$b \rightarrow s$ transitions and Lattice QCD

Federico Mescia
 ECM \& ICC, Universitat de Barcelona

\checkmark BIG News: November 2012, first evidence of $B_{s} \rightarrow \mu^{+} \mu^{-}$from LHCb
-PANIC: the measured $\operatorname{Brexp}\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)=(3.2 \pm 1.5) 10^{-9}$ is close to the $\underline{\mathrm{SM}}$,

$$
\mathrm{Br}^{\mathrm{SM}}\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)=(3.3 \pm 0.3) 10^{-9}
$$

\checkmark NEWS: information from $B \rightarrow K \mu \mu$ and $B \rightarrow K^{*} \mu \mu$ soon available BaBar \& LHCb - 2012:
D NO PANIC: $\left.\operatorname{Br}\left(B \rightarrow K^{*}\right) \mu \mu\right)$ and $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)$ sensitive to different " b-> s couplings"

IV Workshop on Fermions and Extended Objects on the Lattice: June 16-22 (2013), Benasque
\checkmark Introduction:
Dhat is Flavor Physics in the Standard Model ?
© Status of Flavor Physics searches (Babar, Belle, Tevatron, LHcb):
-> Today, it is fair to say: small deviations from the SM expected!
\checkmark Future perspectives: b->s modes "unexplored corner"
() Tool: Eff. Hamiltonian for the full set of b->s processes!
© BIG CHALLENGE: hadronic uncertainties => Lattice QCD goal: control QCD at low energy at a few percent, by numerical simulation

* Potentialities of $B \rightarrow K \mu \mu$ vs $B_{\mathrm{s}} \rightarrow \mu \mu$

ЭTheory and Exp. information on $B \rightarrow K \mu \mu$ is still poor!
©Complementary info also from $B \rightarrow K^{*} \mu \mu$: richer "b-> s couplings"
\checkmark Introduction:
That is Flavor Physics in the Standard Model?

- Flavour Transitions: Weak interactions

 violate flavour: CKM matrix and CP violation$$
\begin{aligned}
& \mathcal{L}_{\text {int }}=\bar{t}_{L} \gamma_{\mu} V^{C K M} b_{L} W^{\mu} \\
& \text {... }
\end{aligned}
$$

$=>3$ angles and 1 Phase

- Flavour Transitions: Weak interactions violate flavour: CKM matrix and CP violation
macroscopic picture (effective couplings after ewsb)

- Flavour Transitions: Weak interactions

 violate flavour: CKM matrix and CP violationmicroscopic picture?
=>LHC job
the Higgs mechanism!
2 open options: Linear or NonLinear Higgs realisation?

1HDM	Techni C
2HDM	Little H.
SUSY	Extra D.

ATLAS-CMS (2012): Higgs evidence!

- Flavour Transitions: Weak interactions violate flavour: CKM matrix and CP violation

$$
\begin{aligned}
& \mathcal{L}_{\text {int }}=\bar{t}_{L} \gamma_{\mu} V^{C K M} b_{L} W^{\mu} \\
& \text {... }
\end{aligned}
$$

microscopic picture?

- ad hoc description in the SM

$$
\underbrace{\mathrm{D}_{\mu} H^{+} \mathrm{D}^{\mu} H-V\left(H^{+} H\right)}_{\text {ewsb sector }}+\underbrace{\mathrm{Y}^{\mathrm{ij}} H \bar{\psi}_{\mathrm{L}} \psi_{\mathrm{R}}}_{\text {flavour sector }}+\mathrm{h} . \mathrm{c}
$$

1. not stable under radiative corrections;

$$
\mathcal{L}_{\text {eff }}\left(\mu \leq M_{Z}\right)=\overbrace{\mathcal{L}_{\text {gauge }}\left(\mathrm{A}_{\mathrm{i}}, \psi_{\mathrm{i}}\right)+\mathcal{L}_{\text {Higgs }}^{\Lambda_{\mathrm{UV}}}\left(H, \mathrm{~A}_{\mathrm{i}}, \psi_{\mathrm{i}}\right)}^{\text {Standard Model } \mathcal{L}_{\mathrm{SM}}}+\underbrace{\Lambda_{\mathrm{UV}}}_{\underbrace{\mathcal{L}^{(5)}}_{\text {see-saw }}}+\underbrace{\frac{\mathcal{L}^{(6)}}{\Lambda_{\mathrm{UV}}^{2}}}_{\text {EWPT,FCNC,CPV }} \ldots
$$

BUT, as effective theory below $M_{\text {Planck }}$, how large is the SM Λ_{UV} cut-off?
SuperKamiokande, WMAP ...
$\left.\begin{array}{c}M_{\text {Planck }} \\ 10^{15} \mathrm{TeV} \\ 1 \mathrm{TeV} \\ \mathrm{M}_{\mathbf{z}} \\ \mu\end{array}\right\}$

many hints for Beyond SM physics:

```
 gravity
\LambdaUVV}~1\mp@subsup{0}{}{19}\textrm{TeV
neutrino oscillations
    \Lambdauv ~ 1015 TeV (see-saw)
relic density }\quad\mp@subsup{\Lambda}{\mathrm{ WIMP }}{}\leq1\textrm{TeV},\mp@subsup{\Lambda}{\mathrm{ strong }}{}\geq1 TeV
> matter/anti-matter asymmetries
however no clear clues, because of large model dependence!
```

Naturalness of Higgs sector would require

\checkmark Introduction:

- Status of Flavor Physics searches (Babar, Belle, Tevatron, LHCb):

Flavor Physics 2013 (bd, sd):

$$
\mathcal{L}_{S M}=\mathcal{L}_{\text {gauge }}\left(A_{i}, Q_{i}\right)+\bar{Q}_{L} Y_{U} U_{R} H+\bar{Q}_{L} Y_{D} D_{R} \tilde{H}
$$

\checkmark Spectacular confirmation of the CKM model as the dominant source of flavor and $C P$ violation
\checkmark Flavor-violating interactions encoded in Yukawa coupling to Higgs boson
\checkmark Suppression of flavor-changing neutral currents (FCNCS) and CP violation in quark sector due to unitarity of CKM matrix, small mixing angles, and GIM mechanism.

v : CKM matrix

δ : unit matrix
luwa

Flavour Physics and the quark sector in picture

I. Remarkable consistency between tree-level processes
 $\gamma, \alpha, \mathbf{V}_{\mathbf{u b}}, \mathbf{V}_{\mathbf{c b}}$
and loop induced observables (FCNC)

$$
\begin{gathered}
\sin (2 \beta), \Delta \mathbf{m}_{\mathrm{ds}}, \\
\varepsilon_{\mathrm{k}}, \\
b->\mathbf{s} \gamma \ldots
\end{gathered}
$$

II. Remarkable consistency between CPV and CPC observables

Nowadays, we have a good knowledge of the physical couplings of the quark Yukawa sector: (6 masses +4 CKM angles)

What about BSM effects?

The absence of dominant New Physics signals in FCNCs implies strong constraints on flavour pattern BSM

Past studies are mostly on b->d (and s->d) FCNC transitions
Θ b->s transitions -> possible "rich" ground for new test!
(:) Deal with QCD at low energy - no perturbation theory
\checkmark Future perspectives: FCNC b->s modes "unexplored corner"

$B r\left(B_{d} \rightarrow X_{s} \gamma\right) \propto\left|C_{7}\right|$

th $(7 \%): \quad(3.13 \pm 0.23) \times 10^{-4}$
$\exp (7 \%)::(3.52 \pm 0.24) \times 10^{-4}$
Babar+Belle 1999-2007

$$
\begin{array}{cc}
\operatorname{Br}\left(B_{\mathrm{d}} \rightarrow X_{s} l^{+} l^{-}\right) \propto C_{7} C_{9}+\left|C_{9}\right|+\left|C_{10}\right|+\left|C_{7}\right| \\
\hdashline & \exp (30 \%): \\
{\left[q^{2} \in[0.04,1.0] \mathrm{GeV}^{2}\right]} & (0.6 \pm 0.5) \times 10^{-6} \\
{\left[q^{2} \in[1.0,6.0] \mathrm{GeV}^{2}\right]} & (1.6 \pm 0.5) \times 10^{-6} \\
{\left[q^{2}>14.4 \mathrm{GeV}^{2}\right]} & (1.4 \pm 1.3) \times 10^{-7}
\end{array}
$$

Babar+Belle 2007

$\Delta M_{\mathrm{S}} C_{b o x} \times \bar{b}_{L} \gamma^{\mu} s_{L} \bar{b}_{L} \gamma^{\mu} s_{L}$

$\operatorname{Br}\left(B_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \propto C_{9,10, S, P}^{()^{\prime}}$

$\operatorname{Br}\left(B_{\mathrm{d}} \rightarrow K^{*} \gamma\right) \propto\left|C_{7}^{\prime}\right|$
LHCb 2012

Tevatron 2006

Theory: Effective lagrangian at $\mu \sim \mathbf{m}_{\underline{b}}$

Theory: Hadronic Uncertainties

$$
\begin{aligned}
& \operatorname{Br}\left(B_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \propto C_{9,10, S, P} \\
& \operatorname{Br}\left(B_{\mathrm{d}} \rightarrow K^{(*)} I^{+} I^{-}\right) \propto C_{9,10, S, P, T}
\end{aligned}
$$

SM operators

$$
\begin{aligned}
O_{7} & =\bar{b}_{R} \sigma^{\mu \nu} s_{L} F_{\mu \nu} \\
O_{9} & =\left(\bar{b} \gamma_{L}^{\mu} s\right) \bar{\ell} \gamma^{\mu} \ell \\
O_{10} & =\left(\bar{b} \gamma_{L}^{\mu} s\right) \bar{\ell} \gamma^{\mu} \gamma_{5} \ell
\end{aligned}
$$

between hadrons
(decay constants \& Form factors)

$$
O_{2}=\left(\bar{b} \gamma_{L}^{\mu} c\right)\left(\bar{c} \gamma_{L}^{\mu} s\right)
$$

BSM operators

$$
\begin{gathered}
O_{S(P)}=\left(\bar{b}_{R} S_{L}\right) \bar{\ell} \ell_{S(P)}, O_{T}=\left(\bar{b}_{R} \sigma^{\mu v} s_{L}\right) \bar{\ell} \sigma^{\mu v} \ell \\
+L \leftrightarrow R
\end{gathered}
$$

Charm Loops

Under control (to some extent) at low and large q^{2}, out of resonance region

Khodjamirian's talk

Theory: Hadronic Uncertainties

$$
\begin{aligned}
L_{e f f}= & C_{7} \bar{b} \sigma_{L}^{\mu v} s F_{\mu \nu}+C_{7}^{\prime} \bar{b} \sigma_{R}^{\mu v} s F_{\mu \nu}+C_{9}\left(\bar{b} \gamma_{L}^{\mu} s\right) \bar{\ell} \gamma^{\mu} \ell+C_{9}^{\prime}\left(\bar{b} \gamma_{R}^{\mu} s\right) \bar{\ell} \gamma^{\mu} \ell \\
& +C_{10}\left(\bar{b} \gamma_{L}^{\mu} s\right) \bar{\ell} \gamma^{\mu} \gamma_{5} \ell+C_{10}^{\prime}\left(\bar{b} \gamma_{R}^{\mu} s\right) \bar{\ell} \gamma^{\mu} \gamma_{5} \ell+C_{S}(\bar{b} L s) \bar{\ell} \ell+C_{S}^{\prime}(\bar{b} R s) \overline{\ell \ell} \\
& +C_{P}(\bar{b} L s) \bar{\ell} \gamma_{5} \ell+C_{P}^{\prime}(\bar{b} R s) \bar{\ell} \gamma_{5} \ell+C_{T}\left(\bar{b} \sigma_{L}^{\mu v} s\right) \bar{\ell} \sigma^{\mu v} \ell+C_{T}^{\prime}\left(\bar{b} \sigma_{R}^{\mu v} s\right) \bar{\ell} \sigma^{\mu v} \ell \\
& \langle\mu \mu| L_{e f f}\left|B_{s}^{0}\right\rangle=\prime\left\langle\overline{\langle 0| \bar{b} \Gamma s\left|B_{s}^{0}\right\rangle}\right\rangle\langle\mu \mu| \bar{\ell} \Gamma \ell|0\rangle
\end{aligned}
$$

Hadronic Uncertainties Lattice QCD Only one hadronic parameter: $\boldsymbol{f}_{B s}$
$B_{\mathrm{s}} \rightarrow \mu \mu$

$$
\begin{gathered}
\langle 0| \bar{b} \gamma^{\mu} \gamma_{5} s\left|B_{s}^{0}\right\rangle=i p^{\mu} f_{B s} \\
\langle 0| \bar{b} \gamma_{5} s\left|B_{s}^{0}\right\rangle=-i f_{B s} M_{B s}^{2} / m_{b}
\end{gathered}
$$

$$
f_{B s}=(234 \pm 10) \mathrm{MeV}
$$

4\% hadronic uncertainty Lattice: ETMC, MI LC, HPQCD

$$
\mathrm{Br}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)^{\mathrm{SM}}=(3.3 \pm 0.3) \times 10^{-9}(6.5 \%)
$$

Theory: Hadronic Uncertainties

$B_{\mathrm{s}} \rightarrow \mu \mu$

Only one hadronic parameter: $\boldsymbol{f}_{B s}$
$B_{\mathrm{s}} \rightarrow \mu \mu$

$$
\begin{gathered}
\langle 0| \bar{b} \gamma^{\mu} \gamma_{5} s\left|B_{s}^{0}\right\rangle=i p^{\mu} f_{B s} \\
\langle 0| \bar{b} \gamma_{5} s\left|B_{s}^{0}\right\rangle=-i f_{B s} M_{B s}^{2} / m_{b}
\end{gathered}
$$

$$
f_{B s}=(234 \pm 10) \mathrm{MeV}
$$

4\% hadronic uncertainty Lattice: ETMC, MI LC, HPQCD

$$
\mathrm{Br}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)^{\mathrm{SM}}=(3.3 \pm 0.3) \times 10^{-9}(6.5 \%)
$$

Challenge of B-physics: the multi scale-problem of QCD

hierarchy of disparate physical scales to be covered:

$$
\begin{gathered}
\Lambda_{\mathbb{R}}=L^{-1} \ll m_{\pi}, \ldots, m_{D}, m_{B} \ll a^{-1}=\Lambda_{U V} \\
\left\{O\left(e^{-L m_{\pi}}\right) \Rightarrow \mathrm{L} \gtrsim \frac{4}{m_{\pi}} \sim 6 \mathrm{fm}\right\} \curvearrowright L / a \gtrsim 120 \curvearrowleft\left\{a m_{D} \lesssim \frac{1}{2} \Rightarrow a \approx 0.05 \mathrm{fm}\right\}
\end{gathered}
$$

Currently $\mathrm{a}^{-1}<4 \mathrm{GeV}$, b quarks cannot be directly simulate at their physical mass due to large discretization errors (a m_{b} «1)
\square effective theories: like NRQCD action
simulate heavy quark in the charm region and extrapolate to the $B+H Q E T$.

Comments:

- Discretized NRQCD action

>Quite Sophisticated procedure!

Э larger set of $1 /\left(a m_{Q}\right)$ corrections on the lattice w.r.t the continuum
$>\mathrm{O}\left[\alpha_{s}{ }^{\mathrm{n}} /\left(\mathrm{am}_{\mathrm{Q}}\right)\right]$ divergences to be subtracted to get the continuum limit
$>$ On the other hand, large experience from MILC/FNAL/HPQCD
() Successful strategy for $f_{\underline{B}}$ comparing with unquenched results from other approaches

Theory: Hadronic Uncertainties

$B \rightarrow K$ II

$$
B \rightarrow K I I
$$

Dominant uncertainties come from the form 3 factors: $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right), f_{T}\left(q^{2}\right)$

$$
\begin{gathered}
\langle B(p)| \bar{b} \gamma^{\mu} s|K(k)\rangle=\left(p^{\mu}+k^{\mu}-\frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} q^{\mu}\right) f_{+}\left(q^{2}\right)+\frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} q^{\mu} f_{0}\left(q^{2}\right) \\
\langle B(p)| \bar{b} \sigma^{\mu \nu} s|K(k)\rangle=\frac{i f_{T}}{m_{B}+m_{K}}\left[\left(p^{\mu}+k^{\mu}\right) q^{\nu}-\left(p^{\nu}+k^{\nu}\right) q^{\mu}\right]
\end{gathered}
$$

$$
\div \quad C_{9,10}^{(\prime)} \rightarrow f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right), C_{S, P}^{(\prime)} \rightarrow f_{0} / m_{b} \quad C_{7}^{(\prime)} \rightarrow f_{T}
$$

$*$ Wide range of $q^{2}=\left[0,\left(m_{B}-m_{K}\right)^{2}\right]$-> Opportunities for different nonperturbative techniques: Lattice QCD - relative th. error 30%-> large room for improvement

$$
\langle\mu \mu| L_{e f f}\left|B_{s}^{0}\right\rangle=\langle K| \bar{b} \Gamma s\left|B_{s}^{0}\right\rangle\langle\mu \mu| \bar{\ell} \Gamma \ell|0\rangle
$$

Theory: Hadronic Uncertainties

$B \rightarrow K$ II
$B \rightarrow K$ II
Dominant uncertainties come from the form 3 factors: $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right), f_{T}\left(q^{2}\right)$

$$
\begin{gathered}
\langle B(p)| \bar{b} \gamma^{\mu} s|K(k)\rangle=\left(p^{\mu}+k^{\mu}-\frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} q^{\mu} f_{+}\left(q^{2}\right)+\frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} q^{\mu} f_{0}\left(q^{2}\right)\right. \\
\langle B(p)| \bar{b} \sigma^{\mu \nu} s|K(k)\rangle=\frac{i f_{T}}{m_{B}+m_{K}}\left[\left(p^{\mu}+k^{\mu}\right) q^{\nu}-\left(p^{\nu}+k^{\nu}\right) q^{\mu}\right] \\
* \quad C_{9,10}^{(\prime \prime} \rightarrow f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right), C_{S, P}^{(\prime)} \rightarrow f_{0} / m_{b} \quad C_{7}^{(\prime)} \rightarrow f_{T},
\end{gathered}
$$

$*$ Wide range of $q^{2}=\left[0,\left(m_{B}-m_{K}\right)^{2}\right]->$ Opportunities for different nonperturbative techniques: Lattice QCD - relative th. error 30%-> large room for improvement
! LATTICE QCD: only approach to compute the full ff basis at large q^{2} :
© $\mathrm{no} O\left(\Lambda / m_{b}\right)$ uncertainty from Isgur-Wise relation at LO!

Theory: Hadronic Uncertainties

$B \rightarrow K^{*} \gamma, B \rightarrow K^{*} I I$

$$
\begin{aligned}
& \left\langle V\left(p^{\prime}, \varepsilon\right)\right| \bar{q} \hat{\gamma}^{\mu} b|B(p)\rangle=\frac{2 i V\left(q^{2}\right)}{m_{B}+m_{V}} \epsilon^{\mu \nu \rho \sigma} \varepsilon_{\nu}^{*} p_{\rho}^{\prime} p_{\sigma} \\
& \left\langle V\left(p^{\prime}, \varepsilon\right)\right| \hat{q}^{\mu} \hat{\gamma}^{5} b|B(p)\rangle=2 m_{v} \sqrt{\left.A_{0}\left(q^{2}\right)\right) \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu}} \\
& +\left(m_{B}+m_{V} A_{1}\left(q^{2}\right)\left(\varepsilon^{* \mu}-\frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu}\right)\right. \\
& { }^{\prime} A_{2}\left(q^{2}\right), \varepsilon^{*} \cdot q=q\left(\left(p+p^{\prime}\right)^{\mu}-\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}} q^{\mu}\right) \\
& q^{\nu}\left\langle\boldsymbol{V}\left(\boldsymbol{p}^{\prime}, \varepsilon\right)\right| \bar{q} \hat{\sigma}_{\mu \nu} b|B(p)\rangle=2\left(\Gamma_{1}\left(q^{2}\right) \varepsilon_{\mu \rho \tau \sigma} \varepsilon^{* \rho} \boldsymbol{p}^{\tau} \boldsymbol{p}^{\prime \boldsymbol{\sigma}} \longrightarrow \begin{array}{c}
\operatorname{Br}\left(B \rightarrow K^{*} \gamma\right) \\
\text { one ff. at } q^{2}=0
\end{array}\right. \\
& q^{\nu}\left\langle V\left(p^{\prime}, \varepsilon\right)\right| \hat{q}_{\mu \nu} \hat{\gamma}^{5} b|B(p)\rangle=\left(i T_{2}\left(q^{2}\right)\left[\varepsilon_{\mu}^{*}\left(m_{B}^{2}-m_{V}^{2}\right)-\left(\varepsilon^{*} \cdot q\right)\left(p+p^{\prime}\right)_{\mu}\right]\right. \\
& 4 i T_{3}\left(q^{2}\right)\left(\varepsilon^{*} \cdot q\right)\left[q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{V}^{2}}\left(p+p^{\prime}\right)_{\mu}\right] \\
& \operatorname{Br}\left(B \rightarrow K^{*} l l \text {): } 7 \text { form factors in } Q C D\right.
\end{aligned}
$$

! LATTICE QCD: only approach to compute the full ff basis at large q^{2} :
© () no $O\left(\Lambda / m_{b}\right)$ uncertainty from Isgur-Wise relation at LO!

Studies of form-factor calculations on the Lattice:

$\mathrm{N}_{\mathrm{F}}=\mathbf{0}$: Quenched lattice QCD: relativistic fermions * D. Becirevic, N. Kosnik, F. M., E. Schneider, 2012	$f_{+}\left(q^{2}\right), f_{+}\left(q^{2}\right)$
$\mathbf{N}_{\mathrm{F}}=\mathbf{2 + 1}$ staggered fermions: NROCD	$f_{T}\left(q^{2}\right)$
$\begin{array}{cl} * \text { FNAL/MILC, } 2012 & \star \text { HPQCD, June } 2013 \\ & \star \text { Cambriage (prelims), } 2012 \end{array}$	
$\mathbf{N}_{\mathrm{F}}=\mathbf{0}$: Quenched lattice QCD: relativistic fermions * D. Becirevic, V. Lubicz \& F. M. 2007 \qquad	$T_{12}\left(q^{2}\right)$
$\mathbf{N}_{\mathrm{F}}=\mathbf{2 + 1}$ staggered fermions: NRQCD * Cambridge (prelims), 2012 \qquad	$\begin{gathered} T_{12}\left(q^{2}\right) \\ V\left(q^{2}\right), A_{012}\left(q^{2}\right) \end{gathered}$

© preliminary unquenched activities:
overall agreement between Quenched and LCSR
© q^{2} dependence: further complication with respect to $\boldsymbol{f}_{\boldsymbol{B}}$ or $\boldsymbol{B}_{\boldsymbol{B}}$
$B \rightarrow K \ell^{+} \ell^{-}$form factors

Lattice QCD:
f_{+}, f_{0}->F.M et al. 2012 $f_{T}->$ F.M et al. 2007

Light cone QCD sum rules [Ball'05, Khodjamirian'07,
'10]

1) Lattice QCD and LCSR - th. error at 15%
2) Lattice points at large q^{2}
q^{2}
3) Agreement with LQSR

Theory: Hadronic Uncertainties

$B \rightarrow K$ II

$B \rightarrow K$ II
Dominant uncertainties come from the 3 form factors: $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right), f_{T}\left(q^{2}\right)$

$$
\langle K| \bar{b} \gamma^{\mu} \gamma_{5} s|B\rangle \Leftrightarrow f_{+, 0}\left(q^{2}\right) \quad\langle K| \bar{b} \sigma^{\mu v} s|B\rangle \Leftrightarrow f_{T}\left(q^{2}\right)
$$

$$
\div \quad C_{9,10}^{(\prime)} \rightarrow f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right), C_{S, P}^{(\prime)} \rightarrow f_{0} / m_{b} \quad C_{7}^{(\prime)} \rightarrow f_{T}
$$

* Wide range of $q^{2}=\left[0,\left(m_{B}-m_{K}\right)^{2}\right]->$ Opportunities for different nonperturbative techniques: Lattice QCD and LCSR - relative error 30\%
$\operatorname{Br}\left(B \rightarrow K \ell^{+} \ell^{-}\right)_{\mathrm{SM}}=\left\{\begin{array}{ll}(7.5 \pm 1.4) \times 10^{-7} & \mathrm{LQCD}, \\ (6.8 \pm 1.6) \times 10^{-7} & \mathrm{LCSR} .\end{array}\right.$,

$$
\operatorname{Br}\left(B \rightarrow K \ell^{+} \ell^{-}\right)_{\mathrm{SM}}=(7.0 \pm 1.8) \times 10^{-7}
$$

still th. error large 30\%
Lattice average

BaBar'12

$\operatorname{Br}(B \rightarrow K I I)=(4.7 \pm 0.6) \times 10^{-7}$

New Physics: scalar scenario, $\mathbf{S M}+C_{s}\left(\bar{b}\left(1-\gamma_{5}\right) s\right) \bar{\ell} \ell+C_{s}^{\prime}\left(\bar{b}\left(1+\gamma_{5}\right) s\right) \bar{\ell} \ell$

- $B_{s} \rightarrow \mu^{+} \mu^{-} \longrightarrow\left|C_{S}-C_{S}^{\prime}\right|$

NO helicity suppression

- $B \rightarrow K \mu^{+} \mu^{-} \longrightarrow\left|C_{S}+C_{S}^{\prime}\right|$

- Constraints strongly depend on relative phase $\Delta \phi_{S}$ ($\mathrm{GREY}=B \rightarrow K \mu^{+} \mu^{-}, \mathrm{BLUE}=B_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$)

$$
\left|C_{S} \pm C_{S}^{\prime}\right|^{2}=\left|C_{S}\right|^{2}+\left|C_{S}^{\prime}\right|^{2} \pm 2\left|C_{S}\right|\left|C_{S}^{\prime}\right| \cos \left(\Delta \phi_{S}\right)
$$

New Physics: SM + $C_{s}\left(\bar{b}\left(1-\gamma_{5}\right) s\right) \bar{\ell} \gamma_{5} \ell+C_{P}\left(\bar{b} \gamma_{5}\left(1-\gamma_{5}\right) s\right) \bar{\ell} \gamma_{5} \ell$

- $B_{s} \rightarrow \mu^{+} \mu^{-} \longrightarrow\left|C_{S}\right|, \quad\left|C_{P}+2 m_{\ell} / m_{B} C_{10}^{\mathrm{SM}}\right|$
- $B \rightarrow K \mu^{+} \mu^{-} \longrightarrow\left|C_{S}\right|, \quad\left|C_{P}+\# m_{\ell} / m_{B} C_{10}^{\mathrm{SM}}\right|$
- Phase of C_{P} enters
$\left.\mathbf{(G R E Y}=B \rightarrow K \mu^{+} \mu^{-}, \mathrm{BLUE}=B_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$

Lowering th. error on B->KII 20\% smaller than now

New Physics: $\mathbf{S M}+C_{s}\left(\bar{b}\left(1-\gamma_{5}\right) s\right) \bar{l} \gamma_{5} \ell+C_{P}\left(\bar{b} \gamma_{5}\left(1-\gamma_{5}\right) s\right) \bar{\ell} \gamma_{5} \ell$

This "toy-scenario" would prefer nonzero C_{P}.

Lowering th. error on B->KII 20\% smaller than now

Observables in $B \rightarrow K^{*}$ ll process

$\bar{B}^{0} \rightarrow \bar{K}^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) \mu^{+} \mu^{-}$

=> Exploiting the decay $\mathrm{K}^{*} \rightarrow \mathrm{~K} \pi$. four-body analysis and access to the K^{*} polarisation:

$B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$Angular Decay Distribution

11 independent angular coefficients, $\|_{i}$, for $\bar{B}^{0} \rightarrow \bar{K}^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) \mu^{+} \mu^{-}$to measure!
q^{2} dep. unknown! from form factor!large uncertainty.

$B \rightarrow K^{*} l l$ process

large recoil region: $1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$
low recoil region: $q^{2}>14.2 \mathrm{GeV}^{2}$ 7 form factors in QCD: $\mathrm{V}\left(q^{2}\right), \mathrm{A}_{0,1,2}\left(q^{2}\right), \mathrm{T}_{1,2,3}\left(q^{2}\right)$
$\square m_{\mathrm{b}} \rightarrow \infty, E_{\mathrm{K}^{\star}} \rightarrow \infty$: low $q^{2} \sim 0$ \checkmark LEET + QCDF expansion:

Э 2 independent ffs: $V\left(q^{2}\right), A_{2}\left(q^{2}\right)_{1}^{\prime}$ () ffs by LCSR \rightarrow) at low $\boldsymbol{q}^{\mathbf{2}}$
\square Satisfactory scenario at large recoil: : tough to improve!
$\square m_{b} \rightarrow \infty, E_{K^{*}} \rightarrow 0$: large $q^{2} \sim m_{b}$
\checkmark HQET $+\mathrm{OPE} \rightarrow$ () O $\left(\Lambda^{2} / m_{b}{ }^{2}\right)$ uncertainties :)
\checkmark Isgur-Wise relations \rightarrow : $O\left(\Lambda / m_{b}\right)$ uncertainties $:$
© 3 independent ffs: $V\left(q^{2}\right), A_{1,2}\left(q^{2}\right)$
(: ffs by LCSR extrapolated $)$ at large q^{2}
© Unsatisfactory scenario at low recoil
;) But room to improve -> LATTICE QCD
$B \rightarrow K^{*} \|$ form factors from Cambridge/W\&M/Edinburgh.

Preliminary results on $B \rightarrow K^{*} \| V, A_{0}$, and A_{1} vs. $q^{2} / q_{\max }^{2}$. (by M . Wingate at lattice 2012)

Comparison of $B \rightarrow K^{*} l l$ form factor calculations

Conclusions

$\mathscr{Z} B r\left(B_{s} \rightarrow \mu \mu\right)$ is genuinely sensitive to (pseudo)scalar operators

$$
O_{S}^{\prime}=\left(\bar{b} P_{R, L} s\right) \bar{\ell} \ell \text {, and } O_{P}=\left(\bar{b} P_{R, L} s\right) \bar{\ell} \gamma_{5} \ell
$$

- Only one hadronic parameter enters, $f_{\text {Bs }}->$ small th. error
* $\operatorname{Br}(B \rightarrow K I I)$ \& $\operatorname{Br}\left(B \rightarrow K^{*} I I\right)$ is sensitive to (pseudo)scalar + vector operators (+ tensors)

Э hadronic parameters, $f_{0,+\tau}$ form factors -> large th. error
© With respect to $B_{\mathrm{s}} \rightarrow \mu \mu$, it probes the effective Hamiltonian in an "orthogonal" direction!
Improvement of form factors calculation would make the observables a high resolution probe of scalar operators
∂ with tensor operators tested by $A_{F B}\left(B \rightarrow K^{(*)} I\right)$
© with vector ones by $B \rightarrow X_{s} l l$ spectrum and transverse asymmetries in $B \rightarrow K^{*} \|$

Conclusions:

LATTICE QCD -> touchable progress in recent years:

- reliable unquenched simulations with pions close to the physical point $=>\mathrm{m}_{\pi}=156 \mathrm{MeV}$ (PACS-CS), $\mathrm{m}_{\pi}=190 \mathrm{MeV}$ (BMW)

Э $f_{K} / f_{\pi} \& f_{B}$ paradigma of present lattice progress!
Dromising studies at percent level on the way for B Physics ffs

Still a long work to assess 1\%-precision needed for B physics

- discretization errors: $\mathbf{a}^{*} \mathbf{m}_{B} \ll 1$
$\Rightarrow \mathbf{a} \sim 0.033 \mathrm{fm}(6 \mathrm{GeV}): \quad(\mathrm{a} \geq 0.07 \mathrm{fm})$
(2) finite volume effects: $\mathbf{L}^{*} \mathbf{m}_{\pi} \gg 1$

$$
\Rightarrow L \geq 4.5 \mathrm{fm}
$$

(3) chiral regime: $200 \leq \mathrm{m}_{\pi} \leq 300 \mathrm{MeV}$

courtesy of G. Herdoiza

