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b→s  transitions and Lattice QCD 

BIG News: November 2012, first evidence of Βs→µ +µ − from LHCb  

PANIC: the measured Brexp(Βs→µµ) = (3.2 ± 1.5)10−9 is close to the SM,    
     BrSM(Βs→µµ) = (3.3 ± 0.3)10-9 

NEWS: information from Β→Κµµ and Β→Κ∗µµ soon available BaBar & LHCb - 2012: 

 NO PANIC: Br(Β→Κ(∗)µµ) and Br(Βs→µµ) sensitive to different “b-> s couplings” 



Introduction:   

 What is Flavor Physics in the Standard Model ? 

 Status of Flavor Physics searches (Babar, Belle, Tevatron, LHcb):  

  -> Today, it is fair to say: small deviations from the SM expected ! 

 

Future perspectives: b->s modes “unexplored corner”   

 Tool: Eff. Hamiltonian for the full set of b->s processes! 

 BIG CHALLENGE: hadronic uncertainties => Lattice QCD        

goal: control QCD at low energy at a few percent, by numerical 
simulation 

 Potentialities of Β→Κµµ vs Βs→µµ 

Theory and Exp. information on Β→Κµµ is still poor!   

Complementary info also from Β→Κ∗µµ:  richer “b-> s couplings” 

 



Introduction:   

 What is Flavor Physics in the Standard Model? 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Flavour Physics: 

• Flavour Transitions: Weak interactions 
violate flavour: CKM matrix and CP 
violation 
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• Flavour Physics: 

• Flavour Transitions: Weak interactions 
violate flavour: CKM matrix and CP 
violation 

 

 

 

 

 

 

 

 

 

 
 

macroscopic picture 
(effective couplings after ewsb) 
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• Flavour Physics: as probe of new fundamental interactions 

• Flavour Transitions: Weak interactions 
violate flavour: CKM matrix and CP 
violation 
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microscopic picture? 
=>LHC job 

     the Higgs mechanism! 

2 open options:  Linear or Non-
Linear Higgs realisation? 

 

 

 
 

 

1HDM 
2HDM 
SUSY 

Techni C 
Little H. 
Extra D. 
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ATLAS-CMS (2012): Higgs evidence! 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Flavour Physics: as probe of new fundamental interactions 

• Flavour Transitions: Weak interactions 
violate flavour: CKM matrix and CP 
violation 
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microscopic picture? 
 

• ad hoc description in the SM 

 

 
1. not stable under radiative corrections;  
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many hints for Beyond SM physics: 
 
 gravity     ΛUV ~ 1019 TeV 
 neutrino oscillations       ΛUV ~ 1015 TeV   (see-saw) 
 relic density                      ΛWIMP ≤  1 TeV, Λstrong ≥ 1 TeV  
 matter/anti-matter asymmetries 

 

however no clear clues, because of large model dependence! 

BUT, as effective theory below ΜPlanck, how large is the SM ΛUV  cut-off? 
 

SuperKamiokande, WMAP … 

µ 

1TeV 

MZ 

SM 

MPlanck 

1015 TeV 

 Naturalness of Higgs sector would require         ΛUV  ≤  1 TeV 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to discover new particles at 1TeV to study flavour symmetries of n.d.f 

Two main ways to unravel New Physics 
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Introduction:   

 

Status of Flavor Physics searches (Babar, Belle, Tevatron, LHCb):  



Flavor Physics 2013 (bd, sd):  

 Spectacular confirmation of the CKM 
model as the dominant source of flavor 
and CP violation 

 Flavor-violating interactions encoded in 
Yukawa coupling to Higgs boson 

 Suppression of flavor-changing neutral 
currents (FCNCS) and CP violation in quark 
sector due to unitarity of CKM matrix, small 
mixing angles, and GIM mechanism. 

,( )= + + 
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I. Remarkable consistency between 

        tree-level processes  

  

 

 

and loop induced observables (FCNC) 

 

 

 

Flavour Physics and the quark sector in picture 

γ, α, Vub, Vcb 

sin(2β), ∆mds,  
εK, 

 b->sγ ... 

* * * 0ucd cb ud tb td bV V V VVV+ + =

II. Remarkable consistency between 

          CPV and CPC observables 

Nowadays, we have a good knowledge  of  the physical couplings of the quark 
Yukawa sector: (6 masses + 4 CKM angles) 



What about BSM effects? 

The absence of dominant New Physics signals in FCNCs implies 
strong constraints on flavour pattern BSM 

 b->s transitions -> possible “rich” ground for new test!  

Past studies are mostly on b->d (and s->d) FCNC transitions 

 Deal with QCD at low energy – no perturbation theory 



Future perspectives: FCNC b->s modes “unexplored corner”   



Br(Bs→µ+µ−) C9,10,S,P
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Br(Bd→Xsγ) |C7| 

th (7%): 

exp (7%): : 

Babar+Belle 1999-2007 

Tevatron 2006 

L LLx Lbo b s b sC µ µγ γ×

SM  
Ops.  

BSM  
Ops.  

Bd→K*l+l− C9,10,S,P,T
 

th (15-25%): exp (30%): 

Br(Bd→Kl+l−) C9,10,S,P,T
 

Br(Bd→K*γ) |C7|  

Br(Bd→Xsl+l−)  C7C9+ |C9| + |C10| + |C7| 

Babar+Belle 2007 

here, we expect 
theory and exp. 

progress 

LHCb 2012 
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Theory: Effective lagrangian at µ~mb 

Βs→µµ 

Β →Κ ll 

Ζ, γ 

Ζ, γ 

Ζ 

+ B →Xsγ  strongly constrains C7(8) 

Br∝ (C7+C7, C9+C9, C10+C10, 
                  CP,S+CP,S,CT ,CT5)  
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SM operators  

BSM operators 

( )( )2 L LO b c c sµ µγ γ=
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GOAL: calculate 
Matrix elements of 
2-quark operators  
between hadrons 

(decay constants & 
Form factors) 

Theory: Hadronic Uncertainties 
Br(Bs→µ+µ−) C9,10,S,P

 

Br(Bd→K(*)l+l−) C9,10,S,P,T
 

Charm Loops 

Under control (to some extent)  
at low and large q2, out of resonance region 

Khodjamirian’s talk 



Theory: Hadronic Uncertainties Βs→µµ 

0 0 0| | 0 | | | |eff s sb sB BLµµ µµΓ Γ〈 〉 = 〈 〉〈 〉 

0
50 | | s BsB ib s p fµµγ γ〈 〉 =

Βs→µµ 
Only one hadronic parameter: fBs 

( )234 10 MeVBsf = ±

Lattice: ETMC, MILC, HPQCD 

4% hadronic uncertainty 

Br(Bs→µµ)SM=(3.3 ± 0.3)× 10-9  (6.5%) 

0 2
5 /0 | | Bss bBs mifb B Msγ〈 〉 = −

Hadronic Uncertainties 
Lattice QCD 
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Theory: Hadronic Uncertainties 

Bsf

Βs→µµ 

0
50 | | s BsB ib s p fµµγ γ〈 〉 =

Βs→µµ 
Only one hadronic parameter: fBs 

( )234 10 MeVBsf = ±

Lattice: ETMC, MILC, HPQCD 

4% hadronic uncertainty 

Br(Bs→µµ)SM=(3.3 ± 0.3)× 10-9  (6.5%) 

0 2
5 /0 | | Bss bBs mifb B Msγ〈 〉 = −



 

Currently a-1<4 GeV, b quarks cannot be directly simulate at their physical mass 
due to large discretization errors (a mb« 1) 

 

  effective theories: like NRQCD action 
 simulate heavy quark in the charm region and extrapolate to the B + HQET. 

Challenge of B-physics: the multi scale-problem of QCD 



Comments: 

-  Discretized NRQCD action 

 larger set of 1/(amQ) corrections on the lattice w.r.t  the continuum 

O[αs
n/(amQ)] divergences to be subtracted to get the continuum limit 

Quite Sophisticated procedure!  

On the other hand, large experience from MILC/FNAL/HPQCD  

  Successful  strategy for fB  comparing with unquenched results 
from other approaches 



Theory: Hadronic Uncertainties 

Β →Κ ll Dominant uncertainties come from the form 3 
factors: f+(q2), f0(q2), fT(q2) 

 Wide range of q2=[0,(mB-mK)2] -> Opportunities for different nonperturbative 
techniques: Lattice QCD – relative th. error 30% -> large room for improvement 

   

Β →Κ ll 

0 0 0| | | | | |eff s sb sB BL Kµµ µµ ΓΓ〈 〉 = 〈 〉〈 〉 



Theory: Hadronic Uncertainties 

Β →Κ ll Dominant uncertainties come from the form 3 
factors: f+(q2), f0(q2), fT(q2) 

   

Β →Κ ll 

! LATTICE QCD: only approach to compute the full ff basis at large q2:  
 no O(Λ/mb) uncertainty from Isgur-Wise relation at LO!  

 Wide range of q2=[0,(mB-mK)2] -> Opportunities for different nonperturbative 
techniques: Lattice QCD – relative th. error 30% -> large room for improvement 



  

Br(B→Κ∗γ )  
one ff. at q2=0 

Br(B→Κ∗ll ): 7 form factors in QCD 
! LATTICE QCD: only approach to compute the full ff basis at large q2:  

    no O(Λ/mb) uncertainty from Isgur-Wise relation at LO!  

Theory: Hadronic Uncertainties B→Κ∗γ , B→Κ∗ll    



Studies of form-factor calculations on the Lattice: 

B→Κll  
NF=0: Quenched lattice QCD: relativistic fermions 

 D. Becirevic, N. Kosnik, F. M., E. Schneider, 2012 

NF=2+1 staggered fermions: NRQCD 

 FNAL/MILC, 2012 
 Cambridge (prelims), 2012 

B→Κ∗ll  NF=0: Quenched lattice QCD: relativistic fermions 
 D. Becirevic, V. Lubicz & F. M. 2007 

NF=2+1 staggered fermions: NRQCD 

 Cambridge (prelims), 2012 

f+(q2), f+(q2) 
fT(q2) 

T12(q2) 

T12(q2) 
V(q2), A012(q2) 

 preliminary unquenched activities:  
   overall agreement between Quenched and LCSR 

 q2 dependence: further complication with respect to fB  or BB 

 HPQCD, June 2013 



Light cone QCD 
sum rules [Ball’05, 
Khodjamirian’07, 
‘10] 

Lattice QCD: 
f+,f0 ->F.M et al. 2012 
fT ->  F.M et al. 2007 

1) Lattice QCD and LCSR – th. error at 15%  
2) Lattice points at large q2 

3) Agreement with LQSR  helpful the HQET ffs at q2
max 



Theory: Hadronic Uncertainties 

Β →Κ ll Dominant uncertainties come from the 3 form 
factors: f+(q2), f0(q2), fT(q2) 

5
2

,0| )| (BsK b f qµγ γ +〈 〉 ⇔ 2| )| (T
v BsK b f qµσ〈 〉 ⇔

 Wide range of q2=[0,(mB-mK)2] -> Opportunities for different nonperturbative 
techniques: Lattice QCD and LCSR – relative error 30% 

   

Lattice average 

BaBar’12 
Br(B→ K ll) = (4.7±0.6) × 10-7 

LHCb’12 
Br(Β+→ K+µµ) = (3.1±0.7) × 10-7 

still th. error large 30% 

Β →Κ ll 



New Physics: scalar scenario,SM +  ( )( ) ( )( )5 51 1S Sb s b sC Cγ γ′+− + 



New Physics: SM +  ( )( ) ( )( )5 55 551 1S PC Cb s b sγ γ γγ γ− −+   



Lowering th. error on B->Kll 20% smaller than now   

New Physics: SM +  ( )( ) ( )( )5 55 551 1S PC Cb s b sγ γ γγ γ− −+   



Lowering th. error on B->Kll 20% smaller than now   

New Physics: SM +  ( )( ) ( )( )5 55 551 1S PC Cb s b sγ γ γγ γ− −+   



Observables in B→Κ∗ll process  

=> Exploiting the decay K*→ Kπ: four-body analysis 
and access to the K* polarisation: 



11 independent angular coefficients, li, for                                        to measure! 

q2 dep. unknown! 
from form factor!large uncertainty. 



B→Κ∗ll process  

large recoil region: 1GeV2 <q2<6 GeV2 low recoil region: q2>14.2 GeV2 

7 form factors in QCD: V(q2), A0,1,2(q2),T1,2,3(q2) 

dΓ
(B

→
Κ

∗ ll
)/d

q2 

Isgur-Wise relations→  O(Λ/mb) uncertainties  
 2 independent ffs: V(q2), A2(q2)   

 ffs by LCSR →  at low q2 

 Satisfactory scenario at large 
recoil:  tough to improve! 
 

 mb→∞, EK*→0: large q2~mb
 

HQET + OPE→  O(Λ2/mb
2) uncertainties   

 3 independent ffs: V(q2), A1,2(q2)   
 ffs by LCSR extrapolated  at large q2 

 Unsatisfactory scenario at low recoil 
 But room to improve -> LATTICE QCD  

 mb→∞, EK*→∞: low q2~0 

LEET + QCDF expansion: 



A0 

V 

A1 

 Only stats errors (at 5%)! 
 Promising study 



Comparison of B→Κ∗ll form factor calculations   
Green band 
FF from data + QCDF 
Hambrock & Hiller ‘11  

Quenched QCD  

Unquenched QCD  LCSR 



Conclusions 

 Br(Βs→µµ) is genuinely sensitive to (pseudo)scalar operators 

( ) ( ), 5,,  and  S PR L R LbP s bO O P s γ′ = =  

 Only one hadronic parameter enters, fBs -> small th. error 

 Br(Β→Κll) & Br(Β→Κ∗ll) is sensitive to (pseudo)scalar + vector 
operators (+ tensors) 

 With respect to Βs→µµ, it probes the effective Hamiltonian in an  
“orthogonal” direction! 

 Improvement of form factors calculation would make the observables 
a high resolution probe of scalar operators  

 with tensor operators tested by AFB(Β→Κ(∗)ll) 

 with vector ones by Β→Xsll spectrum and transverse asymmetries in 
Β→Κ∗ll 

 hadronic parameters, f0,+T form factors -> large th. error 



Still a long work to assess 1%-precision needed for B physics  

Conclusions: 

 

 reliable unquenched simulations with pions close to the 
physical point => mπ =156 MeV (PACS-CS), mπ =190 MeV (BMW)  

LATTICE QCD -> touchable progress in recent years: 

 

 fK/fπ  & fB  paradigma of present lattice progress! 
 

 promising studies at percent level on the way for B Physics ffs 
  

  

  discretization errors:   a*mΒ << 1 
           

    => a~ 0.033 fm (6 GeV):   (a 0.07 fm) 
  

  finite volume effects:  L*mπ >> 1                 
  
          => L  4.5 fm                (L  3 fm) 
  

 chiral regime: 200 ≤ mπ ≤ 300 MeV  
 

courtesy of G. Herdoiza 
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