From Darmon points to Darmon cycles

M. A. Seveso

Department of Mathematics "Federigo Enriques"
University of Milan

2013 Effective Methods for Darmon Points

Let G be a Γ_0 -type congruence subgroup in B^\times (the indefinite quaternion algebra of discriminant D>1 for simplicity) of level N_G and let $\mathscr{H}(G)=\mathscr{H}^D(G)$ be the Hecke algebra generated by the operators T_I where $I \nmid N_G D$, U_I and W_I where $I \mid N_G$, W_I where $I \mid D$ and W_∞ . By a good Hecke operator we mean a T_I for some $I \nmid N_G D$.

Definition 1

Let M be a $\mathscr{H}(G)$ -module. We say that M admits an I-Eisenstein/Cuspidal decomposition (of weight k) whenever there exists a decomposition of $\mathscr{H}(G)$ -modules $M=M_I^e\oplus M_I^c$ such that $t_I:=T_I-I^{k-1}-1$ vanishes on M_I^e and is invertible on M_I^c for some $I \nmid N_G D$.

We say that it admist an Eisenstein/Cuspidal (of weight k) decomposition if it admits an I-Eisenstein/Cuspidal decomposition for every $I \nmid N_G D$ with $M_{l_1}^e = M_{l_2}^e$ and $M_{l_1}^c = M_{l_2}^c$ for every $I_1, I_2 \nmid N_G D$. In this case we write $M = M^e \oplus M^c$ where $M^e = M_I^e$ and $M^c = M_I^c$.

In the following discussion k will always be fixed and, when the l in the definition of an l-Eisenstein/Cuspidal decomposition is implicit, we simply write $M^e = M_l^e$ and $M^c = M_l^c$.

Consider the exact sequence

$$0 \to C_{har}(\mathscr{E}, \mathbb{Z}) \to C_0(\mathscr{E}, \mathbb{Z}) \xrightarrow{\delta_{\xi}} C(\mathscr{V}, \mathbb{Z}) \to 0, \tag{1}$$

where $\delta_s(c)(v) := \sum_{s(e)=v} c(e)$, which induces, taking Γ -cohomology and applying Shapiro's Lemma, the exact sequence

$$0 \to E \to H^1\left(\Gamma, C_{har}(\mathscr{E}, \mathbb{Z})\right) \to H^1\left(\Gamma_0\left(pN^+\right), \mathbb{Z}\right)^{p-new} \to 0$$

where we define

$$\begin{split} & E := \operatorname{coker}\left(\delta_s : \left. C_0\left(\mathscr{E}, \mathbb{Z}\right)^{\Gamma} \to C\left(\mathscr{V}, \mathbb{Z}\right)^{\Gamma}\right), \\ & H^1\left(\Gamma_0\left(pN^+\right), \mathbb{Z}\right)^{p-new} := \ker\left(\delta_s\right) \subset H^1\left(\Gamma, C_0\left(\mathscr{E}, \mathbb{Z}\right)\right). \end{split}$$

The notation is justified by the following lemma and the fact that $H^1(\Gamma_0(pN^+),\mathbb{Z})^{p-new}$ is identified with the p-new part of $H^1(\Gamma_0(pN^+),\mathbb{Z})$, because δ_s corresponds to the degeneracy maps up to Shapiro's isomorphism.

Lemma 2

Consider the exact sequence

$$0 \to E \to H^1\left(\Gamma, \mathcal{C}_{har}(\mathscr{E}, \mathbb{Z})\right) \to H^1\left(\Gamma_0\left(\rho N^+\right), \mathbb{Z}\right)^{\rho-new} \to 0$$

We have that $t_I = 0$ on $E \simeq \frac{\mathbb{Z}}{(p+1)\mathbb{Z}} \oplus \mathbb{Z}$ for every $I \nmid pN^+$ while $t_I : H^1(\Gamma_0(pN^+), \mathbb{Z})^{p-new} \to H^1(\Gamma_0(pN^+), \mathbb{Z})^{p-new}$ is injective on $H^1(\Gamma_0(pN^+), \mathbb{Z})^{p-new} \simeq \mathbb{Z}^g$. There exists $E \oplus H \subset H^1(\Gamma, C_{har}(\mathscr{E}, \mathbb{Z}))$ such that $t_I : H \to H$ is injective every $I \nmid pN^+D$, $H \hookrightarrow H^1(\Gamma_0(pN^+), \mathbb{Z})^{p-new}$ is \mathbb{Z} -free and with torsion cokernel inducing

$$\mathbb{Q}H=H^{1}\left(\Gamma,C_{har}\left(\mathscr{E},\mathbb{Q}\right)\right)^{c}=\mathbb{Q}\otimes_{\mathbb{Z}}H\overset{\sim}{\to}H^{1}\left(\Gamma_{0}\left(\rho N^{+}\right),\mathbb{Q}\right)^{\rho-new}.$$

Set $\mathscr{H}_p^{ur}:=\mathbb{Q}_p^{ur}-\mathbb{Q}_p$ and let $\mathrm{Div}(\mathscr{H}_p)(k_p)\subset\mathrm{Div}(\mathscr{H}_p^{ur})$ be the subgroup of divisors that are invariant under the action of $G_{\mathbb{Q}_p^{ur}/k_p}$. We define $\mathrm{Div}^0(\mathscr{H}_p)(k_p)\subset\mathrm{Div}^0(\mathscr{H}_p^{ur})$ by means of the following exact sequence

$$0 \to \operatorname{Div}^{0}(\mathscr{H}_{p})(k_{p}) \to \operatorname{Div}(\mathscr{H}_{p})(k_{p}) \stackrel{\operatorname{deg}}{\to} \mathbb{Z} \to 0.$$
 (2)

Here we remark that $\mathrm{Div}(\mathscr{H}_p)(\mathbb{Q}_p)\subset \mathrm{Div}(\mathscr{H}_p)(k_p)$ and there is a degree one divisor in $\mathrm{Div}(\mathscr{H}_p)(\mathbb{Q}_p)$, so that the above deg is surjective.

We fix from now on any

$$H \hookrightarrow H^{1}\left(\Gamma_{0}\left(pN^{+}\right), \mathbb{Z}\right)^{p-new}$$

as granted by Lemma 2. Let $C\left(\mathbf{P}^1\left(\mathbb{Q}_p\right), \mathcal{K}_p^{\times}\right)$ be the space of continuous \mathcal{K}_p -valued functions on $\mathbf{P}^1\left(\mathbb{Q}_p\right)$. Then we may define a pairing

$$C\left(\mathsf{P}^1\left(\mathbb{Q}_p\right), \mathcal{K}_p^{\times}\right) \otimes C_{har}\left(\mathscr{E}, \mathbb{Z}\right) \to \mathcal{K}_p^{\times}$$

by the rule

$$\Phi(f,c) := \lim_{\mathcal{T}_0 \subset \mathcal{T}} \left(\prod_{e \in \partial \mathcal{T}_0} f(t_e)^{c(e)} \right), \tag{3}$$

where $\mathscr{T}_0 \subset \mathscr{T}$ runs over all the net of finite subtrees of \mathscr{T} , $\partial \mathscr{T}_0$ denotes the set of boundary edges of \mathscr{T}_0 oriented towards $\partial \mathscr{T} = \mathbf{P}^1(\mathbb{Q}_p)$ and $t_e \in U_e$, where $U_e \subset \mathbf{P}^1(\mathbb{Q}_p)$ is the open compact subset attached to the equivalence class of ends starting from e. Here we remark that, given a choice $\{t_e\}_{e \in \mathscr{E}}$, the above limit exists thanks to the boundess of $c \in C_{har}(\mathscr{E}, \mathbb{Z}) \subset C_{har}^b(\mathscr{E}, \mathbb{Z})$ and it does not depend on the choice of $\{t_e\}_{e \in \mathscr{E}}$. This pairing is easily checked to be $\mathbf{GL}_2(\mathbb{Q}_p)$ -invariant.

Next we remark that we may form the following commutative diagram

$$\begin{array}{cccc} \operatorname{Div}^{0}(\mathscr{H}_{p})(k_{p}) & \otimes & C_{har}(\mathscr{E},\mathbb{Z}) & \stackrel{\Phi}{\to} & K_{p}^{\times} \\ \theta \downarrow & & \parallel & \parallel \\ C\left(\mathsf{P}^{1}(\mathbb{Q}_{p}),K_{p}^{\times}\right) & \otimes & C_{har}(\mathscr{E},\mathbb{Z}) & \stackrel{\Phi}{\to} & K_{p}^{\times} \\ \downarrow & & \parallel & \parallel \\ C\left(\mathsf{P}^{1}(\mathbb{Q}_{p}),K_{p}^{\times}\right)/K_{p}^{\times} & \otimes & C_{har}(\mathscr{E},\mathbb{Z}) & \stackrel{\Phi}{\to} & K_{p}^{\times}, \end{array}$$

$$(4)$$

where θ is obtained by linear extension of the map

$$heta: \operatorname{Div}\left(\mathscr{H}_{p}^{\mathit{ur}}
ight)
ightarrow \mathcal{C}\left(\mathsf{P}^{1}\left(\mathbb{Q}_{p}
ight), \overline{K_{p}}^{ imes}
ight), \; heta_{ au_{2}, au_{1}}(t) := rac{t- au_{2}}{t- au_{1}}.$$

The fact that the pairing in the second row induces uniquely a pairing in the thirt row follows from the harmonicity of the elemnts of $C_{har}(\mathcal{E},\mathbb{Z})$. In particular this pairing is $\mathbf{GL}_2(\mathbb{Q}_p)$ -invariant. Since the composite $\mathrm{Div}(\mathscr{H}_p)(k_p) \to \mathcal{C}\left(\mathbf{P}^1(\mathbb{Q}_p), K_p^\times\right)/K_p^\times$ is $\mathbf{GL}_2(\mathbb{Q}_p)$ -invariant it follows that the pairing in the first row is $\mathbf{GL}_2(\mathbb{Q}_p)$ -invariant too.

 $\mathbb{T} := \mathscr{H}^D(\Gamma_0(pN^+))^{p-new}$.

We deduce a Hecke equivariant map

$$\Phi_H: H_1\left(\Gamma, \operatorname{Div}(\mathscr{H}_p)(k_p)\right) \overset{\Phi}{\to} Hom\left(H^1\left(\Gamma, C_{har}(\mathscr{E}, \mathbb{Z})\right), K_p^\times\right) \to \mathbf{T}_H(K_p),$$
 where $\mathbf{T}_H\left(K_p^\times\right) := Hom\left(H, K_p^\times\right)$ and the second map is induced by $H \subset H^1\left(\Gamma, C_{har}(\mathscr{E}, \mathbb{Z})\right)$. Note that, since H is \mathbb{Z} -free, \mathbf{T}_H is indeed a rigid analytic torus, endowed with an action of

Composing with $\log_0: \mathcal{K}_p^{\times} \to \mathcal{K}_p$ and $\operatorname{ord}_p: \mathcal{K}_p^{\times} \to \mathcal{K}_p$ we obtain, setting $\log_{\lambda} := \log_0 - \lambda \operatorname{ord}_p$ for every $\lambda \in \mathbf{P}^1(\mathcal{K}_p)$ with $\lambda \neq 0$ and $\log_{\infty} := \operatorname{ord}_p$,

$$\begin{array}{cccc} H_{1}(\Gamma,\operatorname{Div}(\mathscr{H}_{p})(k_{p})) & & \downarrow \Phi \\ & \downarrow \Phi & & & \downarrow \operatorname{log}_{\lambda} & & \downarrow \operatorname{log}_{\lambda} \\ & & & \downarrow \operatorname{log}_{\lambda} & & \downarrow \operatorname{log}_{\lambda} \\ & & & \downarrow \operatorname{log}_{\lambda} & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & & \downarrow \operatorname{log}_{\lambda} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

We also remark that we have the factorization

$$Hom_{K_{p}}\left(H^{1}\left(\Gamma, C_{har}(\mathscr{E}, K_{p})\right), K_{p}\right) \rightarrow Hom_{K_{p}}\left(H^{1}\left(\Gamma, C_{har}(\mathscr{E}, K_{p})\right)^{c}, K_{p}\right)$$

$$= Hom_{K_{p}}\left(H_{K_{p}}, K_{p}\right),$$

where the identification follows from our choice of H in view of Lemma 2 and is induced by $H \subset H^1(\Gamma, C_{har}(\mathscr{E}, \mathbb{Z}))$. Of course, by Lemma 2,

$$H^{1}(\Gamma, C_{har}(\mathscr{E}, K_{p}))^{c} = H^{1}(\Gamma_{0}(pN^{+}), \mathbb{Z})^{p-new}$$
.

We define

$$\log_{\lambda}(\Phi_{H}): H_{1}(\Gamma, \operatorname{Div}(\mathscr{H}_{p})(k_{p})) \stackrel{\log_{\lambda}(\Phi)}{\to} \\ \operatorname{Hom}_{K_{p}}(H^{1}(\Gamma, C_{har}(\mathscr{E}, K_{p})), K_{p}) \to \operatorname{Hom}_{K_{p}}(H_{K_{p}}, K_{p})$$

as the morphisms obtained from the above commutative diagram. They are what we will generalized to the higher weight case.

In order to performs such a generalization it will be convenient to redefine these maps in a more convenient way.

Definition 3

Let $\mathscr{A}_n := \mathscr{A}_n(\mathbb{P}^1(\mathbb{Q}_p), K_p)$ be the space of K_p -valued locally analytic functions on $\mathbb{P}^1(\mathbb{Q}_p)$ with a pole of order at most n at ∞ . More precisely, an element $f \in \mathscr{A}_n$ is a locally analytic function $f: \mathbb{Q}_p \to K_p$ for which there exists an integer N such that f is locally analytic on $\{z \in \mathbb{Q}_p : ord_p(x) \geq N\}$ and admits a convergent expansion

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_0 + \sum_{r \ge 1} a_{-r} z^{-r}$$

on
$$\{z \in \mathbb{Q}_p : ord_p(z) < N\}$$
.

The space $\mathscr{A}_n(\mathbb{P}^1(\mathbb{Q}_p), K_p)$ carries a right action of $\mathrm{GL}_2(\mathbb{Q}_p)$ defined by the rule $f \cdot \gamma = \frac{(cx+d)^n}{\det(\gamma)^{n/2}} \cdot f(\frac{ax+b}{cx+d})$, for any $f \in \mathscr{A}_n(\mathbb{P}^1(\mathbb{Q}_p), K_p)$ and $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{GL}_2(\mathbb{Q}_p)$. Note that $\mathbf{P}_k(K_p)$ is a natural $\mathrm{GL}_2(\mathbb{Q}_p)$ -submodule of it, where $\mathbf{P}_n := \mathbf{P}_n(K_p)$ is the space of K_p -valued polynomials on of degree $\leq n$. We have

$$0 \to \mathbf{P}_n \to \mathscr{A}_n \to \mathscr{A}_n/\mathbf{P}_n \to 0$$

and define $\mathscr{D}_n := \mathscr{D}_n(\mathbb{P}^1(\mathbb{Q}_p), K_p)$ and $\mathscr{D}_n^0 := \mathscr{D}_n^0(\mathbb{P}^1(\mathbb{Q}_p), K_p)$ by taking the continuous K_p -duals:

$$0 \to \mathcal{D}_n^0 \to \mathcal{D}_n \to \mathbf{V}_n \to 0$$

Put n := k - 2 from now on.

Definition 4

 $\mathscr{D}_n^{0,b} := \mathscr{D}_n^0(\mathbb{P}^1(\mathbb{Q}_p), K_p)^b$ is the subset of those $\mu \in \mathscr{D}_k^0$ for which there is a constant A such that, for all $i \geq 0$, $j \geq 0$, and all $a \in \mathbb{Z}_p$,

$$|\mu((x-a)^i|a+p^j\mathbb{Z}_p)| \le p^{A-j(i-1-k/2)}$$

There is an epimorphism of $GL_2(\mathbb{Q}_p)$ -modules

$$r: \mathscr{D}_{n}^{0}(\mathbb{P}^{1}(\mathbb{Q}_{p}), K_{p}) \twoheadrightarrow C_{har}(\mathscr{E}, \mathbf{V}_{n}(K_{p})),$$

$$r(\mu)(e)(P) = \int_{U_{e}} P(t) d\mu(t) := \mu(P \cdot \chi_{U_{e}})$$

restricting to an inclusion

$$\mathscr{D}_{n}^{0}(\mathbb{P}^{1}(\mathbb{Q}_{p}),K_{p})^{b}\hookrightarrow\mathcal{C}_{har}(\mathscr{E},\mathbf{V}_{n}(K_{p}))$$

and we set
$$C_{har}(\mathscr{E}, \mathbf{V}_n(K_p))^b := r\left(\mathscr{D}_n^0(\mathbb{P}^1(\mathbb{Q}_p), K_p)^b\right)$$
.

Noticing that we have

$$\log_{\lambda}\left(\theta_{\tau_{2},\tau_{1}}\right) = \log_{\lambda}\left(\frac{t-\tau_{2}}{t-\tau_{1}}\right) =: \theta_{\tau_{2},\tau_{1}}^{\log_{\lambda}}(t) \in \mathscr{A}_{0}(\mathbb{P}^{1}(\mathbb{Q}_{p}), K_{p})$$

we may consider the following analogue of (4)

where $heta^{\log_{\lambda}}$ is obtained by K_p -linear extension of the map

$$\theta^{\log_{\lambda}} : \operatorname{Div}\left(\mathscr{H}_{p}^{ur}\right) \otimes \mathsf{P}_{n}(K_{p}) \to \mathscr{A}_{n}(\mathbb{P}^{1}(\mathbb{Q}_{p}), K_{p}),$$

$$\theta^{\log_{\lambda}}_{\tau_{2}, \tau_{1}, P}(t) := \log_{\lambda}\left(\frac{t - \tau_{2}}{t - \tau_{1}}\right) P(t).$$

A similar remark as in the multiplicative setting implies the $\mathbf{GL}_2(\mathbb{Q}_p)$ -invariance.

The key fact allowing us to extend the p-adic integration theory to the higher weight setting is the following.

Theorem 5

The above map r induces an Hecke equivariant isomorphism

$$H^1\left(\Gamma, \mathscr{D}_n^0(\mathbb{P}^1(\mathbb{Q}_p), K_p)^b\right) \stackrel{\sim}{\to} H^1\left(\Gamma, C_{har}(\mathscr{E}, \mathbf{V}_n(K_p))\right).$$

By means of Theorem 5 the pairing $\Phi^{log_{\lambda}}$ induces a Hecke equivariant morphism:

$$\Phi_{c}^{\log_{\lambda}}: H_{1}\left(\Gamma, \operatorname{Div}^{0}\left(\mathscr{H}_{p}\right)(k_{p}) \otimes \mathsf{P}_{n}\left(K_{p}\right)\right) \stackrel{\Phi^{\log_{\lambda}}}{\to} \\
Hom_{K_{p}}\left(H^{1}\left(\Gamma, C_{har}(\mathscr{E}, \mathsf{V}_{n}(K_{p}))\right), K_{p}\right) \to \mathsf{H}_{k}^{\vee}\left(K_{p}\right),$$

where we set $\mathbf{H}_{k}^{\vee}(K_{p}) := Hom_{K_{p}}\left(H^{1}(\Gamma, C_{har}(\mathscr{E}, \mathbf{V}_{n}(K_{p}))^{c}), K_{p}\right).$

The claimed generalization is a consequence of the following proposition.

Proposition 6

When k=2 we have $\log_{\lambda}(\Phi) = \Phi^{\log_{\lambda}} \circ i$ and $\log_{\lambda}(\Phi_H) = \Phi^{\log_{\lambda}}_c \circ i$, where

$$i: H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p)\right) \to H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p) \otimes K_p\right).$$

Proof.

(Sketch) If $\mu\in\mathscr{D}^0_k(\mathbb{P}^1(\mathbb{Q}_p),K_p)^b$ and $f\in\mathscr{A}_k(\mathbb{P}^1(\mathbb{Q}_p),K_p)$ then

$$\mu(f) = \lim_{\mathcal{T}_0 \subset \mathcal{T}} \left(\sum_{e \in \partial \mathcal{T}_0} r(\mu)(e) f(t_e) \right)$$

where $t_e \neq \infty$ for every $e \in \mathscr{E}$. Furthemore, $\mathscr{D}_{\iota}^0(\mathbb{P}^1(\mathbb{Q}_p), K_p)^b \stackrel{\sim}{\to} C_{har}(\mathscr{E}, K_p)^b \supset C_{har}(\mathscr{E}, \mathbb{Z})$. Hence, if

 $r(\mu) = c \in C_{har}(\mathcal{E}, \mathbb{Z})$ with $\mu \in \mathcal{D}_k^0(\mathbb{P}^1(\mathbb{Q}_p), K_p)^b$ and $f \in C(\mathbb{P}^1(\mathbb{Q}_p), K_p)$ is such that $\log_{\mathbb{R}}(f) \in \mathscr{A}(\mathbb{P}^1(\mathbb{Q}_p), K_p)^b$

 $f\in\mathcal{C}\left(\mathsf{P}^{1}\left(\mathbb{Q}_{p}\right),\mathcal{K}_{p}^{\times}\right)$ is such that $\log_{\lambda}\left(f\right)\in\mathscr{A}_{k}(\mathbb{P}^{1}(\mathbb{Q}_{p}),\mathcal{K}_{p})$, then

$$\log_{\lambda} \Phi(f, c) \stackrel{(3)}{=} \log_{\lambda} \left(\lim_{\mathcal{T}_{0} \subset \mathcal{T}} \left(\prod_{e \in \partial \mathcal{T}_{0}} f(t_{e})^{c(e)} \right) \right)$$

$$= \lim_{\mathcal{T}_{0} \subset \mathcal{T}} \left(\sum_{e \in \partial \mathcal{T}_{0}} r(\mu)(e) \log_{\lambda} (f(t_{e})) \right) = \mu (\log_{\lambda} (f)).$$

The claim is then easily deduced.

Consider the morphisms

$$\Phi_{H,\partial}: H_2\left(\Gamma, \mathbb{Z}\right) \xrightarrow{\partial} H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p)\right) \xrightarrow{\Phi_H} \mathsf{T}_H\left(K_p\right),
\Phi_{c,\partial}^{\log_{\lambda}}: H_2\left(\Gamma, \mathsf{P}_n\left(K_p\right)\right) \xrightarrow{\partial} H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p) \otimes \mathsf{P}_n\left(K_p\right)\right) \to \mathsf{H}_k^{\vee}\left(K_p\right)$$

where ∂ is obtained from (2).

Theorem 7

The morphism $\Phi_{c,\partial}^{\mathrm{ord}}: H_2(\Gamma, \mathbf{P}_n(K_p)) \to \mathbf{H}_k^{\vee}(K_p)$ is surjective and induces an isomorphism $H_2(\Gamma, \mathbf{P}_n(K_p))^c \overset{\sim}{\to} \mathbf{H}_k^{\vee}(K_p)$. There exists a unique $\mathscr{L} \in \mathbb{T}_{\mathbb{Q}_p}$ such that

$$\Phi_{c,\partial}^{\log_0} = \mathscr{L} \circ \Phi_{c,\partial}^{\mathrm{ord}} = \Phi_{c,\partial}^{\mathrm{ord}} \circ \mathscr{L}.$$

Define

$$\begin{split} & \Phi_c^{\log} := -\Phi_c^{\log_0} \oplus \Phi_c^{\mathrm{ord}} : H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p) \otimes \mathsf{P}_n\left(\mathcal{K}_p\right)\right) \to \mathsf{D}_k\left(\mathcal{K}_p\right), \\ & \mathsf{D}_k\left(\mathcal{K}_p\right) := \mathsf{H}_k^{\vee}\left(\mathcal{K}_p\right)^2, \ \Phi_{c,\partial} := \Phi_c \circ \partial. \end{split}$$

We also set

$$L_H := \operatorname{Im} (\Phi_{H,\partial}) \subset \mathsf{T}_H(\mathbb{Q}_p) \text{ (when } k = 2),$$

 $F := \operatorname{Im} (\Phi_{c,\partial}) \subset \mathsf{D}_k(\mathbb{Q}_p) =: \mathsf{D}_k.$

Corollary 8

If k=2, then $L_H\subset T_H(\mathbb{Q}_p)=: Hom(H,\mathbb{Q}_p^\times)$ is a Hecke stable and \mathbb{Z} -free subgroup and $\operatorname{ord}(L_H)\subset Hom(H,\mathbb{Q}_p)$ is a \mathbb{Z} -lattice. In particular $A_H(K_p):=T_H(K_p)/L_H$ is represented by a rigid analytic abelian variety A_H/\mathbb{Q}_p with multiplication by \mathbb{T} . For an arbitrary k we have $\mathbf{D}_k=\mathbf{D}_k^+\oplus \mathbf{D}_k^-$ where \mathbf{D}_k^\pm has a natural structure of $\mathbb{T}_{\mathbb{Q}_p}$ -monodromy module structure over \mathbb{Q}_p with Fontaine-Mazur \mathscr{L} -invariant \mathscr{L}^\pm such that $\mathscr{L}=\mathscr{L}^+\oplus\mathscr{L}^-$ and \mathbf{D}_2 is the $\mathbb{T}_{\mathbb{Q}_p}$ -monodromy module attached to the $G_{\mathbb{Q}_p}$ representation $V_p(A_H)$.

For arbitrary k, the structure of monodromy module on \mathbf{D}_k^{\pm} is given in such a way that $F \subset \mathbf{D}_k$ is the only non-trivial step in the filtration. Hence we may consider

$$\overline{\Phi}_c^{\log}: H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p) \otimes \mathsf{P}_n(K_p)\right) \stackrel{\Phi_c^{\log}}{\to} \mathsf{D}_k \to \frac{\mathsf{D}_k}{F}.$$

Note also that there is a unique isomorphism $\overset{\mathbf{D}_k}{\mathcal{F}}\overset{\sim}{ o} \mathbf{H}_k^{\vee}(\mathcal{K}_p)$ making the following diagram commutative:

$$\begin{array}{cccc}
\mathsf{D}_{k}\left(\mathsf{K}_{p}\right) = & \mathsf{H}_{k}^{\vee}\left(\mathsf{K}_{p}\right) \oplus \mathsf{H}_{k}^{\vee}\left(\mathsf{K}_{p}\right) & \to & \frac{\mathsf{D}_{k}}{F} \\
(x,y) \mapsto -\left(x + \mathscr{L}y\right) & \downarrow & \downarrow & \downarrow \\
& \mathsf{H}_{k}^{\vee}\left(\mathsf{K}_{p}\right) & = & \mathsf{H}_{k}^{\vee}\left(\mathsf{K}_{p}\right).
\end{array} (5)$$

Then the following diagram is commutative:

$$H_{1}\left(\Gamma,\operatorname{Div}^{0}\left(\mathscr{H}_{p}\right)(k_{p})\otimes\operatorname{P}_{n}\left(K_{p}\right)\right) \xrightarrow{\Phi_{c}^{\operatorname{log}}} \operatorname{D}_{k} \to \frac{\operatorname{D}_{k}}{F}$$

$$\parallel \qquad \qquad \downarrow \qquad \parallel \downarrow$$

$$H_{1}\left(\Gamma,\operatorname{Div}^{0}\left(\mathscr{H}_{p}\right)(k_{p})\otimes\operatorname{P}_{n}\left(K_{p}\right)\right) \xrightarrow{\Phi_{c}^{\operatorname{log}}-\mathscr{L}\Phi_{c}^{\operatorname{ord}}} \operatorname{H}_{k}^{\vee}\left(K_{p}\right) = \operatorname{H}_{k}^{\vee}\left(K_{p}\right)$$

When k=2, writing $i: H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p)\right) \to H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p) \otimes K_p\right)$ we deduce, thanks to Proposition 6, that $\Phi_c \circ i$ is identified with

$$\left(\Phi_c^{\log_0} - \mathcal{L} \circ \Phi_c^{\text{ord}}\right) \circ i = \left(\log_0\left(\Phi_H\right) \circ i\right) - \left(\mathcal{L} \circ \text{ord}\left(\Phi_H\right) \circ i\right) \\
= \log_{A_H} \circ \Phi_H \circ i, \tag{6}$$

where

$$\log_{A_H} := \log_0 - \mathscr{L} \circ \operatorname{ord}(\Phi_H) : \mathbf{A}_H(K_p) \to \operatorname{Hom}_{K_p}(H_{K_p}, K_p)$$

is the logarithm of the rigid analytic abelian variety ${\sf A}_H({\it K}_p)$.

It is convenient to single out one of the two copies \mathbf{D}_k^\pm , which is obtained by means of the involution W_∞ . This is the manifestation, in the weight 2 setting, of a degree 2 isogeny $\mathbf{A}_H \to \mathbf{A}_H^+ \times \mathbf{A}_H^-$.

Theorem 9

The above defined \mathcal{L} -invariant \mathcal{L}^{\pm} is equal to the Fontain-Mazur \mathcal{L} -invariant attached to the \mathbb{Q}_p -adic representation $V_k := V_k \left(\Gamma_0 \left(p N^+ \right) \right)^{p-new}$. In particular, $\mathcal{L}^+ = \mathcal{L}^-$.

As an application of Theorem 9 one may find an isomorphism of monodromy modules $\mathbf{D}_k^\pm\simeq D_k\left(\Gamma_0\left(pN^+\right)\right)^{p-new}=:D_k$, where $D_k\left(\Gamma_0\left(pN^+\right)\right)^{p-new}$ is the monodromy module attached to $V_k\left(\Gamma_0\left(pN^+\right)\right)^{p-new}$. It follows that we have

$$\overline{\Phi}_{c}^{\log}: H_{1}\left(\Gamma, \operatorname{Div}^{0}\left(\mathscr{H}_{p}\right)\left(k_{p}\right) \otimes \mathsf{P}_{n}\left(K_{p}\right)\right) \stackrel{\Phi_{c}^{\log}}{\to} D_{k} \to \frac{D_{k}}{F}.$$

Since
$$H_1(\Gamma, \mathbf{P}_n(K_p)) = 0$$
, we have from (2)

$$\frac{H_1\left(\mathrm{Div}^0\left(\mathscr{H}_p\right)(k_p)\otimes\mathsf{P}_n\left(\mathsf{K}_p\right)\right)}{\partial\left(H_2\left(\mathsf{\Gamma},\mathsf{P}_n\left(\mathsf{K}_p\right)\right)\right)}\stackrel{\sim}{\to} H_1\left(\mathsf{\Gamma},\mathrm{Div}\left(\mathscr{H}_p\right)(k_p)\right)$$

and, noticing that $\overline{\Phi}_c(\partial(H_2(\Gamma, \mathbf{P}_n(K_p)))) = F$ by construction, we may consider

$$AJ_c^{\log}: H_1(\Gamma, \operatorname{Div}(\mathscr{H}_p)(k_p)) \to \frac{D_k}{F}$$

induced by $\overline{\Phi}_c$.

In the weight 2 case Theorem 9 implies that there is an isogeny $\mathbf{A}_H^\pm \to A =: A(\Gamma_0 (pN^+))^{p-new}$ (inducing the isomorphism between the associated monodromy modules). Here $H_1(\Gamma,\mathbb{Z})$ is a finite group because it is finitely generated and $H_1(\Gamma,\mathcal{K}_p) = 0$, say of order h. It follows that we have

$$h: H_1\left(\Gamma, \operatorname{Div}(\mathscr{H}_p)(k_p)\right) \xrightarrow{\widetilde{h}} \frac{H_1\left(\operatorname{Div}^0(\mathscr{H}_p)(k_p)\right)}{\partial\left(H_2\left(\Gamma, \mathbb{Z}\right)\right)} \subset H_1\left(\Gamma, \operatorname{Div}(\mathscr{H}_p)(k_p)\right)$$

and we may define

$$AJ_{c,h}: H_1(\Gamma, \operatorname{Div}(\mathscr{H}_p)(k_p)) \xrightarrow{h} \frac{H_1\left(\operatorname{Div}^0(\mathscr{H}_p)(k_p)\right)}{\partial\left(H_2\left(\Gamma, \mathbb{Z}\right)\right)} \to \mathbf{A}_H^{\pm}(K_p) \to A(K_p)$$

because $\Phi_H(\partial(H_2(\Gamma,\mathbb{Z}))) = L_H$.

Let K/\mathbb{Q} be a quadratic field such that we may write $pN=pN^+N^-$ where $(pN,D_K)=1$, the primes dividing N^+ are split in K, those dividing pN^- are inert in K and pN^- is squarefree and divisible by an odd numer of primes. Then L(f/K,s) vanish at the central criticl point for a new weight k modular form of level $\Gamma_0(pN)$, whose p-adic representation may be realized in the Shimura curve of disctiminant $D=N^-$ taking a $\Gamma_0(pN^+)$ -level structure.

It is possible define a period maps

$$\begin{split} \Gamma \backslash \mathscr{E} \left(\mathscr{O}_{K}, R_{0} \left(p N^{+} \right) \right) &\rightarrow H_{1} \left(\Gamma, \mathrm{Div} \left(\mathscr{H}_{p} \right) (k_{p}) \right), \\ \Gamma \backslash \mathscr{E} \left(\mathscr{O}_{K}, R_{0} \left(p N^{+} \right) \right) &\rightarrow H_{1} \left(\mathrm{Div}^{0} \left(\mathscr{H}_{p} \right) (k_{p}) \otimes \mathsf{P}_{k} \left(\mathsf{K}_{p} \right) \right) \end{split}$$

compatible with

 $i: H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p)\right) \to H_1\left(\Gamma, \operatorname{Div}^0\left(\mathscr{H}_p\right)(k_p) \otimes K_p\right)$ in the weight 2 case. Here we remark that $\mathscr{E}\left(\mathscr{O}_K, R_0\left(pN^+\right)\right) \neq \phi$ thanks to our assumptions.

We define, setting $\mathscr{E} := \mathscr{E} (\mathscr{O}_K, R_0 (pN^+)),$

$$P_{\mathcal{K}} := \sum_{\Psi \in \mathscr{E}} AJ_{c,h}(\Psi) \in A(\mathcal{K}_p)$$

and

$$\log(y_{K}) := \sum_{\Psi \in \mathscr{E}} AJ_{c}^{\log}(\Psi) \in \frac{D_{k}}{F}.$$

Recall that, writing X for the free group of degree zero divisors supported at the supersingular points of the reduction of X_{pN^+,N^-} , we have $A(K_p) = \frac{Hom(X,K_p^\times)}{X}$. We may consider the following commutative diagram:

where $\log := \exp^{-1}$ is the inverse of the Bloch-Kato exponential map, which is easily checked to be an isomorphism in this case, and we are considering the Kummer morphisms. Here the identification $Hom_{K_p}(X,K_p) = \frac{D_2}{F}$ can be choosen to be compatible with $\mathbf{H}_k^{\vee,\pm}(K_p) = \frac{\mathbf{D}_k^{\pm}}{F}$ appearing in (5), thanks to Theorem 5. Then (6) implies that

$$\begin{split} \log_{A}(P_{K}) &= \sum_{\Psi \in \mathscr{E}} \log_{A} \left(AJ_{c,h}(\Psi) \right) \\ &= \sum_{\Psi \in \mathscr{E}} \left(\Phi_{c}^{\log_{0}} - \mathscr{L}\Phi_{c}^{\operatorname{ord}} \right) \left(AJ_{c,h}(\Psi) \right) \\ &= h \sum_{\Psi \in \mathscr{E}} \left(\Phi_{c}^{\log_{0}} - \mathscr{L}\Phi_{c}^{\operatorname{ord}} \right) \left(AJ_{c}(\Psi) \right) \simeq h \sum_{\Psi \in \mathscr{E}} \Phi_{c}(\Psi) \\ &= h \log \left(y_{K} \right). \end{split}$$

Hence we define, for an arbitrary k,

$$y_K := \exp(\log(y_K)) \in H^1_f(K_p, V_k).$$

CONJECTURE. We have that y_K (resp. P_K when k=2) comes from a global cohomology class in $Sel_p(K, V_k)$ (resp. a global point in A(K)). The global classes from which the points/cycles come "should explain low rank instances of the Birch and Swinnerton-Dyer conjecture".

As an evidence towards this conjecture we may state the following result. Let W_N be the Atkin-Lehner involution acting on the space of modular forms and define A^{w_N} , $V_k^{w_N}$ and $D_k^{w_N}$ as the quotients where $W_N = w_N$.

Theorem 10

On the quotient $D_k^{w_N}$ such that $w_N = (-1)^{k/2}$ we have that $y_K^{w_N}$ (resp. $P_K^{w_N}$ when k=2) comes from a global cohomology class in $Sel_p(K, V_2)$ (resp. a global point in $\mathbb{Q} \otimes A(K)$).

Remark 11

We remark that the weight k=2 case follows form the statement about $y_K^{w_N}$, in light of $\log_A(P_K) = h\log(y_K)$ and the proof relative to $y_K^{w_N}$, showing that this class comes from a global cycle and therefore an element of $\mathbb{Q} \otimes A(K)$. We will return on this fact in the subsequent proposals.

...and related Proposals

M. A. Seveso

Department of Mathematics "Federigo Enriques" University of Milan

2013 Effective Methods for Darmon Points

First Proposal

Let T be a \mathbb{Z}_p -adic representatin of G_K such that $V:=\mathbb{Q}_p\otimes_{\mathbb{Z}_p}T$ is semistable and define $A:=\frac{\mathbb{Q}_p}{\mathbb{Z}_p}\otimes_{\mathbb{Z}_p}T$, so that we have the exact sequence

$$0 \to T \xrightarrow{\iota} V \xrightarrow{\pi} A \to 0$$
.

For every place v of K we define $H^1_{st}(K_v, V)$ by means of the following exact sequence

$$0 \to H^1_{st}(K_v, V) \to H^1(K_v, V) \to \left\{ \begin{array}{ll} H^1(K_v^{ur}, V) & \text{if } p \nmid v, \\ H^1(K_v, B_{st} \otimes_{\mathbb{Q}_p} V) & \text{if } p \mid v. \end{array} \right.$$

We also define

$$Sel(K,V) := \ker \left(H^1(K,V) \stackrel{\mathrm{res}_{V}}{\to} \prod_{V} \frac{H^1(K_{V},V)}{H^1_{st}(K_{V},V)} \right).$$

Consider the exact sequence

$$H^1(K_v,T) \xrightarrow{\iota} H^1(K_v,V) \xrightarrow{\pi} H^1(K_v,A)$$

and define

$$\begin{array}{lcl} H^1_{st}\left(K_{\mathsf{V}},T\right) & : & = \iota^{-1}\left(H^1\left(K_{\mathsf{V}},V\right)\right) \subset H^1\left(K_{\mathsf{V}},T\right), \\ H^1_{st}\left(K_{\mathsf{V}},A\right) & : & = \pi\left(H^1\left(K_{\mathsf{V}},V\right)\right) \subset H^1\left(K_{\mathsf{V}},A\right). \end{array}$$

Next we define

$$Sel(K,T) := \ker \left(H^{1}(K,T) \stackrel{\operatorname{res}_{v}}{\to} \prod_{v} \frac{H^{1}(K_{v},T)}{H^{1}_{st}(K_{v},T)} \right),$$

$$Sel(K,A) := \ker \left(H^{1}(K,A) \stackrel{\operatorname{res}_{v}}{\to} \prod_{v} \frac{H^{1}(K_{v},A)}{H^{1}_{st}(K_{v},A)} \right).$$

Then we find the exact sequence:

$$Sel(K, T) \rightarrow Sel(K, V) \rightarrow Sel(K, A)$$
.

In particular we may applying this construction to $T = T_k$. In the weight 2 setting we find $P_K \in A(K_p)$ which gives an element of $\mathbb{Z}_p \otimes_{\mathbb{Z}} A(K_p)$ and then a cohomology class $c_K \in H^1_{st}(K_v, T)$.

- Is it possible to define, more generally, $c_K \in H^1_{st}(K_v, T_k)$ such that $\iota(c_K) = y_K \in H^1_{st}(K_v, V_k)$?
 - An integral version of the p-adic integration theory should be needed.
 - Also, an understanding of those representation T such that V
 is a monodromy module should be needed by means of an
 "integral Fontaine theory".

When $T_p = T_k$, the representation comes from a geometric setting. In this case we have a family T_l of \mathbb{Z}_{l} -adic representation which manifest a coherence, due to the fact that they are realizations of a motive (eventually except for a finite set of primes). There is a set of primes S such that T_l is unramified at $S \cup \{l\}$ and, writing Fr_q for the grometric Frobenius at $q \notin S \cup \{l\}$,

$$L_q(T,s) := \det \left(1 - \operatorname{Fr}_q q^{-s} : V_I\right)^{-1}$$

is such that $\det(1 - Fr_v X : V_I) \in \mathbb{Q}_I[X]$ has rational coefficients and does not depend on the choice of $I \notin S$. In the weight 2 setting

$$P_K \in A(K_p) \to H^1_{st}(K_p, T_l)$$

for ant I. The same is true in the higher weight setting replacing P_K by the Heegner cycle.

• What about the misssing I-adic components of Darmon cycles? As we remarked the proof of the rationality statements produces a global cycle in $CH_{\mathbb{Q}}^*$ mapping to y_K . Hence, up to the finite primes appearing in the denominator one could take the I-components of the Darmon cycle as those defined by this cycle; but here we are looking for a refined theory allowing an a priori definition which applies to the more general $y_{\Psi}s$. Furthermore, we do not know if this gives the correct definition in the weight 2 setting!

Second Proposal

Let B be the quaternion algebra of discriminant D, definite or indefinite. Then there are B^{\times} -representations V_k^B with coefficients in \mathbb{Q} such that $F \otimes_{\mathbb{Q}} V_k^B = V_k(F)$ for every splitting field. They can be endowed with invariant \mathbb{Z} -lattices L_k . Suppose p is a prime and N^+ is a integer with $(pN^+, D) = (p, N^+) = 1$.

Assume now that B is definite and let $\Gamma \subset B_p^\times = \mathbf{GL}_2(\mathbb{Q}_p)$ be an arithmetic group obtained from a $\Gamma_0(N^+)$ -level structure and no integral condition at p. More precisely we take

 $K_0(N^+) \subset B^{\times}(\mathbb{A}^{f,p})$, set $\widetilde{\Gamma} := i_p(K_0(N^+) \cap B^{\times}) \subset B_p^{\times}$ and then take the norm one elements Γ .

Suppose that $K_0(N^+)$ is small enought, so that Γ acts on the Bruhat-Tits tree without fixed points. After inverting p we fix a non-degenerate Γ -invariant pairing

$$(\cdot,\cdot): L_k \otimes L_k \to \mathbb{Z}[1/p]$$

which naturally induces non-degenerates pairings

$$\begin{aligned} (\cdot, \cdot)_{\mathscr{E}} &: C_0(\mathscr{E}, L_k)^{\Gamma} \otimes C_0(\mathscr{E}, L_k)^{\Gamma} \to \mathbb{Z}[1/p], \\ (\cdot, \cdot)_{\mathscr{V}} &: C(\mathscr{V}, L_k)^{\Gamma} \otimes C(\mathscr{V}, L_k)^{\Gamma} \to \mathbb{Z}[1/p]. \end{aligned}$$

We note that we have:

 $C_0\left(\mathscr{E},L_k\right)^\Gamma\leftrightarrow \text{weight }k \text{ and }\Gamma_0\left(pN^+\right)\text{-level modular forms on }B,$ $C\left(\mathscr{V},L_k\right)^\Gamma\leftrightarrow \text{two copies of weight }k \text{ and }\Gamma_0\left(N^+\right)\text{-level modular forms on }B.$

We have exact sequences

$$0 \rightarrow L_k \rightarrow C(\mathcal{V}, L_k) \xrightarrow{d} C_0(\mathcal{E}, L_k) \rightarrow 0,$$

$$0 \rightarrow C_{har}(\mathcal{E}, L_k) \rightarrow C_0(\mathcal{E}, L_k) \xrightarrow{\delta} C(\mathcal{V}, L_k) \rightarrow 0,$$

where d(c)(e) := c(t(e)) - c(s(e)) and $\delta(c)(v) := \sum_{s(e)=v} c(e)$. They induces

$$C(\mathscr{V}, L_k)^{\Gamma} \stackrel{d}{\to} C_0(\mathscr{E}, L_k)^{\Gamma} \text{ and } C_0(\mathscr{E}, L_k)^{\Gamma} \stackrel{\delta}{\to} C(\mathscr{V}, L_k)^{\Gamma}$$

which are adjoint:

$$(x,dy)_{\mathscr{E}} = (\delta x,y)_{\mathscr{V}}, x \in C_0(\mathscr{E},L_k) \text{ and } y \in C(\mathscr{V},L_k).$$

Define

$$\Delta_{\mathscr{E}} : = d\delta : C(\mathscr{E}, L_k) \to C(\mathscr{E}, L_k),$$

$$\Delta_{\mathscr{V}} : = \delta d : C(\mathscr{V}, L_k) \to C(\mathscr{V}, L_k).$$

They induce

$$\begin{array}{ll} \Delta_{\mathscr{E}}^{\Gamma} & : & C\left(\mathscr{E}, L_{k}\right)^{\Gamma} \to C\left(\mathscr{E}, L_{k}\right)^{\Gamma}, \\ \Delta_{\mathscr{V}}^{\Gamma} & : & C\left(\mathscr{V}, L_{k}\right)^{\Gamma} \to C\left(\mathscr{V}, L_{k}\right)^{\Gamma} \end{array}$$

such that

$$C_{har}(\mathscr{E}, L_k)^{\mathsf{\Gamma}} = \ker\left(\Delta_{\mathscr{E}}^{\mathsf{\Gamma}}\right) \text{ and } L_k^{\mathsf{\Gamma}} = \ker\left(\Delta_{\mathscr{V}}^{\mathsf{\Gamma}}\right).$$

Following Jordan and Livné, define

$$\Phi_{\mathscr{V}}(L_k) := \frac{\ker\left(\Delta_{\mathscr{V}}^{\Gamma}\right)^{\perp}}{\operatorname{Im}\left(\Delta_{\mathscr{V}}^{\Gamma}\right)} = \frac{\left(L_k^{\Gamma}\right)^{\perp}}{\left(\delta d\right)\left(C\left(\mathscr{V}, L_k\right)\right)}.$$

Note that we have

$$0 \to L_k^{\Gamma} \to C(\mathscr{V}, L_k)^{\Gamma} \stackrel{d}{\to} C_0(\mathscr{E}, L_k)^{\Gamma} \stackrel{\partial}{\to} H^1(\Gamma, L_k) \to 0.$$

We define

$$\Phi_{\mathscr{E}}(L_{k}) := \frac{H^{1}(\Gamma, L_{k})}{\partial \left(\ker\left(\Delta_{\mathscr{E}}^{\Gamma}\right)\right)} = \frac{H^{1}(\Gamma, L_{k})}{\partial \left(C_{har}(\mathscr{E}, L_{k})^{\Gamma}\right)}$$

$$\stackrel{\sim}{\leftarrow} \frac{C_{0}(\mathscr{E}, L_{k})^{\Gamma}}{C_{har}(\mathscr{E}, L_{k})^{\Gamma} + d\left(C(\mathscr{V}, L_{k})^{\Gamma}\right)}.$$

Suppose k=2 and let Φ be the group of connected components of the Néron model of the Picard variety of the Mumford curve attached to Γ . Then

$$\Phi_{\mathscr{V}}(L_k) \simeq \Phi \simeq \Phi_{\mathscr{E}}(L_k)$$

by Raynaud and Grothendieck respectively.

Note that, if
$$x \in C_0\left(\mathscr{E}, L_k\right)^\Gamma$$
 and $y \in \ker\left(\Delta_\mathscr{V}^\Gamma\right)$, then $(\delta x, y)_\mathscr{V} = (x, dy)_\mathscr{E} = 0$, so that

$$\delta: C_0(\mathscr{E}, L_k)^{\mathsf{\Gamma}} \to \ker\left(\Delta_{\mathscr{V}}^{\mathsf{\Gamma}}\right)^{\perp} \subset C(\mathscr{V}, L_k)^{\mathsf{\Gamma}}.$$

By definition
$$\delta\left(C_{har}(\mathscr{E},L_k)^{\Gamma}\right)=0$$
 and
$$\delta\left(d\left(C(\mathscr{V},L_k)^{\Gamma}\right)\right)=\operatorname{Im}\left(\Delta_\mathscr{V}^{\Gamma}\right).$$
 It follows that δ induces
$$\overline{\delta}:\Phi_\mathscr{E}(L_k)\to\Phi_\mathscr{V}(L_k).$$

It can be proved that there is an exact sequence

$$0 \to \Phi_{\mathscr{E}}(L_k) \xrightarrow{\overline{\delta}} \Phi_{\mathscr{V}}(L_k) \to \frac{\left(L_k^{\Gamma}\right)^{\perp}}{\delta\left(C_0\left(\mathscr{E}, L_k\right)^{\Gamma}\right)} \to 0.$$

It is proved by Jordan and Livné that the $\Phi_{\mathscr{E}}(L_k)$ detects congruences between p-new and p-old modular forms.

On the other hand, there is a natural I-adic sheaf $\mathcal{L}_{k,I}$ attached to L_k (on the Mumford curve attached to Γ) and the theory of vanishing cycles allows us to define the analogue of the I-component of the group of connected components, that we denote by $\Phi(\mathcal{L}_{k,I})$, extending the definition in the weigth 2 case.

• Is it possible to define an explicit identification $\Phi\left(\mathcal{L}_{k,l}\right)\simeq\Phi_{\mathscr{V}}\left(L_{k}\right)_{l}$ or $\Phi\left(\mathcal{L}_{k,l}\right)\simeq\Phi_{\mathscr{E}}\left(L_{k}\right)$? (M. Chida's suggestion: look at H. Carayol's paper "Sur les représentations l-adiques associées aux forms modulaires de Hilbert").

Suppose now that B is indefinite (non-split to avoid some "Eisenstein type" consideration). We have in this case, with Γ as in the previous talk (let N be large enough so that no elliptic points appears),

$$H^{1}\left(\Gamma, C_{0}\left(\mathscr{E}, L_{k}\right)\right) \simeq H^{1}\left(\Gamma_{0}\left(pN^{+}\right), L_{k}\right),$$

$$H^{1}\left(\Gamma, C\left(\mathscr{V}, L_{k}\right)\right) \simeq H^{1}\left(\Gamma_{0}\left(N^{+}\right), L_{k}\right)^{2}.$$

Then we may replace $(\cdot,\cdot)_{\mathscr{E}}$ and $(\cdot,\cdot)_{\mathscr{V}}$ above by the cup products induced by (\cdot,\cdot) : unfortunately d and δ are not adjoint each other.

The definition of $\Phi_{\mathscr{E}}(L_k)$ does not require taking orthogonal complement and has a formal analogue:

$$\Phi_{\mathscr{E}}(L_{k}) := \frac{\overline{H}^{2}(\Gamma, L_{k})}{\partial (H^{1}(\Gamma, C_{har}(\mathscr{E}, L_{k})))} \\
\stackrel{\sim}{\leftarrow} \frac{H^{1}(\Gamma, C_{0}(\mathscr{E}, L_{k}))}{H^{1}(\Gamma, C_{har}(\mathscr{E}, L_{k})) + d (H^{1}(\Gamma, C(\mathscr{V}, L_{k})))}.$$

Here we consider the "shifted" exact sequence:

$$0 \to H^{1}(\Gamma, L_{k}) \to H^{1}(\Gamma, C(\mathcal{V}, L_{k})) \xrightarrow{d} H^{1}(\Gamma, C_{0}(\mathcal{E}, L_{k})) \xrightarrow{\partial} \overline{H}^{2}(\Gamma, L_{k}) \to 0,$$

where $\overline{H}^2(\Gamma, L_k)$ denotes the image of ∂ .

We remark that, setting

$$\Phi_{\mathscr{V}}(L_k) := \frac{H^1(\Gamma, C(\mathscr{V}, L_k))}{(\delta d)(H^1(\Gamma, C(\mathscr{V}, L_k)))}$$

we have the exact sequence, induced by δ ,

$$0 \to \Phi_{\mathscr{E}}(L_k) \to \Phi_{\mathscr{V}}(L_k) \to \frac{H^1(\Gamma, \mathcal{C}(\mathscr{V}, L_k))}{\delta(H^1(\Gamma, \mathcal{C}_0(\mathscr{E}, L_k)))} \to 0.$$

Then $\Phi_{\mathscr{V}}(L_k)$ is well known to detect primes of congruence.

• Let $\mathcal{L}_{k,l}$ be the *l*-adic sheaf attached to L_k on the indefinite Shimura curve attached to $\Gamma_0(pN^+)$. Can we identify

$$\Phi\left(\mathcal{L}_{k,l}\right) \simeq \Phi_{\mathscr{V}}\left(L_{k}\right)_{l} \text{ or } \Phi\left(\mathcal{L}_{k,l}\right) \simeq \Phi_{\mathscr{E}}\left(L_{k}\right) \text{ or } \Phi\left(\mathcal{L}_{k,l}\right) \simeq \Phi_{7}\left(L_{k}\right)_{l}$$
?