Determination of Low-Energy Constants of Wilson^{*} Chiral Perturbation Theory

(*) [K. G. Wilson, Phys. Rev. D10, 2445 (1974)]

Gregorio Herdoíza

Johannes Gutenberg Universität Mainz

with K. Cichy, K. Jansen, C. Michael, K. Ottnad, C. Urbach

IV Workshop on Fermions and Extended Objects on the Lattice

Benasque, June 20, 2013

actions Aoki W $_{\chi}$ PT W $_{6.8}^{\prime}$ ov/Wtm MA $_{\chi}$ PT D $_{W}$ Conclusions

chiral extrapolation and FSE

Example : charge radius of the nucleon

[[]D. Renner, QNP 2012]

actions Aoki W $_{\chi}$ PT W $_{6.8}'$ ov/Wtm MA $_{\chi}$ PT D $_W$ Conclusions

continuum limit scaling

► fix the "physical situation" at a reference point:

i.e. for every value of g_0 , fix $(L\rho)|_{\rm ref}$, $(m_R^{(f)}/\rho)|_{\rm ref}$

• study the dependence of $R = \frac{Q}{\rho}$ on the lattice spacing via $a \rho$

$$R_{\rm L} = R_{\rm cont} + \tilde{\Lambda}^2 (\alpha \rho)^2 + \dots$$
$$R_{\rm L} = R_{\rm cont} + \Lambda^2 \alpha^2 + \dots$$

actions Aoki W $_\chi$ PT W $_{6.8}'$ ov/Wtm MA $_\chi$ PT D $_W$ Conclusions

continuum limit scaling

► fix the "physical situation" at a reference point:

i.e. for every value of g_0 , fix $(L\rho)|_{\rm ref}$, $(m_R^{(f)}/\rho)|_{\rm ref}$

• study the dependence of $R = \frac{Q}{\rho}$ on the lattice spacing via $\alpha \rho$

$$R_{\rm L} = R_{\rm cont} + \tilde{\Lambda}^2 (\alpha \rho)^2 + \dots$$
$$R_{\rm L} = R_{\rm cont} + \Lambda^2 \alpha^2 + \dots$$

example :

- $N_{\rm f} = 2$ Wilson twisted mass sea quarks $m_{\ell} = m_u = m_d$
- tree level Symanzik (tlSym) improved gauge action $\beta = 3.80, 3.90, 4.05, 4.20$
- scaling variable : $\rho = r_0^{-1}$
- measurements of $aO = am_{\pi}$ and r_0/a
- ► reference point : $L\rho = L/r_0 \approx 4.5$ $m_{\ell}^{\rm R}/\rho = m_{\ell}^{\rm R}r_0 \approx 0.11$

Benasque, 20-06-13

actions Aoki W $_{\chi}$ PT W $_{6.8}'$ ov/Wtm MA $_{\chi}$ PT D $_W$ Conclusions

continuum limit scaling

► fix the "physical situation" at a reference point:

i.e. for every value of g_0 , fix $(L\rho)|_{\rm ref}$, $(m_R^{(f)}/\rho)|_{\rm ref}$

• study the dependence of $R = \frac{Q}{\rho}$ on the lattice spacing via $\alpha \rho$

 $O_{\rm L} = O_{\rm cont} + \Lambda^2 a^2 + \dots$

illustration :

•
$$O = m_{\ell}^{R}$$
: $O_{cont}^{R} \approx 4 \,\text{MeV}$

► What value of *a* is needed to have $O(a^2)$ effects at 5% level? for $\Lambda \sim 0.3 \text{ GeV} \implies a \sim 0.02 \text{ fm} \dots$...topology freezing

► Then, what level of cutoff effects are expected at $a \approx 0.075$ fm? for $\Lambda \sim 0.3$ GeV : $a^2 \Lambda^3 \sim 4$ MeV $\rightarrow \sim 100\%$ O(a^2) effects actions Aoki W $_{\chi}$ PT W $_{6.8}^{\prime}$ ov/Wtm MA $_{\chi}$ PT D $_{W}$ Conclusions

continuum limit scaling : $N_{\rm f} = 2$

plaq. gauge action + Wilson NP c_{sw}

tISym gauge action + Wilson twisted mass

lattice actions

$$S = S_{g} + S_{f}$$

gauge action

$$S_{g} = \frac{\beta}{3} \sum_{x} \left[(1 - 8b_{1}) \sum_{\mu < \nu}^{4} \left(1 - \operatorname{ReTr} \left(U_{x,\mu,\nu}^{1 \times 1} \right) \right) + b_{1} \sum_{\mu \neq \nu}^{4} \left(1 - \operatorname{ReTr} \left(U_{x,\mu,\nu}^{1 \times 2} \right) \right) \right]$$

- Wilson plaquette: $b_1 = 0$
- tlSym: $b_1 = -1/12$ $(N_f = 2)$
- Iwasaki: $b_1 = -0.33$ $(N_f = 2 + 1 + 1)$

actions Aoki W χ PT W'_{6.8} ov/Wtm MA χ PT D_W Conclusions Gauae MA OS

Wilson twisted-mass LQCD

Lattice fermionic action for the light u, d quark doublet

[ALPHA, Frezzotti, Grassi, Sint, Weisz, 1999]

 $N_{\rm f} = 2$

$$S_{F}^{\text{tmL}} = a^{4} \sum_{x} \bar{\chi}(x) \Big[\gamma_{\mu} \tilde{\nabla}_{\mu} - r \frac{a}{2} \nabla_{\mu}^{*} \nabla_{\mu} + m_{0} + i \gamma_{5} \tau_{3} \mu_{\ell} \Big] \chi(x)$$

axial rotation of the quark fields:

$$\psi \rightarrow \chi = \exp\left[-i\frac{\omega}{2}\gamma_5\tau_3\right]\psi$$
, $\bar{\psi} \rightarrow \bar{\chi}' = \bar{\psi}\exp\left[-i\frac{\omega}{2}\gamma_5\tau_3\right]$

$$\begin{array}{ll} \text{twist angle} &: & \text{tan}(\omega) = \mu_{\ell} / (m_0 - m_{\text{cr}}(r)) \\ \\ \text{quark mass} &: & M_{\text{R}} = \sqrt{\mu_{\ell,\text{R}}^2 + m_{\text{R}}^2} \end{array}$$

• maximal twist: $\omega = \pi/2$

- untwisted quark mass: $m_q = m_0 m_{cr} = 0$ twisted mass: $\mu_\ell = M_0$

$N_{\rm f} = 2 + 1 + 1$

- Wilson twisted-mass action at maximal twist
 - light mass degenerate $\bar{\psi}_{\ell} = (u, d)$ doublet : $N_{\rm f} = 2$

$$S_{\rm im}^\ell = \bar{\psi}_\ell \left[\gamma_\mu \tilde{\nabla}_\mu - i \gamma_5 \tau_3 \left(-r \frac{\sigma}{2} \nabla^*_\mu \nabla_\mu + m_0 \right) + \mu_\ell \right] \psi_\ell$$

• heavy mass non-degenerate
$$\bar{\psi}_h = (c, s)$$
 pair : $N_{\rm f} = 1 + 1$

$$S_{\rm tm}^h = \bar{\psi}_h \left[\gamma_\mu \tilde{\nabla}_\mu - i \gamma_5 \tau_1 \left(-r \frac{\sigma}{2} \nabla^*_\mu \nabla_\mu + m_0 \right) + \mu_\sigma + \mu_\delta \tau_3 \right] \psi_h$$

$N_{\rm f} = 2 + 1 + 1$

Wilson twisted-mass action at maximal twist

▶ light mass degenerate
$$\bar{\psi}_{\ell} = (u, d)$$
 doublet : $N_{\rm f} = 2$

$$S_{\rm tm}^{\ell} = \bar{\psi}_{\ell} \left[\gamma_{\mu} \tilde{\nabla}_{\mu} - i \gamma_5 \tau_3 \left(-r \frac{\sigma}{2} \nabla_{\mu}^* \nabla_{\mu} + m_0 \right) + \mu_{\ell} \right] \psi_{\ell}$$

• heavy mass non-degenerate $\bar{\psi}_h = (c, s)$ pair : $N_{\rm f} = 1 + 1$

$$S_{\rm tm}^h = \bar{\psi}_h \left[\gamma_\mu \tilde{\nabla}_\mu - i \gamma_5 \tau_1 \left(-r \frac{a}{2} \nabla_\mu^* \nabla_\mu + m_0 \right) + \mu_\sigma + \mu_\delta \tau_3 \right] \psi_h$$

properties :

automatic O(a) improvement of physical observables at maximal twist

[Frezzotti & Rossi, 2003]

• in the light-sector, μ_{ℓ} acts as an infrared cutoff

drawbacks :

- $O(a^2)$ breaking of parity and isospin : $m_{\pi^{\pm}}$ and m_{π^0}
- O(a²) contamination from mixing of different parity/flavour states : charm sector

$N_{\rm f} = 2 + 1 + 1$

Wilson twisted-mass action at maximal twist

light mass degenerate
$$\[Vec{\psi}_\ell = (u, d)\]$$
 doublet : $N_{
m f} = 2$

$$S_{\rm tm}^{\ell} = \bar{\psi}_{\ell} \left[\gamma_{\mu} \tilde{\nabla}_{\mu} - i \gamma_5 \tau_3 \left(-r \frac{a}{2} \nabla_{\mu}^* \nabla_{\mu} + m_0 \right) + \mu_{\ell} \right] \psi_{\ell}$$

• heavy mass non-degenerate
$$\bar{\psi}_h = (c, s)$$
 pair : $N_{\rm f} = 1 + 1$

$$S_{\rm tm}^{\rm h} = \bar{\psi}_{\rm h} \left[\gamma_{\mu} \tilde{\nabla}_{\mu} - i \gamma_5 \tau_1 \left(-r \frac{a}{2} \nabla_{\mu}^* \nabla_{\mu} + m_0 \right) + \mu_{\sigma} + \mu_{\delta} \tau_3 \right] \psi_{\rm h}$$

renormalised quark masses :

$$\hat{m}_{\ell} = 1/Z_{\rm P} \mu_{\ell}$$

$$\hat{m}_{\delta} = 1/Z_{\rm P} \left(\mu_{\sigma} - Z_{\rm P}/Z_{\rm S} \mu_{\delta} \right)$$

$$\hat{m}_{c} = 1/Z_{\rm P} \left(\mu_{\sigma} + Z_{\rm P}/Z_{\rm S} \mu_{\delta} \right)$$

lattice actions

Sheikholeslami-Wohlert term : C_{SW}

smearing in the covariant derivative : reduce the short-distance roughness of gauge fields

stout smearing

[Morningstar & Peardon, hep-lat/0311018]

$$U'_{\mu}(x) = e^{iQ_{\mu}(x,\rho)} U_{\mu}(x)$$

- $Q_{\mu}(x, \rho)$ built from staples traceless, Hermitian
- differentiable \rightsquigarrow HMC
- ► HEX smearing
- iterations : extends the coupling of fermions to gauge links over a larger region

[Hasenfratz & Knechtli, hep-lat/0103029]

mixed actions

- different lattice fermion actions in sea and valence
- eigenvalues and eigenvectors of D_{sea} and D_{val} differ
- unitarity is broken and recovered only in the continuum limit
- study unitarity violations :
 - continuum-limit scaling
 - χPT for mixed actions

[Bär, Rupak, Shoresh, 2003]

motivation :

- profit from better properties of valence action (symmetries)
- many examples
 - Ginsparg-Wilson valence quarks
 - variants of same type of action in sea and valence:

Osterwalder-Seiler valence quarks on twisted-mass sea ...

mixed action: OS valence quarks

- Osterwalder-Seiler (OS) valence quarks are the building blocks of twisted-mass valence quarks at maximal twist (Mtm)
- individual valence flavour χ_f

$$S_{\rm OS} = \bar{\chi}_f(x) \left[\gamma_\mu \tilde{\nabla}_\mu + \left(-\frac{a}{2} \nabla^*_\mu \nabla_\mu + m_{\rm cr}(r=1) \right) + i\mu_f \gamma_5 r_f \right] \chi_f(x)$$

[Osterwalder & Seiler, 1978]

- Mtm corresponds to a pair of OS fermions with $+r_f$ and $-r_f$ [OS, Mtm]
- benefits :
 - O(a) improvement with the same κ_{crit} as Mtm [Frezzotti & Rossi, 2004]
 - Mtm and OS fermions share the same renormalisation factors : matching is simplified
 - B_K : O(a) improved and absence of mixing due to breaking of chiral symmetry

$N_{\rm f}=2$: mixed action OS valence quarks

continuum limit scaling

[ETMC, 2010]

phase structure of Wilson fermions

 (a, m_q)

choice of the gauge action

Wilson-type fermions have a non-trivial phase structure

[Aoki; Sharpe, Singleton]

- The strength of the phase transition depends on details of the action
 - gluonic: b₁
 - fermionic: c_{sw}, smearing

Implications

- For a given *a*, simulation is safe if $m_q \gg m_q^{(\rm end-point)} \sim a^2 \Lambda^3$
- Simulations at the physical point require sufficiently small a

phase structure : Aoki phase $c_2 > 0$

[S. Aoki, 1984]

 M_{π^0}

[Sharpe & Wu, 0407025]

Benasaue, 20-06-13

Determination of LECs of W_YPT

phase structure : first-order scenario $c_2 < 0$

[Sharpe, Singleton, 1998]

 M_{π^0}

[Sharpe & Wu, 0407025]

phase structure : first-order scenario $c_2 < 0$

PCAC mass, mu=0,.01,.015,.025

[Sharpe, 0509009]

choice of the gauge action : am_{PCAC} vs. $1/2\kappa$

Benasque, 20-06-13

G. Herdoíza

Determination of LECs of $W_X PT$

 $N_{\rm f} = 2 + 1 + 1$

Wilson χPT

Partially Quenched Wilson χ PT (PQW χ PT)

power counting : $m_0 \sim \mu_\ell \sim a^2 \Lambda^3$

LO:
$$m_0$$
, μ_ℓ , p^2 , a^2

chiral Lagrangian

$$\begin{split} \mathcal{L}_{\chi} &= \frac{f^2}{8} \operatorname{Str} \left(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger} \right) - \frac{f^2 B_0}{4} \operatorname{Str} \left(M^{\dagger} \Sigma + \Sigma^{\dagger} M \right) \\ &- \hat{\alpha}^2 \, W_{6}' \, \left[\operatorname{Str} \left(\Sigma + \Sigma^{\dagger} \right) \right]^2 - \hat{\alpha}^2 \, W_{7}' \, \left[\operatorname{Str} \left(\Sigma - \Sigma^{\dagger} \right) \right]^2 \\ &- \hat{\alpha}^2 \, W_{8}' \, \operatorname{Str} \left(\Sigma^2 + \left[\Sigma^{\dagger} \right]^2 \right) \end{split}$$

[Sharpe, Singleton, 1998; Sharpe & Wu; Münster; Scorzato, 2004]

- $\blacktriangleright M = m_0^{\rm R} + i\tau_3 \mu_\ell^{\rm R} \qquad \qquad \hat{a} = 2W_0 a$
- ▶ Identify observables which depend on $W'_{6,8}$...

Partially Quenched Wilson χ PT (PQW χ PT)

power counting : $m_0 \sim \mu_\ell \sim a^2 \Lambda^3$

LO: m_0 , μ_ℓ , p^2 , a^2

pseudoscalar meson masses at LO

$$\begin{split} & \mathcal{M}^2_{\pi^{\pm}} \;=\; 2B_0 \mu_\ell \;, & \text{[maximal twist]} \\ & \mathcal{M}^2_{\pi^0} \;=\; 2B_0 \mu_\ell - 8\sigma^2 \left(2w_6' + w_8'\right), \\ & \mathcal{M}^2_{\pi^{(0,c)}} \;=\; 2B_0 \mu_\ell - 8\sigma^2 \; w_8' \end{split}$$

[Sharpe & Wu; Münster; Scorzato, 2004; Hansen & Sharpe, 2011]

 $\hat{a} = 2W_0a$

► c₂

$$M_{\pi^0}^2 - M_{\pi^{\pm}}^2 = -a^2 \, \frac{128 \, W_0^2}{f^2} \left(2W_6' + W_8' \right) \, = \, 4c_2 a^2$$

$$w'_{k} = \frac{16W_{0}^{2}W'_{k}}{f^{2}} \qquad (k = 6, 8)$$

contraints on Wilson LECs

For any flavour non-singlet meson X : $|C_{\chi}^{(2)}| \leq |C_{\pi}^{(2)}| \rightsquigarrow M_{\chi} \geq M_{\pi}$

[Weingarten, 1983]

therefore $M_{\pi^{(0,c)}} \ge M_{\pi^{\pm}} \quad \rightsquigarrow \quad W_8' < 0$

[Hansen & Sharpe, 1111.2404]

• Consistent with γ_5 -Hermiticity argument in ϵ -regime

[P. Damgaard, K. Splittorff and J. Verbaarschot, 1001.2937]
[G. Akemann, P. Damgaard, K. Splittorff and J. Verbaarschot, 1012.0752]

 \blacktriangleright $N_{\rm f}=0$ \rightsquigarrow Aoki phase

Wilson LECs $W'_{6,8}$ & c_2

$M_{\rm PS}$: $W_{6,8}'$

• lattice action : Wtm $N_f = 2 + 1 + 1 + 1$ lwasaki gauge action

[G.H., K. Jansen, C. Michael, K. Ottnad, C. Urbach, 1303.3516]

$$M_{\pi^{\pm}}^2 - M_{\pi^{(0,c)}}^2 = 8a^2 w_8'; \qquad \qquad \frac{1}{2} \left(M_{\pi^{(0,c)}}^2 - M_{\pi^0}^2 \right) = 8a^2 w_6'$$

signs of $W'_{6,8}$: Consistent with [P. Damgaard, K. Splittorff and J. Verbaarschot, 1001.2937] [G. Akemann, P. Damgaard, K. Splittorff and J. Verbaarschot, 1012.0752] [M. Hansen and S. Sharpe, 1111.2404] [M. Kieburg, K. Splittorff and J. Verbaarschot, 1202.0620] $M_{\rm PS}: W_{6,8}'$

• lattice action : Wtm $N_{\rm f} = 2 + 1 + 1$ + Iwasaki gauge action

 $(M_{\pi^\pm} r_0)^2 \approx 0.55$

[G.H., K. Jansen, C. Michael, K. Ottnad, C. Urbach, 1303.3516]

•

$$M_{\pi^{\pm}}^2 - M_{\pi^{(0,c)}}^2 = 8a^2 w_8'; \qquad \qquad \frac{1}{2} \left(M_{\pi^{(0,c)}}^2 - M_{\pi^0}^2 \right) = 8a^2 w_6'$$

$W\chi PT LECs : c_2$

• lattice action : Wtm $N_f = 2 + 1 + 1 + 1$ lwasaki gauge action

 $(M_{\pi^{\pm}}r_0)^2\approx 0.55$

[G.H., K. Jansen, C. Michael, K. Ottnad, C. Urbach, 1303.3516]

$$M_{\pi^0}^2 - M_{\pi^\pm}^2 = -a^2 \, \frac{128 \, W_0^2}{f^2} \, (2W_6' + W_8') \, = \, 4c_2 a^2$$

data is consistent with $c_2 < 0$

[Sharpe, Singleton, 1998]

Benasque, 20-06-13

W χ PT LECs : $W'_{6,8}$, c_2

lattice action : Wtm $N_{\rm f} = 2 + 1 + 1 + 1$ wasaki gauge action

	$w_{8}' r_{0}^{4}$	W ₈	$W_8'(r_0^6 W_0^2)$
syst.	-2.9(4)	$-[571(32) \text{ MeV}]^4$	-0.0138(22)
	$w_{6}' r_{0}^{4}$	W ₆ '	$W_{6}'(r_{0}^{6}W_{0}^{2})$
syst.	+1.7(7)	$+[502(58) { m MeV}]^4$	+0.0082(34)
	$c_2 r_0^4$	C2	$-2(2W_{6}'+W_{8}')(r_{0}^{6}W_{0}^{2})$
lin.	-1.1(2)	$-[444(28) { m MeV}]^4$	-0.0050(10)
cst.	-2.3(1)	$-[541(24) \mathrm{MeV}]^4$	-0.0111(10)

 $M_{\rm PS}: W_{6,8}'$

• lattice action : Wtm $N_{\rm f} = 2$ + tlSym gauge action

[G.H., K. Jansen, C. Michael, K. Ottnad, C. Urbach, 1303.3516]

$$M_{\pi\pm}^2 - M_{\pi^{(0,c)}}^2 = 8a^2 w_8'; \qquad \qquad \frac{1}{2} \left(M_{\pi^{(0,c)}}^2 - M_{\pi^0}^2 \right) = 8a^2 w_8';$$

 $M_{\rm PS}: W_{6,8}'$

• lattice action : Wtm $N_{\rm f} = 2$ + tlSym gauge action

 $(M_{\pi^{\pm}}r_0)^2\approx 0.55$

[G.H., K. Jansen, C. Michael, K. Ottnad, C. Urbach, 1303.3516]

$$M_{\pi^{\pm}}^2 - M_{\pi^{(0,c)}}^2 = 8a^2 w_8'; \qquad \qquad \frac{1}{2} \left(M_{\pi^{(0,c)}}^2 - M_{\pi^0}^2 \right) = 8a^2 w_6'$$

W χ PT LECs : c_2

• lattice action : Wtm $N_{\rm f} = 2$ + tlSym gauge action

[G.H., K. Jansen, C. Michael, K. Ottnad, C. Urbach, 1303.3516]

$$M_{\pi^0}^2 - M_{\pi^{\pm}}^2 = -\sigma^2 \, \frac{128 \, W_0^2}{f^2} \, (2W_6' + W_8') = \, 4c_2 \sigma^2$$

data is consistent with $c_2 < 0$... but mass dependence is difficult to address

Benasque, 20-06-13

actions Aoki W $_{\chi}$ PT $W_{6.8}'$ ov/Wtm MA $_{\chi}$ PT D_{W} Conclusions

W χ PT LECs : $W'_{6,8}$, c_2

lattice action : Wtm $N_{\rm f} = 2$ + tlSym gauge action

	,	
$w_8' r_0^4$	W ₈	$W_8'(r_0^0 W_0^2)$
-2.5(4)	$-[552(025) \mathrm{MeV}]^4$	-0.0119(17)
$w_{6}' r_{0}^{4}$	w ₆ '	$W_6'(r_0^6 W_0^2)$
+1.0(8)	$+[443(138) { m MeV}]^4$	+0.0049(38)

actions Aoki W χ PT $W'_{6,8}$ ov/Wtm MA χ PT D_{W} Conclusions

Wtm with clover term : $N_{\rm f} = 0$

[ALPHA, P. Dimopoulos, H. Simma, A. Vladikas, 0902.1074]

observed for $N_{\rm f} = 0$

▶ tune c_{SW} to minimize the (connected) mass splitting?

•
$$N_{\rm f} = 0 \ \beta = 6.0, \ r_0/a \approx 5.4, \ a\mu_q = 0.0135$$

$$(M_{\pi\pm}^2 - M_{\pi^{(0,c)}}^2) r_0^2 = \Lambda_c (a/r_0)^2$$

CSW	κ	۸c	ref.
0	0.157409	-24	$[oldsymbol{\chi}_{\mathrm{L}}^{\mathrm{F}}$, 2005]
1	0.145550	-11	[P. Dimopoulos, G.H.]
1.769	0.135196	-7	[ALPHA, 2009]

actions Aoki W χ PT W'₆ a ov/Wtm MA χ PT D_W Conclusions

$W\chi PT LECs : W'_{8,6}$

mass-splittings related to W'_8 (left) and W'_6 (right)

[G.H., K. Jansen, C. Michael, K. Ottnad, C. Urbach, 1303.3516]

$W\chi PT LECs : c_2$

- lattice action : $N_f = 2$ Wilson NP O(a) improved + Wilson plaquette gauge action
- S-wave π - π scattering length, I = 2

$$\begin{split} M_{\pi} a_0^2 \ = \ - \ \frac{M_{\pi}^2}{16\pi F_{\pi}^2} \left[1 + \frac{3M_{\pi}^2 + 12c_2\alpha^2}{32\pi^2 F_{\pi}^2} \ln \frac{M_{\pi}^2}{\tilde{\mu}_2^2} + O(\alpha^2, m) \right] \\ - \ \frac{2c_2\alpha^2}{16\pi F_{\pi}^2} \left[1 + \frac{11c_2\alpha^2 - 2M_{\pi}^2}{16\pi^2 F_{\pi}^2} \ln \frac{M_{\pi}^2}{\tilde{\mu}_3^2} + O(\alpha^2, m) \right] \end{split}$$

[ALPHA, Bernardoni, Bulava, Sommer, 1111.4351]

 $a = 0.065 \,\mathrm{fm}: r_0^2 \,a^2 \,c_2 \approx 0.05 \quad \rightsquigarrow \quad c_2 \approx [520 \,\mathrm{MeV}]^4$

extension to PQ case [Hansen & Sharpe, 1112.3998]

Benasque, 20-06-13

overlap valence quarks on

 $N_{\rm f}=2~$ Wilson twisted mass

actions Aoki W $_{\chi}$ PT W'_{6.8} ov/Wtm MA $_{\chi}$ PT D_W Conclusions ensembles

$N_{\rm f}=2$ ensembles

ETMC ensembles

- tree-level Symanzik improved gauge action
- $\alpha = \{0.045, 0.055, 0.070, 0.085\}$ fm $\beta = \{4.35, 4.20, 4.05, 3.90\}$
- $M_{\rm PS} = \{350, 440\}$ MeV

Wilson twisted-mass at maximal twist
 [ALPHA, Frezzotti et al., 2001; Frezzotti & Rossi, 2003]

• L = {1.35, 1.75, 2.05} fm

actions Aoki W $_{\chi}$ PT W $_{6.8}'$ ov/Wtm MA $_{\chi}$ PT D $_{W}$ Conclusions

ensembles

Neuberger overlap valence fermions

Massive Neuberger-Dirac Operator

$$D_{ov} = \frac{1}{a} \left(1 - \frac{am_q}{2} \right) \left(1 - A(A^{\dagger}A)^{-1/2} \right) + m_q$$

$$A = (1+s) - aD_W, \quad |s| < 1$$

• HYP-smearing in A

- Ginsparg-Wilson relation
- O(a) improved
- exact chiral zero-modes

• locality :
$$||D_{ov}|| \propto e^{-\rho ||x||}$$

 $a = \{0.045, 0.055, 0.070, 0.085\}$ fm

[K. Cichy, V. Drach, E. García Ramos, G.H., K. Jansen, 1211.1605]

determination of LECs of $MA\chi PT$

$W_{M} = W'_{6,8}$

mixed action PQ χ PT (MAPQ χ PT)

power counting : $m_q \sim \mu_q \sim a^2$

LO:
$$m_q$$
, μ_q , p^2 , a^2

- mixed action : overlap/Wtm
- $\mathcal{O}(a^2)$ contribution to the chiral Lagrangian

$$\mathcal{L}\left[a^{2}\right] = -\hat{a}^{2} W_{6}^{\prime} \langle P_{3} \Sigma^{\dagger} + \Sigma P_{5} \rangle^{2} - \hat{a}^{2} W_{7}^{\prime} \langle P_{5} \Sigma^{\dagger} - \Sigma P_{5} \rangle^{2} - \hat{a}^{2} W_{8}^{\prime} \langle P_{5} \Sigma^{\dagger} P_{5} \Sigma^{\dagger} + \Sigma P_{5} \Sigma P_{5} \rangle$$
$$- \hat{a}^{2} W_{M} \left\langle P_{5} \Sigma P_{5} \Sigma^{\dagger} \right\rangle$$

[Sharpe, Singleton, 1998; Bär, Rupak, Shoresh, 2003; Sharpe & Wu; Münster; Scorzato, 2004]

- W_M is the extra LEC at $\mathcal{O}(a^2)$ for Ginsparg-Wilson valence quarks

$$m_s \equiv \mu_q$$

$$m_v \equiv m_q$$

• Identify observables which depend on $W'_{6,8}$, W_M ...

mixed action PQ χ PT (MAPQ χ PT)

power counting :
$$m_s \sim m_v \sim a^2$$

LO:
$$m_s$$
, m_v , p^2 , a^2

pseudoscalar meson masses at LO

$$\begin{split} M_{\pm}^{2} &= 2B_{0}m_{s} & \text{[maximal twist]} \\ M_{0}^{2} &= 2B_{0}m_{s} - \hat{\alpha}^{2} \frac{32}{f^{2}} \left(2W_{6}' + W_{8}'\right) \\ M_{VV}^{2} &= 2B_{0}m_{v} \\ M_{VS}^{2} &= B_{0}(m_{v} + m_{s}) - \hat{\alpha}^{2} \frac{4}{f^{2}} \left(W_{M} - 2W_{8}'\right) \\ &= B_{0}(m_{v} + m_{s}) + \alpha^{2}\Delta \text{mix} \end{split}$$

[Sharpe & Wu; Münster; Scorzato, 2004; Bär & Furchner, 2010; Ueda & Aoki, 2011]

$$\hat{a} = 2W_0 a$$

$$\blacktriangleright \Delta_{mix}$$

► C2

$$M_{\rm VS}^2 - \frac{1}{2} (M_{\rm VV}^2 + M_{\pm}^2) = \Delta_{\rm mix} \sigma^2 = \sigma^2 \frac{16 W_0^2}{f^2} (W_M - 2W_8')$$

$$M_0^2 - M_{\pm}^2 = 4c_2 a^2 = -a^2 \frac{128 W_0^2}{f^2} (2W_6' + W_8')$$

actions Aoki W $_{\chi}$ PT W'_{6.8} ov/Wtm MA $_{\chi}$ PT D $_{W}$ Conclusions

 $\mathcal{L} M_{\rm PS} W_{6.8}^{\prime} \& W_{M} C_{\rm sca}(t)$

$M_{\rm PS}: W_M - 2W_8'$ and $W_8' + 2W_6'$

• $W_M - 2W_8'$ from M_{\pm} , M_{VV} , M_{VS}

 $M_{\rm PS}r_0 = 0.8$; $L/r_0 = 3$; a = 0.085 fm

actions Aoki W_{χ} PT $W'_{6.8}$ ov/Wtm MA_{χ} PT D_{W} Conclusions

 $\mathcal{L} M_{PS} W'_{A 8} \& W_M C_{sca}(t)$

$M_{\rm PS}: W_M - 2W_8' \text{ and } W_8' + 2W_6'$

• $W_M - 2W_8'$ from M_{\pm} , $M_{\rm VV}$, $M_{\rm VS}$

actions Aoki W χ PT $W'_{6,8}$ ov/Wtm MA χ PT D_W Conclusions

 \mathcal{L} M_{PS} $W'_{6.8} \& W_M$ $C_{sca}(t)$

determination of $W_M - 2W'_8$

- W'_8 for $N_f = 2$ Wilson, tlSym
- ▶ 2W_M W'₈ > 0 [Bär, Golterman, Shamir, 2011]
- ► comparison Δ^{1/4}_{mix}

ov. on smeared-clover : 861(90) MeV domain wall on stagg. : 678(13) MeV ov. on domain wall : 416(27) MeV

[K. Cichy, V. Drach, E. García Ramos, G.H., K. Jansen, 1211.1605]

mixed action PQ χ PT (MAPQ χ PT)

power counting :
$$m_s \sim m_v \sim a^2$$

LO:
$$m_s$$
, m_v , p^2 , a^2

non-singlet scalar correlator (mixed action) at large euclidean time

$$C_{\rm sca}^{\rm VV}(t) \rightarrow \frac{B_0^2}{2L^3} \left[\frac{e^{-2M_{\rm VV}t}}{M_{\rm VS}^2} - \frac{e^{-2M_{\rm VV}t}}{M_{\rm VV}^4} \left(M_{\rm VV}^2 + \hat{\sigma}^2 \frac{16}{t^2} W_8'(1 + M_{\rm VV} t) \right) \right] + A e^{-m_{\rm O_0} t}$$

[Golterman, Izubuchi, Shamir, 2005; Bär & Furchner, 2010]

for maximal twist

at the matching mass
$$M_{\pm}=M_{
m VV}$$

• combining measurements of pseudoscalar masses and scalar correlator $\rightarrow W'_8$, W_M

 $M_{\rm PS} r_0 = 0.8$; $L/r_0 = 3$; $a = 0.055 \,{\rm fm}$

Determination of LECs of W_{χ} PT

 $M_{\rm PS}r_0 = 1.0$; $L/r_0 = 4.6$; $a = 0.08 \,{\rm fm}$

[K. Cichy, V. Drach, E. García Ramos, G.H., K. Jansen, 1211.1605]

actions Aoki W_{χ} PT $W'_{6,8}$ ov/Wtm MA_{χ} PT D_{W} Conclusions $\mathcal{L} M_{PS} W'_{6,8} \otimes W_M C_{sca}(t)$

determination of W_M and $W'_{6.8}$

Mixed action : overlap on $N_{\rm f} = 2$ Wtm with tlSym

- $\Delta_{\text{mix}}^{1/4} = 951(54) \,\text{MeV}$
- ▶ W_M = 901(65) MeV
- ▶ w₈' = -528(51) MeV
- $\blacktriangleright r_0^6 W_0^2 W_8' = -0.0064(24)$
- ► $r_0^6 W_0^2 W_8' = -0.0127(08)$ [subtracting zero-modes]

Unitary action : $N_{\rm f} = 2$ Wtm with tlSym

- ▶ w₈' = -552(25) MeV
- $r_0^6 W_0^2 W_8' = -0.0119(17)$
- $\blacktriangleright \ r_0^6 \ W_0^2 \ W_6' = 0.0049(38)$
- $W_6'/W_8' = -0.4(3)$ [w.r.t. $1/N_c$]

$$w_{M} = \frac{16W_{0}^{2}W_{M}}{f^{2}}$$
$$w_{k}' = \frac{16W_{0}^{2}W_{k}'}{f^{2}} \qquad (k = 6, 8)$$

► systematic effects : larger volume higher orders in MA_XPT and W_XPT zero-mode subtraction in C^W_{sca}(t) other observables

spectrum of Wilson Dirac operator

actions Aoki W $_{\chi}$ PT W $_{6.8}'$ ov/Wtm MA $_{\chi}$ PT D $_W$ Conclusions

stability of simulations with Wilson fermions

- (a) phase structure of Wilson fermions : c_2 is a LEC of $W\chi$ PT \rightsquigarrow Aoki or Singleton-Sharpe scenarios in LCE region
- (b) distribution of λ_{\min} of $\gamma_5 D_W$

similar conclusions from (a) and (b)

[[]CERN-ToV, 2005]

• CP-PACS & JLQCD with $N_{\rm f} = 2 + 1$ Clover + Iwasaki : $0.5 < \sigma \sqrt{V}/a < 0.75$

►

Wtm at maximal twist

•
$$\lambda_{\min}$$
 of $D_W^{\dagger} D_W + \mu_{\ell}^2$

•
$$N_{\rm f} = 4 \ \beta = 1.95 \ a\mu = 0.0085 \ L/a = 24$$

close to maximal twist, the distribution of

 λ_{\min} of $D_W^{\dagger} D_W$ is not Gaussian

• is the width of λ_{\min} useful to monitor the stability?

actions Aoki W $_{\chi}$ PT W $_{6.8}'$ ov/Wtm MA $_{\chi}$ PT D $_W$ Conclusions

Wtm at maximal twist

close to maximal twist, the distribution of

 λ_{\min} of $D_W^{\dagger} D_W$ is not Gaussian

example from $N_{\rm f}=2,\ \beta=3.9,\ L/a=24$

examples

Benasque, 20-06-13

actions Aoki W $_{\chi}$ PT W'_{6.8} ov/Wtm MA $_{\chi}$ PT D $_W$ Conclusions det

(c-s)-doublet : $det(D_{tm}^h)$

$$D_{\rm tm}^{h} = D_{W}[U] + m_{0h} + i\mu_{\sigma}\gamma_{5}\tau_{1} + \mu_{\delta}\tau_{3}$$
$$m_{s} = 1/Z_{\rm P}(\mu_{\sigma} - Z_{\rm P}/Z_{\rm S} \mu_{\delta})$$

[PRELIMINARY]

Benasque, 20-06-13

G. Herdoíza

Determination of LECs of W_{χ} PT

actions Aoki W $_{\chi}$ PT W'_{6.8} ov/Wtm MA $_{\chi}$ PT D $_W$ Conclusions det

(c-s)-doublet : $det(D_{tm}^h)$

$$D_{\rm tm}^{\rm h} = D_{\rm W}[U] + m_{\rm 0h} + i\mu_{\sigma}\gamma_5\tau_1 + \mu_{\delta}\tau_3$$
$$m_s = 1/Z_{\rm P}(\mu_{\sigma} - Z_{\rm P}/Z_{\rm S}\mu_{\delta})$$

- spectral gap
- width $\propto 1/L$

eta = 1.90; $a \approx 0.086 \, {
m fm}$ $\kappa = 0.163270$ $a \mu_l = 0.004$

 $a\mu_{\sigma} = 0.15; a\mu_{\delta} = 0.19$

ю, ліс

0.0001 ev_mir

0.0000

L/a = 24

L/a = 32

L/a = 20

Spectrum

► $N_{\rm f} = 0$, fixed topology (e.g. $\nu = 1$), power-counting: $m \sim a^2$ distribution of the single real eigenvalues of D_W has a width

$$\sigma = \frac{\sqrt{8a^2W_8}}{\Sigma\sqrt{V}}$$

[G. Akemann, P. Damgaard, K. Splittorff and J. Verbaarschot, 1012.0752]

[P. Damgaard, U. Heller, K. Splittorff, 1301.3099]

mode number

[L. Giusti, M. Lüscher, 2009]

[S. Necco, A. Shindler, 2011]

[ETMC, K. Cichy, E. García Ramos, K. Jansen, 2013]

conclusions

- O(a²) cutoff effects in the light-quark mass regime can be large for Wilson fermions
- determination of Wilson χ PT LECs can be useful :
 - estimate expected size of cutoff effects
 - identify a lattice action with reduced $O(a^2)$ lattice artifacts
 - combined fits of mass, volume and lattice spacing dependence