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p-adic integration

Let G be a Ip-type congruence subgroup in B* (the indefinite
quaternion algebra of discriminant D > 1 for simplicity) of level Ng
and let 77 (G) = P (G) be the Hecke algebra generated by the
operators T; where /1 NgD, U; and W, where | | Ng, W, where

I'| D and W... By a good Hecke operator we mean a T, for some
It NgD.
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p-adic integration

Definition 1

Let M be a 7 (G)-module. We say that M admits an
I-Eisenstein/Cuspidal decomposition (of weight k) whenever there
exists a decomposition of 7 (G)-modules M = M7 & M such that
t;:= T;—I*~1 —1 vanishes on M7 and is invertible on M for some
It NgD.

We say that it admist an Eisenstein/Cuspidal (of weight k)
decomposition if it admits an /-Eisenstein/Cuspidal decomposition
for every /1 NgD with Mf = M; and Mj = M for every
h,htNgD. In this case we write M = /\/leEB/\/IC where M¢ = M7
and M = Mf.

In the following discussion k will always be fixed and, when the / in
the definition of an /-Eisenstein/Cuspidal decomposition is implicit,
we simply write M¢ = Mf and M = Mf.
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p-adic integration

Consider the exact sequence
0= Char (£,2) — Go(£,2) 8 C(¥,Z) — 0, (1)

where & (c) (v) := Xs(e)=v (), which induces, taking
-cohomology and applying Shapiro’s Lemma, the exact sequence

0— E — HY(T, Cpar (6,2)) — H* (To (pNT),2)P 7" — 0
where we define
E := coker (55 - Go (ﬁ,Z)r — C(”//,Z)r> ,
HY (To (pN*) ,2)P ™" = ker (&) C H* (T, Go (£,7Z)).
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p-adic integration

The notation is justified by the following lemma and the fact that
HY (Fo (pN1),Z)P~ ™" is identified with the p-new part of

H (Fo(pN*),Z), because 8s corresponds to the degeneracy maps
up to Shapiro’s isomorphism.
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p-adic integration

Lemma 2

Consider the exact sequence
0— E — HY(T, Cpar (6,2)) — H* (To (pNT) ,2)P " — 0

We have that tj =0 on E ~ (p+1)Z ®7Z for every I { pN™ while

t;: H (To (pNT),Z)P " — HY (To (pNT),Z)P~ " is injective on
HY (To (pNT),Z)P~"" ~ 7Z&. There exists

E®HC HY (T, Chor (8,7)) such that t;: H— H is injective every
11 pN*tD, H s H' (Fo (pNT),Z)P" """ is Z-free and with torsion
cokernel inducing

QH = H (T, Char (6,Q))° = Q@z H 3 H! (To (pN+) ,@)P "
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p-adic integration

Set A := QY —Qp and let Div(.7;) (ko) CDiv()") be the
subgroup of divisors that are invariant under the action of GQgr/kP.

We define Div® (/7;) (k) CDiv? (") by means of the following
exact sequence

0 — Div® (%) (k,) — Div(56) (k,) £ Z — 0. (2)

Here we remark that Div(.7%;) (Qp) C Div(.5%,) (k) and there is a
degree one divisor in Div(7%;)(Qp), so that the above deg is
surjective.
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p-adic integration

We fix from now on any
H < H' (To (pNT),Z)P "™

as granted by Lemma 2. Let C (P! (Qp),KpX) be the space of
continuous Kp-valued functions on P! (Q,). Then we may define a
pairing

C(P(Qp), Ky) @ Char (&, Z) — KJ*

by the rule
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p-adic integration

where %5 C 7 runs over all the net of finite subtrees of 7, d.%
denotes the set of boundary edges of .7 oriented towards

0.7 =PY(Qp) and te € Ue, where U, C P1(Q),) is the open
compact subset attached to the equivalence class of ends starting
from e. Here we remark that, given a choice {te}ee@@' the above
limit exists thanks to the boundess of ¢ € Cpar (£,Z) C CE,, (&, 2)
and it does not depend on the choice of {te} . o. This pairing is

easily checked to be GL> (Qp)-invariant.
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p-adic integration

Next we remark that we may form the following commutative

diagram
DV () (k)  © Char(£.Z) S K
6 | |
C(PYQ).KS)  ® GCuar(€,2Z) 3 K (4)
i I . |

C(Pl((@p),Klj)/KpX ® Cpar (£,2) = K,
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p-adic integration

where 6 is obtained by linear extension of the map

. t—1T
- t—Tl.

0 : Div (e%i,ur) —C (Pl (Qp) aKipX) , Oy ry ()

The fact that the pairing in the second row induces uniquely a
pairing in the thirt row follows from the harmonicity of the elemnts
of Char (&,Z). In particular this pairing is GL (Qp)-invariant.
Since the composite Div () (kp) — C (P (Qp), K1) /K, is

GL; (Qp)-invariant it follows that the pairing in the first row is
GL> (Qp)-invariant too.
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p-adic integration

We deduce a Hecke equivariant map
Oy : Hy (T, Div (H5) (ko)) > Hom (H (T, Char (€,2)), K ) = TH (Kp),

where Ty (K) := Hom (H,K}) and the second map is induced by
H C HY (T, Char (&,7)). Note that, since H is Z-free, Ty is indeed
a rigid analytic torus, endowed with an action of

T := P (To (pNT))P ",
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p-adic integration

Composing with logp : K — K, and ord, : K — K, we obtain,
setting log; :=logg —lord for every A € Pl( ) W|th A #0 and

log.. :=ordp,
Hy (T, Div () (kp))
+o
Hom (Hl(r7 Char(gvz))7K[;<) — TH(KP)
1log, 1 log;

Hom (HY (T, Char (6. 2)) , Kp)  — Hom (H,K)

I I
HomKP (Hl (F, Cha,(é‘),Kp)),Kp) — HomKP (HKP’KP)
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p-adic integration

We also remark that we have the factorization

Homy, (H* (T, Char (6,Kp)),Kp) —  Homy, (H* (T, Char (6, Kp))° . Kp)
= HOpr (HKP’ Kp) )

where the identification follows from our choice of H in view of

Lemma 2 and is induced by H C H (T, Cpa, (&,7Z)). Of course, by

Lemma 2,

H (T, Char (&,K,))E = i (ro (pNJr) ’Z)P—new.
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p-adic integration

We define

. log; (®
log;, (P4) : Ha (T, Div (43) (k) “25”
Homy,, (H* (T, Char (&6, Kp)) , Kp) — Homy, (Hk, . Kp)

as the morphisms obtained from the above commutative diagram.
They are what we will generalized to the higher weight case.

In order to performs such a generalization it will be convenient to
redefine these maps in a more convenient way.
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p-adic integration

Definition 3

Let <7, := o,(P*(Qp), K,,) be the space of K,-valued locally
analytic functions on P1(Q,) with a pole of order at most n at co.
More precisely, an element f € o7, is a locally analytic function

f 1 Qp — Kp for which there exists an integer N such that f is
locally analytic on {z € Qp : ord,(x) > N} and admits a convergent
expansion

f(z) =apz"+ ap_1z" 1+ ... tap+ Z a_,z "
r>1

on {z € Qp: ordy(z) < N}.
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p-adic integration

The space <7,(P1(Q,), K,) carries a right action of GL»(Qp)

defined by the rule f-y= é:fg,)d,,)/nz : (iﬁif}

f € o, (PY(Qp), Kp) and y=(2 5) € GL2(Qp). Note that Py (Kp)
is a natural GLy(Qp)-submodule of it, where P, := P,(Kj,) is the
space of Kj-valued polynomials on of degree < n.

We have

), for any

0—P,— ) — ,/Py—0

and define 7, := Z,(P1(Qy), K,) and 29 := 2%(P1(Q,), K,) by
taking the continuous Kp-duals:

0-2°—= 2, —-V,—=0
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p-adic integration

Put n:= k —2 from now on.

Definition 4

200 .= 90 (P! (Qp), Kp)? is the subset of those u € #? for which
there is a constant A such that, for all i >0, j >0, and all a € Zp,

u((x— a)i\a+p’Zp)y < pA—j(i—l—k/z)_

Author, Another Short Paper Title



p-adic integration

There is an epimorphism of GL(Qp)-modules
r: gg(Pl(Qp):Kp) - Char(gvvn(Kp)):
(W)(E)(P)= [ Pe)du(e) = n(P-zu.)
restricting to an inclusion
Z5(PH(Qp), Kp)® = Char (& Vn(Kp))

and we set Char(&,Vn(Kp))? :=r (Z2(PH(Qp), Kp)").
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p-adic integration

Noticing that we have

t—1 lo
logy (0r,,1,) = log, (t — T1> = 912%1 (t) € %(Pl (Qp), Kp)

we may consider the following analogue of (4)

Div® () (kp) @ Pn (Kp) © Z9(PH(Qp).Kp)? o K

p

elogl \l/ || H

Jafn(IP’l(Qp),Kp) ® ‘@I?(]P)l(@p),Kp)b ¢_°g>x K
. | I

Ap(PHQp) Kp)/Pa(Ky) © ZO(PH(Qp).Kp)P 5 K,
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p-adic integration

where 0'°¢2 is obtained by K,-linear extension of the map
6'°% : Div (") @ P o (Kp) = Zn(P*(Qp), Kp),

1 t—1T
0% (0 =1ogs (12 ) P 1)

A similar remark as in the multiplicative setting implies the
GL; (Qp)-invariance.

Author, Another Short Paper Title



p-adic integration

The key fact allowing us to extend the p-adic integration theory to
the higher weight setting is the following.

The above map r induces an Hecke equivariant isomorphism

HL (r,gg(pl(Qp),K,,)b) S HY(T, Crar(€,Vn(K))).

By means of Theorem 5 the pairing ®'°¢2 induces a Hecke
equivariant morphism:

(Dk’g/l

O - Hy (T,DIVY () (kp) @ P (Kp)) =
Hopr (Hl (ra Char(@(davn(KP))) ) KP) - H></ (KP)'

where we set H)/ (K},) := Homy, (H' (T, Char(&,Va(Kp)))  Kp).



p-adic integration

The claimed generalization is a consequence of the following
proposition.

Proposition 6

When k = 2 we have log; (®) = ®'°% o and log, (Py) = DBioj,
where

i+ Hy (T, Div° () (kp)) — Hh (T, Div® (%) (kp) @ Kp) -
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p-adic integration

Proof.
(Sketch) If u € 20(P(Qp), Kp)? and f € 4 (P(Qp), K,) then

u() = Jim (Lo r (W) (e)F (2))
where t, # oo for every e € &. Furthemore,

22(PHQp), Kp)® = Char(E,Kp)? D Char(&,Z). Hence, if

r(1) = c € Char(&,Z) with p € 29(PL(Qp), Kp)b and

f e C(P'(Qp),Ky)) is such that log, (f) € #(P'(Qp), Kp), then

3) .
log, @ (f,c) = log, (9!,'217 (Heea% f(te)c(e))>

= lim(¥,co5 (1) (€)logs (£ (t))) = p (logy (£).

TCT

The claim is then easily deduced. Ol




The rigid analytic abelian variety and the monodromy moduls

Consider the morphisms
d . o}
®po: Ha(M,Z) 5 Hy (T, DIV (5) (ko)) =% T (Kp),
2} .
¢1C0%z tHy (TP, (Kp)) = Hi (F,Dlv0 () (ko) @Pn(Kp)) — HY (Kp)
where d is obtained from (2).

Theorem 7

The morphism %9 : H, (T,P,(Kp)) — HY (Kp) is surjective and

induces an isomorphism Hy (I,P,(Kp)) = HY (K,). There exists a
unique £ € Tq, such that

logy ord __ 4ord
g =Loby =002
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The rigid analytic abelian variety and the monodromy moduls

Define

L= — P2 © o2 : Hy (M,Div0 () (ko) ©Ps(Kp)) — D (Kp),
D« (KP) = HX (Kp)zi <Dc,& =®c00.

We also set

Ly :=Im(®y,) C TH(Qp) (when k=2),
F:=Im ((Dc,z?) C Dy (Qp) =: Dy.
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The rigid analytic abelian variety and the monodromy moduls

Corollary 8

If k=2, then Ly C TH(Qp) =: Hom (H,Q;) is a Hecke stable and
Z-free subgroup and ord(Ly) C Hom(H,Qp) is a Z-lattice. In
particular Ay (Kp) == Tr (Kp) /Ly is represented by a rigid analytic
abelian variety Ay /Qp with multiplication by T.

For an arbitrary k we have Dy = DI ® D, where Df has a natural
structure of Tg,-monodromy module structure over Q, with
Fontaine-Mazur £-invariant £+ such that ¥ = £+ ® .~ and
D, is the Tg,-monodromy module attached to the Gq,
representation Vj, (Ap).
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The rigid analytic abelian variety and the monodromy moduls

For arbitrary k, the structure of monodromy module on fo is given
in such a way that F C Dy is the only non-trivial step in the
filtration. Hence we may consider
—log . 0 Ple Dy
@ Hy (T,Div° () (kp) @ Pr(Kp)) =5 Dy — =
Note also that there is a unique isomorphism 2% = HY/ (K),)
making the following diagram commutative:

Dk (Kp) = HY (Kp) @ HY(Kp) — B«
(x,y) = —(x+Zy) 1 1 (5)
Hy (Kp) = H/(Kp).
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The rigid analytic abelian variety and the monodromy moduls

Then the following diagram is commutative:

lo,
H(ED () (k) @Pa(Ko) %S De o %
| i I
. D0 Lo
H1 (r,DlVO (%)(kp)@)Pn(Kp)) — HX KP) = HX( P)
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The rigid analytic abelian variety and the monodromy moduls

When k =2, writing
i+ Hy (T,Div0 (%) (ko)) — H1 (T, Div® (54, (kp) ® Kpp) we deduce,
thanks to Proposition 6, that ®. o/ is identified with

(0 - 2002 0i = (logy(¥4)01) ~ (Loord(Op)o1)
= logAHo¢Hoi, (6)

where
logy,, :=1logy — L oord(®y) : Ay (Kp) — Homy, (Hk,, Kp)

is the logarithm of the rigid analytic abelian variety Ay (Kj).
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p-adic uniformization

It is convenient to single out one of the two copies DT, which is
obtained by means of the involution W... This is the manifestation,
in the weight 2 setting, of a degree 2 isogeny Ay — A}, x A,

Theorem 9

The above defined £ -invariant £* is equal to the Fontain-Mazur
ZL-invariant attached to the Qp-adic representation
Vi := Vi (To (pN))P~ " In particular, £+ = £~

As an application of Theorem 9 one may find an isomorphism of
monodromy modules D ~ Dy (Fo (pN1))P ™" =: Dy, where
Dy (To (pNT))P~"" is the monodromy module attached to

Vi (To (pPNT))P~"" It follows that we have

log D
O ¢ Hy (T.DIV (#5) (k) © P (Ky)) 25 D — =
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p-adic uniformization

Since Hi (I',P,(Kp)) =0, we have from (2)

Hy (Div° () (ko) @ Pn (Kp)) ~ .
d (Ha (pF,P:(Kp))) P25 Hy (T, Div(4) (kp))

and, noticing that ®. (9 (H2(I,P,(Kp)))) = F by construction, we
may consider

Dy

AJRE : Hy (T,Div () (ky)) — =

induced by ..
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p-adic uniformization

In the weight 2 case Theorem 9 implies that there is an isogeny
Ay, — A=: A(To(pN*))P~"" (inducing the isomorphism between
the associated monodromy modules). Here H; (I',Z) is a finite
group because it is finitely generated and H; (I',K,) =0, say of
order h. It follows that we have

o  Hh (Div° (/) (k)
h'Hl (erlV(ji’i?)(kP))_> a(H2(|—7Z))

C Hy (I, Div (%) (ko))

and we may define

ivO
Mo (D (05) ko) > 0 (Hz(@)()kp)) > A (Ko) = A(K)

because ¢y (d (H2(I',Z))) = Ln.
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Darmon points/cycles

Let K/Q be a quadratic field such that we may write pN = pNtTN~
where (pN, D) =1, the primes dividing N are split in K, those
dividing pN~ are inert in K and pN~ is squarefree and divisible by
an odd numer of primes. Then L(f/K,s) vanish at the central
criticl point for a new weight k modular form of level o (pN),
whose p-adic representation may be realized in the Shimura curve
of disctiminant D = N~ taking a [ (pN™)-level structure.

It is possible define a period maps

M\& (Ok, Ro (PNT)) = Hy (T, Div(45) (kp)),
M\& (Ok,Ro (pPNT)) — Hy (DIV? (4) (ko) @ Pk (K,))

compatible with

i+ Hy (T,Div0 (%) (ko)) — H1 (T, Div® (54,) (k) ® Kpp) in the
weight 2 case. Here we remark that & (0, Ry (pN™)) # ¢ thanks
to our assumptions.
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Darmon points/cycles

We define, setting & := & (Ok, Ry (pN™T)),

P =Y e Aden (V) € A(K)

and
log )/K ZWE&O AJlog (\U)
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Darmon points/cycles

Recall that, writing X for the free group of degree zero divisors
supported at the supersingular points of the reduction of Xpy+ y-,

we have A(K,) = M We may consider the following

commutative diagram:

Q®AL(K) —  Q®A(K) < Sel(K,Va)

N N 1
QeAL(K,) —  Q®A(K,) — HH K V)
14 1OgAﬁ |4 loga 14 log
H/ " (Kp) = Homg, (H*,Kp) 5 Homg, (X,K,) = L,
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Darmon points/cycles

where log:=exp~! is the inverse of the Bloch-Kato exponential
map, which is easily checked to be an isomorphism in this case, and
we are considering the Kummer morphisms. Here the identifcation
Homy, (X, Kp) = D2 can be choosen to be compatible with

+
HZ’i(Kp) = ka appearing in (5), thanks to Theorem 5. Then (6)
implies that

loga(Px) = Z\UeglOgA (AJc,h(‘U))
= Z\uEg( e j‘bgrd) (Aden (W)

= hZ\erp( 10go szq)grd) AJC _hZ\Ueé"
= hlog(yk)-

Hence we define, for an arbitrary k,
yk = exp(log (yx)) € H (Kp, Vi).



Darmon points/cycles

CONJECTURE. We have that yx (resp. Pk when k =2) comes
from a global cohomology class in Sel, (K, Vi) (resp. a global point
in A(K)). The global classes from which the points/cycles come
"should explain low rank instances of the Birch and
Swinnerton-Dyer conjecture".
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Darmon points/cycles

As an evidence towards this conjecture we may state the following
result. Let Wy be the Atkin-Lehner involution acting on the space
of modular forms and define A"V, V,"¥ and D,V as the quotients
where Wy = wy.

Theorem 10

On the quotient D™ such that wy = (—=1)%/2 we have that v

(resp. Pg" when k =2) comes from a global cohomology class in
Sel, (K, V2) (resp. a global point in Q@ A(K)).

Remark 11

We remark that the weight k =2 case follows form the statement
about yV, in light of loga (Pk) = hlog(yx) and the proof relative
to y, /N, showing that this class comes from a global cycle and
therefore an element of Q @ A(K). We will return on this fact in
the subsequent proposals.
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...and related Proposals
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First proposal

First Proposal

Let T be a Z,-adic representatin of Gk such that V:=Qp®z, T
is semistable and define A:= % ®z, T, so that we have the exact
sequence

0TS VSA0.

For every place v of K we define H., (K., V) by means of the
following exact sequence

Hl (K\l/lr7 V) |‘Fp’tV’

1 1
Oﬁ%NmWﬁHUQWﬁ{HwMBﬂ%N)WN%
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First proposal

We also define

1
st vy

Consider the exact sequence

HY (Ky, T) 5 HY(K,, V) 5 HY (Ky, A)

and define
HL (K., T) : =1 (H' (K., V)) C HY (K., T),
HL (Kv,A) @ =r(H' (K., V)) C HY(K,,A).
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First proposal

Next we define

res H (K T)>

Sel(K,T) : =ker( HH(K, T)=T] —2—=),
0Ty =ter (W T T g 1)
res H'(K,,A)

Sel(K,A) : =ker <H1 K,A) = >
( ) ( ) HV H;'t(Kv,A)

Then we find the exact sequence:

Sel (K, T)— Sel (K,V) — Sel (K,A).
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First proposal

In particular we may applying this construction to T = Ty. In the
weight 2 setting we find Py € A(K},) which gives an element of
Zp®7,A(Kp) and then a cohomology class cx € HL (K,, T).

e Is it possible to define, more generally, cx € HL, (K., Tx) such
that 1 (cx) = yk € HL (Ky, Vi)?
o An integral version of the p-adic integration theory should be

needed.

e Also, an understanding of those representation T such that V
is a monodromy module should be needed by means of an
"integral Fontaine theory".
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First proposal

When T, = Ty, the representation comes from a geometric setting.
In this case we have a family T; of Z;-adic representation which
manifest a coherence, due to the fact that they are realizations of a
motive (eventually except for a finite set of primes). There is a set
of primes S such that T, is unramified at SU{/} and, writing Frq
for the grometric Frobenius at g ¢ SU{/},

Lq(T,s) :=det(1—Fryq*: V/)_1

is such that det(1 — Fr, X : V}) € Q,[X] has rational coefficients and
does not depend on the choice of / ¢ S. In the weight 2 setting

Pk € A(Kp) — HY (Kp, Ty)

for ant /. The same is true in the higher weight setting replacing
Pk by the Heegner cycle.
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First proposal

@ What about the misssing /-adic components of Darmon
cycles? As we remarked the proof of the rationality statements
produces a global cycle in CHg) mapping to yx. Hence, up to
the finite primes appearing in the denominator one could take
the /-components of the Darmon cycle as those defined by this
cycle; but here we are looking for a refined theory allowing an
a priori definition which applies to the more general yys.
Furthermore, we do not know if this gives the correct
definition in the weight 2 setting!
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Second proposal

Second Proposal

Let B be the quaternion algebra of discriminant D, definite or
indefinite. Then there are B*-representations VE with coefficients
in Q such that F ®q VZ = Vi (F) for every splitting field. They
can be endowed with invariant Z-lattices L,. Suppose p is a prime
and N is a integer with (pN*,D) = (p, N*) = 1.
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Second proposal

Assume now that B is definite and let I C B = GL2(Q,) be an
arithmetic group obtained from a g (N™)-level structure and no
integral condition at p. More precisely we take

Ko(NT) C BX (AfP), set T := i, (Ko (NT)NB*) C B} and then
take the norm one elements I'.

Suppose that Ko (N*) is small enought, so that I acts on the
Bruhat-Tits tree without fixed points. After inverting p we fix a
non-degenerate -invariant pairing

() Le@ Lk = Z[1/p]
which naturally induces non-degenerates pairings

()t Co(E L) © Go (&, L) = Z[1/p],
()y: C(7 L) @ C(V, L) = Z[1/p].
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Second proposal

We note that we have:

G (<§’,Lk)r + weight k and Ty (pNJr) -level modular forms on B,
C(¥,Lk)" ¢ two copies of weight k and o (N)-level modular

forms on B.
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Second proposal

We have exact sequences

0 — Ly—C(7,L)S C(&,Lk) — 0,
0 = Char (L) = Go(&,Lk) > C (¥, L) >0,

where d(c)(e) :=c(t(e))—c(s(e)) and §(c)(v) :=YLse)=v c(e).
They induces

COV L) 3 Co(&, L) and Go(&, L) > (7, L)
which are adjoint:

(x,dy)s=(8x,y)y, x € Go(&,Lk) and y € C(V, Lg).
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Second proposal

Define
Ag =dé: C(g,Lk)—> C((g,Lk),
An;/ . =6d: C(’V,Lk)—> C(ﬂf/,Lk).
They induce
AL ce L) L)
AT o C(V L) = C( L)
such that

Char (&, Lk)r =ker (A;) and LZ =ker (A;) )
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Second proposal

Following Jordan and Livné, define

_ker(AD) (D)
Sy (Li) = Im(AE/) - (5d)(Ck(”1/,Lk))'

Note that we have

0= LE = C(7 L) 3 Co(&, L) 5 HY(T, L) — 0.
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Second proposal

We define
Hl(r?Lk) Hl(rva)
(Dg(Lk) . = =
J (ker(Ak)) 9 (cha, (&, Lk)r)
- Go (&, L)

Crar (&.L0) +d (C(7, L))
Suppose k =2 and let ® be the group of connected components of
the Néron model of the Picard variety of the Mumford curve
attached to I'. Then
q)y/(Lk) ~ ¢~ ¢g(Lk)

by Raynaud and Grothendieck respectively.
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Second proposal

Note that, if x € Go(&,Li)" and y € ker(A!)), then
(6x,y)y = (x,dy), =0, so that

1
§:Co(&, L) — ker (AE,) cCc, L)

By definition o (Cha, (£,Lk)r> =0 and
0 (d (C(”I/,Lk)r)> =Im(A')). It follows that & induces

6:®s(Li) = Py (Li).
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Second proposal

It can be proved that there is an exact sequence

5 (L)
0 B (L) > By (L) = ———/—— 0.
5 (co (&, Lk)r>

It is proved by Jordan and Livné that the ® 4 (Ly) detects
congruences between p-new and p-old modular forms.
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Second proposal

On the other hand, there is a natural /-adic sheaf .Z} ; attached to
Lk (on the Mumford curve attached to I') and the theory of
vanishing cycles allows us to define the analogue of the
I-component of the group of connected components, that we
denote by ® (%), extending the definition in the weigth 2 case.

@ Is it possible to define an explicit identification
o (ZkJ) ~ ¢y/(Lk)/ or (gk,l) >~ ¢(§(Lk)? (M Chida’s
suggestion: look at H. Carayol's paper "Sur les représentations
l-adiques associées aux forms modulaires de Hilbert").
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Second proposal

Suppose now that B is indefinite (non-split to avoid some
"Eisenstein type" consideration). We have in this case, with I as in
the previous talk (let N be large enough so that no elliptic points
appears),

HH(T, Co (€, L)) =~ H (To (pN) L)

HY(, C (7, L)) ~ H* (To (N1), L)

Then we may replace (-,-), and (-,-), above by the cup products
induced by (-,-): unfortunately d and & are not adjoint each other.
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Second proposal

The definition of ® 4 (Lk) does not require taking orthogonal
complement and has a formal analogue:

H (T, Ly)
9 (HX (T, Char (6, Lk)))
H* (T, Co (&, Lk))
HY (T, Char (€, Li)) +d (HX (T, C (¥, Ly)))’

q)g (Lk) .=

o
Here we consider the “shifted” exact sequence:
0— HY (I, L) = H (T, C (7, L)) % HY (T, Co (&, i) % H (T, L) =0,

where H ([, Ly) denotes the image of .
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Second proposal

We remark that, setting

HY(I, C (7, L))

Oy (Li) = (8d) (HL(T,C(7,Ly)))

we have the exact sequence, induced by §,

HY (T, C (¥, L))

0— &g (L) = Py (Li) — S(HL(T,Go(&,Lk)))

— 0.

Then &y (L) is well known to detect primes of congruence.

o Let .7} be the /-adic sheaf attached to Ly on the indefinite
Shimura curve attached to o (pN™). Can we identify
o (ng) ~ ¢7/(Lk)/ or (gk,l) >~ ¢,§(Lk) or
$ (fk’/) ~ CD? (Lk)/?
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