mu}s|K(k)\rangle = (p^{\mu} + k^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}(f_{+}(q^{2}) + \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}f_{0}(q^{2})$$

$$\langle B(p)|\bar{b}\sigma^{\mu\nu}s|K(k)\rangle = \frac{if_{T}}{m_{B} + m_{K}}[(p^{\mu} + k^{\mu})q^{\nu} - (p^{\nu} + k^{\nu})q^{\mu}]$$

♦
$$C_{9,10}^{(\prime)} \to f_+(q^2), f_0(q^2), C_{S,P}^{(\prime)} \to f_0/m_b \quad C_7^{(\prime)} \to f_T,$$

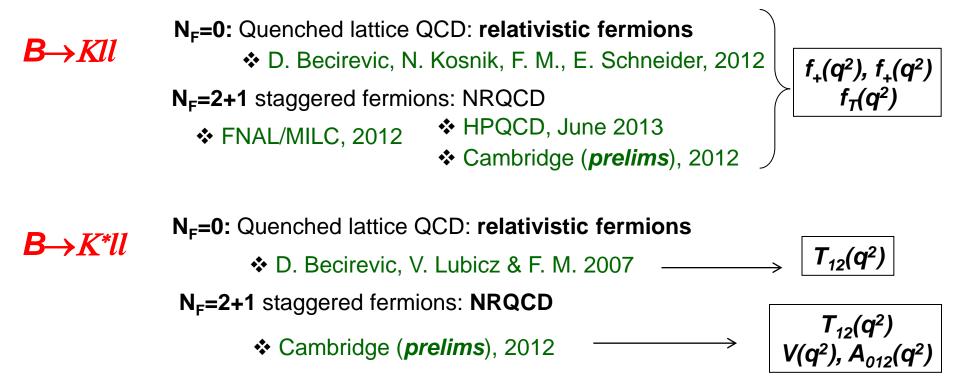
• Wide range of $q^2 = [0, (m_B - m_K)^2] \rightarrow$ Opportunities for different nonperturbative techniques: Lattice QCD – relative th. error 30% -> large room for improvement

! LATTICE QCD: only approach to compute the full ff basis at large q^2 : \odot no $O(\Lambda/m_b)$ uncertainty from Isgur-Wise relation at LO!

 $B \rightarrow K^* \gamma$, $B \rightarrow K^* ll$

$$\begin{split} \langle V(p',\varepsilon)|\bar{q}\hat{\gamma}^{\mu}b|B(p)\rangle &= \frac{2iV(q^{2})}{m_{B}+m_{V}}\epsilon^{\mu\nu\rho\sigma}\varepsilon_{\nu}^{*}p'_{\rho}p_{\sigma} \\ \langle V(p',\varepsilon)|\bar{q}\hat{\gamma}^{\mu}\hat{\gamma}^{5}b|B(p)\rangle &= 2m_{V}A_{0}(q^{2})\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu} \\ &+(m_{B}+m_{V})A_{1}(q^{2})\left(\varepsilon^{*\mu}-\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu}\right) \\ &-A_{2}(q^{2})\frac{\varepsilon^{*}\cdot q}{m_{B}+m_{V}}\left((p+p')^{\mu}-\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}}q^{\mu}\right) \\ q^{\nu}\langle V(p',\varepsilon)|\bar{q}\hat{\sigma}_{\mu\nu}b|B(p)\rangle &= 2(T_{1}(q^{2})\varepsilon_{\mu\rho\tau\sigma}\varepsilon^{*\rho}p^{\tau}p'^{\sigma} \longrightarrow \frac{Br(B\to K^{*}\gamma)}{one\ ff.\ at\ q^{2}=0} \\ q^{\nu}\langle V(p',\varepsilon)|\bar{q}\hat{\sigma}_{\mu\nu}\hat{\gamma}^{5}b|B(p)\rangle &= (T_{2}(q^{2})\varepsilon_{\mu}^{*}(m_{B}^{2}-m_{V}^{2})-(\varepsilon^{*}\cdot q)(p+p')_{\mu}| \\ &+iT_{3}(q^{2})(\varepsilon^{*}\cdot q)\left[q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{V}^{2}}(p+p')_{\mu}\right] \\ Br(B\to K^{*}ll\):\ 7\ form\ factors\ in\ QCD \end{split}$$

! LATTICE QCD: only approach to compute the full ff basis at **large** q^2 : \odot no $O(\Lambda/m_b)$ uncertainty from Isgur-Wise relation at LO! **Studies of form-factor calculations on the Lattice:**

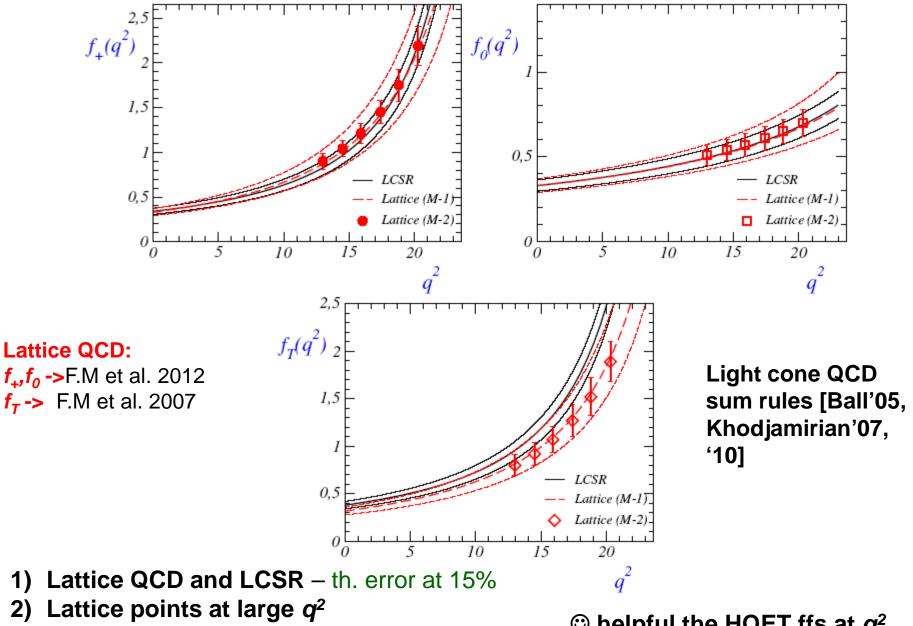


☺ preliminary unquenched activities:

overall agreement between Quenched and LCSR

 \odot q^2 dependence: further complication with respect to f_B or B_B

$B \to K \ell^+ \ell^-$ form factors



Agreement with LQSR 3)

 \odot helpful the HQET ffs at q^2_{max}

 $B \rightarrow K l l$

 $B \rightarrow K l l$

Dominant uncertainties come from the 3 form factors: $f_+(q^2)$, $f_0(q^2)$, $f_T(q^2)$

 $\langle K | \bar{b} \gamma^{\mu} \gamma_5 s | B \rangle \Leftrightarrow f_{+,0}(q^2) \qquad \langle K | \bar{b} \sigma^{\mu\nu} s | B \rangle \Leftrightarrow f_T(q^2)$

♦
$$C_{9,10}^{(\prime)} \to f_+(q^2), f_0(q^2), C_{S,P}^{(\prime)} \to f_0/m_b \quad C_7^{(\prime)} \to f_T,$$

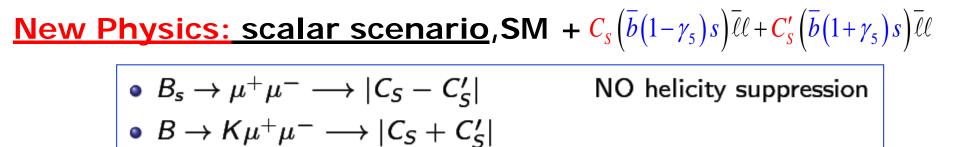
♦ Wide range of $q^2 = [0, (m_B - m_K)^2]$ -> Opportunities for different nonperturbative techniques: Lattice QCD and LCSR – relative error 30%

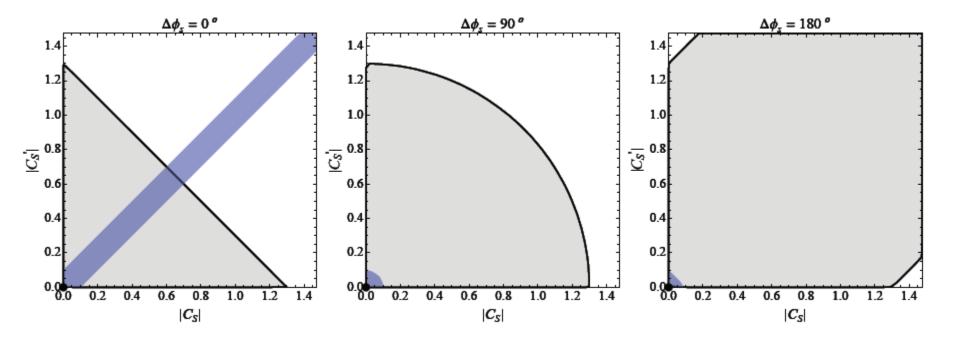
$$Br \left(B \to K \ell^+ \ell^- \right)_{SM} = \begin{cases} (7.5 \pm 1.4) \times 10^{-7} \text{ LQCD}, \\ \\ (6.8 \pm 1.6) \times 10^{-7} \text{ LCSR}. \end{cases},$$

Lattice average Br $(B \rightarrow K\ell^+\ell^-)_{\rm SM} = (7.0 \pm 1.8) \times 10^{-7}$

still th. error large 30%

BaBar'12LHCb'12Br($B \rightarrow K ll$) = (4.7±0.6) × 10⁻⁷Br($B^+ \rightarrow K^+ \mu \mu$) = (3.1±0.7) × 10⁻⁷





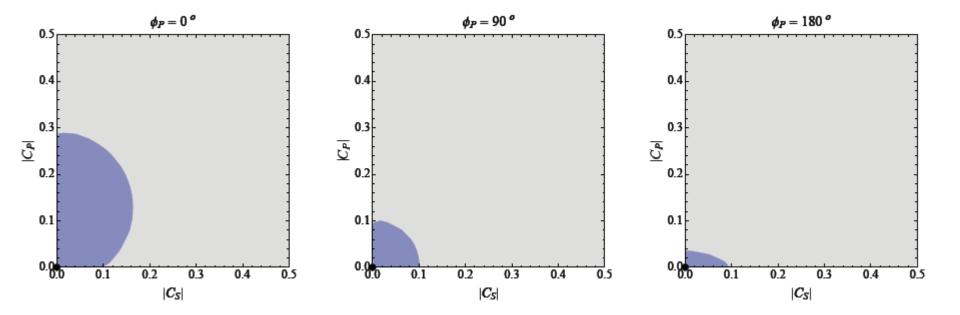
• Constraints strongly depend on relative phase $\Delta \phi_S$ (GREY = $B \rightarrow K \mu^+ \mu^-$, BLUE = $B_s \rightarrow \mu^+ \mu^-$) $|C_s \pm C'_s|^2 = |C_s|^2 + |C'_s|^2 \pm 2 |C_s| |C'_s| \cos(\Delta \phi_s)$ <u>New Physics:</u> SM + $C_s(\overline{b}(1-\gamma_5)s)\overline{\ell}\gamma_5\ell + C_p(\overline{b}\gamma_5(1-\gamma_5)s)\overline{\ell}\gamma_5\ell$

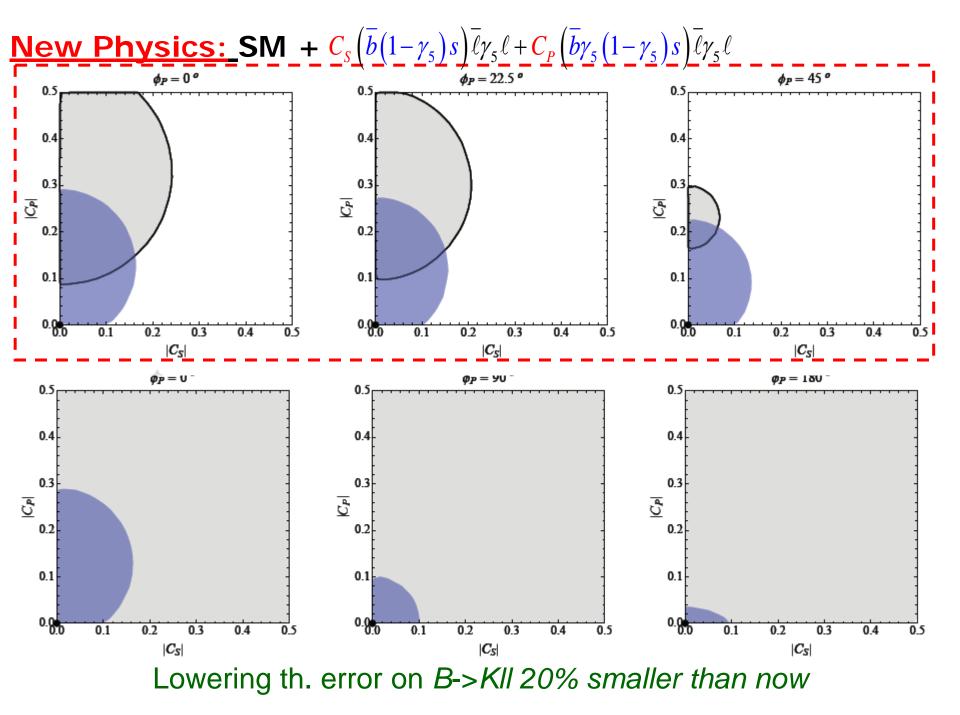
•
$$B_s \rightarrow \mu^+ \mu^- \longrightarrow |C_S|, \quad |C_P + 2m_\ell/m_B C_{10}^{\rm SM}|$$

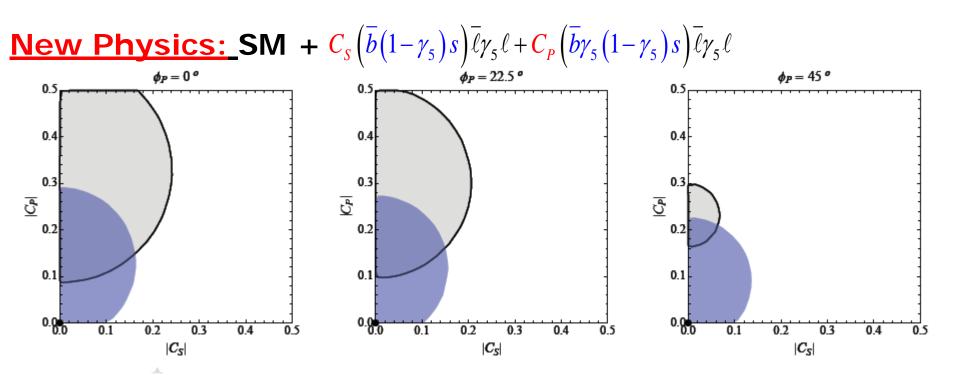
• $B \rightarrow K \mu^+ \mu^- \longrightarrow |C_S|, \quad |C_P + \# m_\ell/m_B C_{10}^{\rm SM}|$

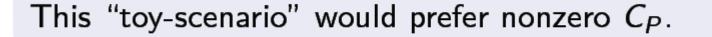
• Phase of C_P enters

(GREY = $B \rightarrow K\mu^+\mu^-$, BLUE = $B_s \rightarrow \mu^+\mu^-$)









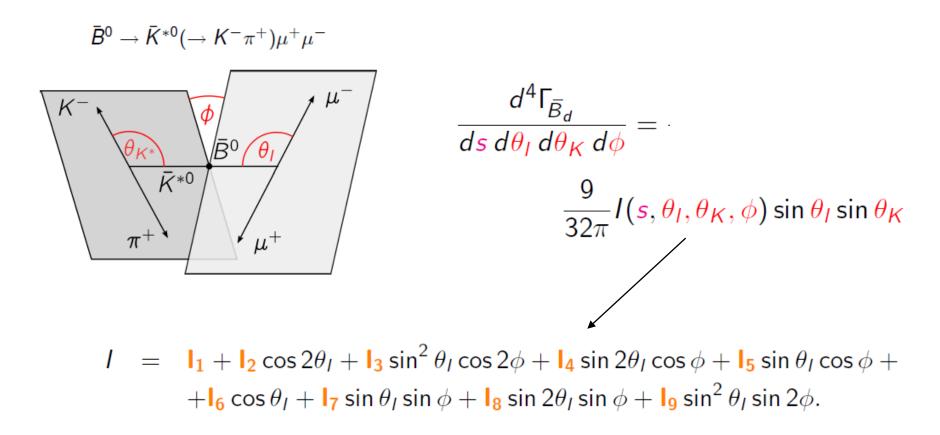
Lowering th. error on *B*->*K*II 20% smaller than now

Observables in $B \rightarrow K^*ll$ process

$$ar{B}^0
ightarrow ar{K}^{*0} (
ightarrow K^- \pi^+) \mu^+ \mu^-$$

=> Exploiting the decay $K^* \rightarrow K\pi$: four-body analysis and access to the K^* polarisation:

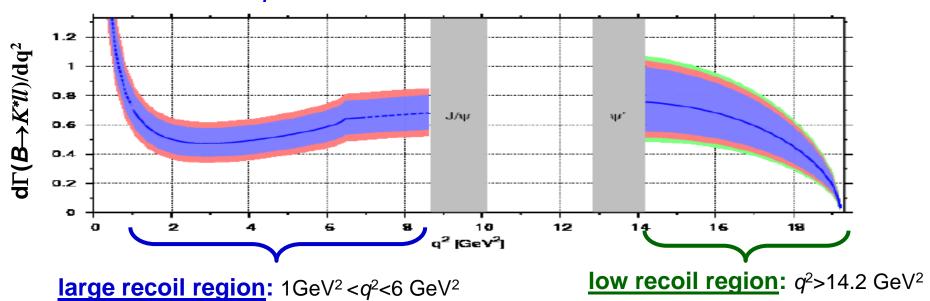
$B \rightarrow K^* (\rightarrow K\pi) \mu^+ \mu^-$ Angular Decay Distribution



11 independent angular coefficients, I_i , for $\bar{B}^0 \rightarrow \bar{K}^{*0} (\rightarrow K^- \pi^+) \mu^+ \mu^-$ to measure!

q² dep. unknown! from form factor!large uncertainty.

 $B \rightarrow K^* ll \ process$



7 form factors in QCD: $V(q^2)$, $A_{0,1,2}(q^2)$, $T_{1,2,3}(q^2)$

 \Box $m_b \rightarrow \infty$, $E_{K^*} \rightarrow \infty$: low $q^2 \sim 0$

✓ LEET + QCDF expansion:

- **2** independent ffs: $V(q^2)$, $A_2(q^2)$
- \bigcirc ffs by LCSR $\rightarrow \bigcirc$ at low q^2
- □ Satisfactory scenario at large recoil: ⊗ tough to improve!

 $\square m_b \rightarrow \infty, E_{K^*} \rightarrow 0$: large $q^2 \sim m_b$

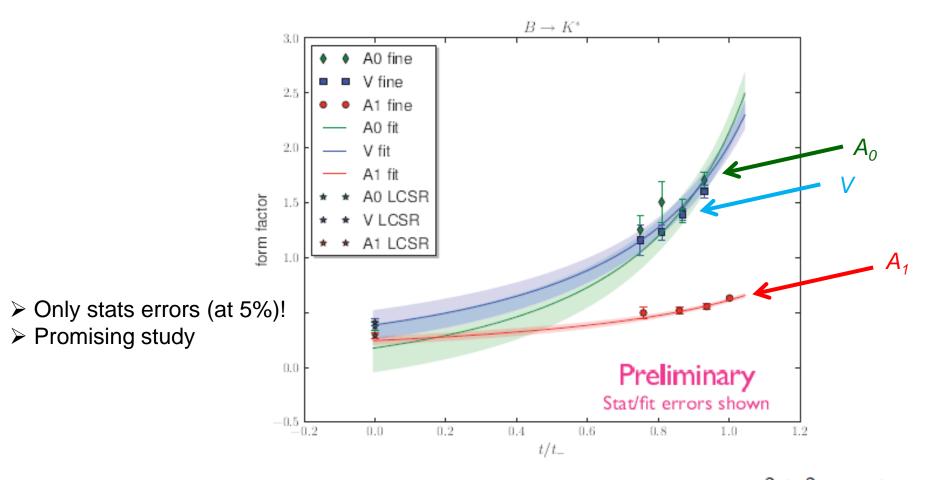
✓ HQET + OPE→ \bigcirc O(Λ^2/m_b^2) uncertainties \bigcirc

✓ Isgur-Wise relations→ \bigcirc $O(\Lambda/m_b)$ uncertainties \bigcirc

- **3** independent ffs: $V(q^2)$, $A_{1,2}(q^2)$
- \mathfrak{S} ffs by LCSR extrapolated \mathfrak{S} at large q^2

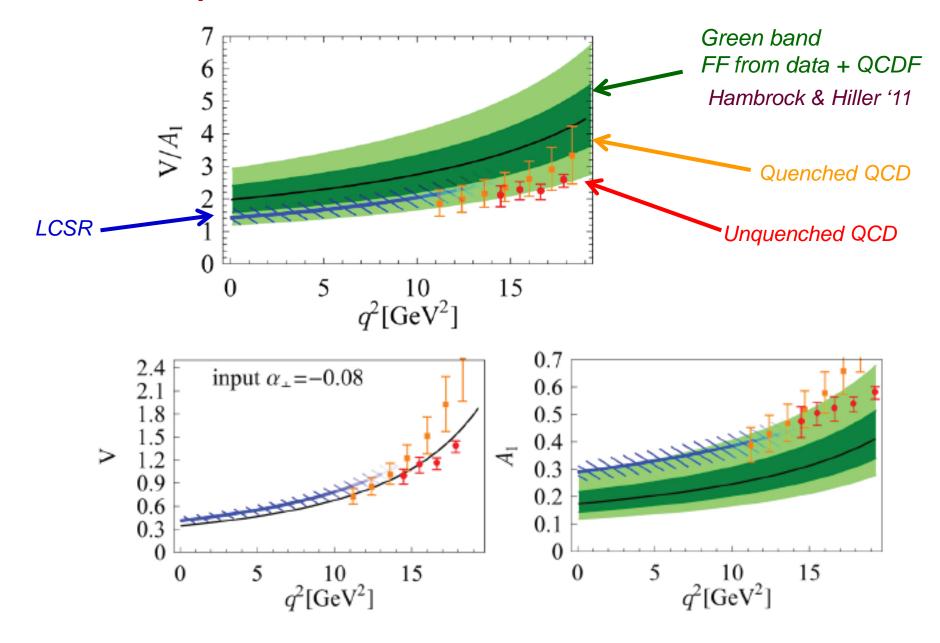
Our Statisfactory scenario at low recoil
 Our But room to improve -> LATTICE QCD

$B \rightarrow K^* II$ form factors from Cambridge/W&M/Edinburgh.



Preliminary results on $B \to K^* I V$, A_0 , and A_1 vs. q^2/q_{max}^2 . (by M. Wingate at lattice 2012)

Comparison of B \rightarrow *K*^{*}*ll* **form factor calculations**



Conclusions

 $\Re Br(B_s \rightarrow \mu \mu)$ is genuinely sensitive to (pseudo)scalar operators

$$O'_{S} = \left(\overline{b}P_{R,L}s\right)\overline{\ell}\ell$$
, and $O_{P} = \left(\overline{b}P_{R,L}s\right)\overline{\ell}\gamma_{5}\ell$

Only one hadronic parameter enters, f_{Bs} -> small th. error

Br($B \rightarrow KII$) & Br($B \rightarrow K^*II$) is sensitive to (pseudo)scalar + vector operators (+ tensors)

 \bigcirc hadronic parameters, $f_{0,+T}$ form factors -> large th. error

⇒ With respect to $B_s \rightarrow \mu\mu$, it probes the effective Hamiltonian in an "orthogonal" direction!

Improvement of form factors calculation would make the observables a high resolution probe of scalar operators

 \bigcirc with tensor operators tested by $A_{FB}(B \rightarrow K^{(*)} II)$

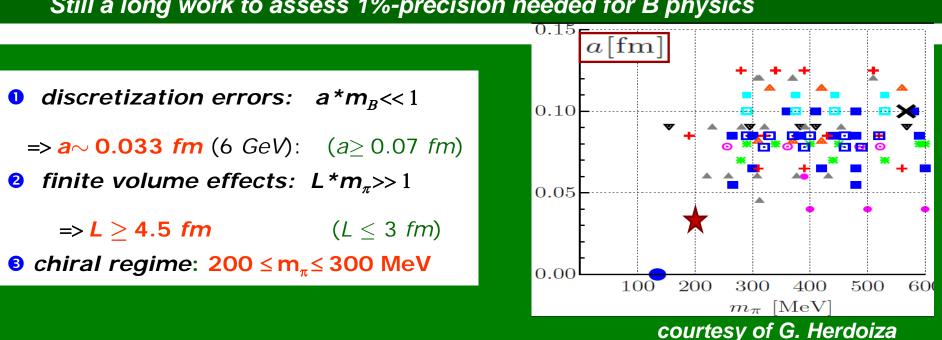
⇒ with vector ones by $B \rightarrow X_s \parallel B$ spectrum and transverse asymmetries in $B \rightarrow K^* \parallel$

Conclusions:

LATTICE QCD -> touchable progress in recent years:

reliable unquenched simulations with pions close to the physical point => m_{π} =156 MeV (PACS-CS), m_{π} =190 MeV (BMW)

- \supset $f_{\kappa}/f_{\pi} \& f_{B}$ paradigma of present lattice progress!
- promising studies at percent level on the way for B Physics ffs



Still a long work to assess 1%-precision needed for B physics