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Model studied

∂t f − ∂2
xx f − |x |2γ∂2

yy f +
cν
x2 f = u(t, x , y)χω(x , y), (t, x , y) ∈ (0,T )× Ω,

(G)

with γ > 0 and cν := ν2 − 1
4
, ν ∈ (0, 1).
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Comments on the model

Boscain Laurent (2011). Laplace-Beltrami operator associated to
Grushin-like metric (up to change of variables)

Lf = ∂2
xx f + |x |2γ∂2

yy f −
γ

2

(γ
2

+ 1
) f
x2 , on L2(R× T).

γ
2

(
γ
2 + 1

) 1
x2 ← cν

x2 : decouple effects of degeneracy and singularity.

cν := ν2 − 1
4 . Choice of ν < 1 (i.e. cν < 3

4 ) to avoid essential
self-adjointness.

cν > − 1
4 : validity of the Hardy inequality∫ 1

−1

(
(f ′(x))2 +

cν
x2 f

2(x)
)

dx ≥ 0, for f ∈ H1(−1, 1) with f (0) = 0.

Crucial tool for inverse square singularity : Baras Goldstein (1984),
Vazquez Zuazua (2000), Vancostenoble Zuazua (2008), Ervedoza
(2008), Vancostenoble (2011), Cazacu (2013)...
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Necessary and sufficient condition for approximate
controllability

(G) is approximately controllable in time T > 0 if for every ε > 0, for every
f 0, f T ∈ L2(Ω) there is u ∈ L2((0,T )× Ω) such that the associated solution
satisfies

‖f (T )− f T‖L2(Ω) ≤ ε.

Main Theorem
Let T > 0, γ > 0 and ν ∈ (0, 1). (G) is approximately controllable in time T > 0
if and only if ν ∈

(
0, 1

2

]
i.e. cν ∈

(
− 1

4 , 0
]
.

∂t f − ∂2
xx f − |x |2γ∂2

yy f +
cν
x2 f = u(t, x , y)χω(x , y)

Need to precise the notion of solution
Different behaviour from non singular and boundary singular cases
ω ∩ (Ω\{x > 0}) 6= ∅ and ω ∩ (Ω\{x < 0}) 6= ∅ : ok for ν ∈ (0, 1).

Morgan MORANCEY Unique continuation 2D singular Grushin 6



1D singular heat equation

Theorem
Let T > 0 and ν ∈ (0, 1). The system

∂t f − ∂2
xx f +

cν
x2 f = u(t, x)χω(x), (t, x) ∈ (0,T )× (−1, 1),

f (t,−1) = f (t, 1) = 0, t ∈ (0,T ),

f (0, x) = f 0(x), x ∈ (−1, 1),

is approximately controllable in time T if and only if ν ∈
(
0, 1

2

]
i.e. cν ∈

(
− 1

4 , 0
]
.

By-product of the proof of the Main Theorem.
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Wellposedness issues

Limitation : behaviour of functions at the singularity

∃f ∈ C∞0 (Ω) such that − ∂2
xx f − |x |2γ∂2

yy f +
cν
x2 f 6∈ L2(Ω).

Strategy : for ν ∈ (0, 1), design a suitable extension (A, D(A)) of(
−∂2

xx f − |x |2γ∂2
yy f +

cν
x2 f , C

∞
0 (Ω\{x = 0})

)
such that {

f ′(t) = Af (t) + v(t), t ∈ [0,T ],

f (0) = f 0,

is well posed.
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An auxiliary 1D system

 ∂t f − ∂2
xx f +

( cν
x2 + (2nπ)2|x |2γ

)
f = 0, (t, x) ∈ (0,T )× (−1, 1),

f (t,−1) = f (t, 1) = 0, t ∈ (0,T ),
(Gn)

(Gn) : system satisfied by the Fourier coefficients in the y variable of the
formal solution of (G).
Study of the operator

Anf := −∂2
xx f +

( cν
x2 + (2nπ)2|x |2γ

)
f .

Design of D(An) such that (An,D(An)) self-adjoint positive on L2(−1, 1).

For any n ∈ Z, any f 0 ∈ L2(−1, 1), (Gn) with initial condition f 0 has a unique
solution

C 0
(

[0,+∞), L2(−1, 1)
)
∩ C 0

(
(0,+∞),D(An)

)
∩ C 1

(
(0,+∞), L2(−1, 1)

)
.

Morgan MORANCEY Unique continuation 2D singular Grushin 10



Domain of the 1D operator I

Regular and singular spaces. ν ∈ (0, 1).

H̃2
0 (−1, 1) :=

{
f ∈ H2(−1, 1) ; f (0) = f ′(0) = 0

}
,

Fs :=
{
f ∈ L2(−1, 1) ; f = c+

1 |x |
ν+ 1

2 + c+
2 |x |

−ν+ 1
2 on (0, 1)

and f = c−1 |x |
ν+ 1

2 + c−2 |x |
−ν+ 1

2 on (−1, 0)
}
⊂ L2(−1, 1).

D(An) :=
{
f = fr + fs ; fr ∈ H̃2

0 (−1, 1), fs ∈ Fs such that f (−1) = f (1) = 0,

c−1 + c−2 + c+
1 + c+

2 = 0 and

(ν + 1
2 )c−1 + (−ν + 1

2 )c−2 = (ν + 1
2 )c+

1 + (−ν + 1
2 )c+

2

}
,

Comments : ∫ 1

−1

(
f ′r (x)2 +

cν
x2 fr (x)2

)
dx ≥ 0, ∀fr ∈ H̃2

0 (−1, 1).
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Domain of the 1D operator II

−∂2
xx fs +

cν
x2 fs = 0, ∀fs ∈ Fs .

For every f = fr + fs ∈ D(An),

Anf =
(
−∂2

xx +
cν
x2

)
fr + (2nπ)2|x |2γ f ∈ L2(−1, 1).

(An,D(An)) is self-adjoint and satisfies

〈Anf , f 〉 ≥ mν

∫ 1

−1
∂x fr (x)2dx + (2nπ)2

∫ 1

−1
|x |2γ f (x)2dx ,

with mν := min{1, 4ν2}.

=⇒ wellposedness of (Gn)

Construction inspired by general theory of self-adjoint extensions of
Sturm-Liouville operators : Zettl (2005).

Construction impossible for ν ≥ 1 : x−ν+ 1
2 6∈ L2(0, 1)
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Semigroup associated to the 2D problem

Periodic Fourier basis

ϕn(y) :=
√
2 sin(2nπy), n ∈ N∗, ϕ0(y) := 1,

ϕ−n(y) :=
√
2 cos(2nπy), n ∈ N∗

Definition of a C 0 semigroup of contraction : f 0 ∈ L2(Ω).

f 0(x , y) =
∑
n∈Z

f 0
n (x)ϕn(y),

fn solution of (Gn) with initial condition f 0
n ,

(S(t)f 0)(x , y) :=
∑
n∈Z

fn(t, x)ϕn(y).
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Generator of the semigroup

A infinitesimal generator of S(t).

D(A) =

{
f ∈ L2(Ω) ; fn ∈ D(An),

∑
n∈Z
||Anfn||2L2(−1,1) < +∞

}
,

Af = −
∑
n∈Z

(Anfn)(x)ϕn(y).

Extension of the singular Grushin operator

Af = ∂2
xx f + |x |2γ∂2

yy f −
cν
x2 f , ∀f ∈ C∞0 (Ω\{x = 0}).

(G) to be understood in the sense{
f ′(t) = Af (t) + v(t), t ∈ [0,T ],

f (0) = f 0,

with v(t) := (x , y) 7→ u(t, x , y)χω(x , y). Unique mild solution.
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Unique continuation

Duality : approximate controllability ⇐⇒ unique continuation of the adjoint
system i.e.

S(t)g0 ≡ 0 on (0,T )× ω =⇒ S(t)g0 ≡ 0 on (0,T )× Ω.

ν ∈
(
0, 1

2

]
.

S(t)g0 ≡ 0 on (0,T )× ω =⇒ S(t)g0 ≡ 0 on (0,T )× Ω.

ν ∈
( 1

2 , 1
)
.

∃g0 ∈ L2(Ω)\{0}; S(t)g0 ≡ 0 on (0,T )× ω.
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Strategy for unique continuation

ν ∈ (0, 1). g0 ∈ L2(Ω); S(t)g0 ≡ 0 on (0,T )× ω.

unique continuation for uniformly parabolic operators : S(t)g0 ≡ 0 on
(−1, 0)× (0, 1)

reduction to 1D problem with boundary singularity : transmission conditions

Unique continuation for any n ∈ Z, for ν ∈
(
0, 1

2

]
: 1D Carleman estimate

Key points :

ν ∈
(
0, 1

2

]
: cν ≤ 0.

g ′(0) = 0 :

∫ 1

0

g2(x)
x3 dx < +∞
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Explicit counterexample

Bessel function of first kind

Jν(x) :=
(x
2

)ν∑
k∈N

(−1)k

22kk! Γ(k + ν + 1)
x2k , x ∈ [0,+∞)

solution of
x2y ′′(x) + xy ′(x) + (x2 − ν2)y = 0.

λ ∈ (0,+∞) such that Jν(
√
λ) = 0. The function bλ : x 7→ x

1
2 Jν(x

√
λ) satisfies − b′′λ(x) +

cν
x2 bλ(x) = λbλ(x),

bλ(0) = bλ(1) = 0.

b′λ(x) ∼
x→0

C (λ, ν)xν−
1
2 .

Conclusion. ν ∈
( 1

2 , 1
)

: g(t, x , y) := e−λtbλ(x)χ(0,1)(x) solution vanishing on ω.
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Adaptation to the 1D singular heat equation

 ∂t f − ∂2
xx f +

cν
x2 f = u(t, x)χω(x), (t, x) ∈ (0,T )× (−1, 1),

f (t,−1) = f (t, 1) = 0, t ∈ (0,T ),
(H)

with ω = (a, b), −1 ≤ a < b ≤ 0, γ > 0 and cν := ν2 − 1
4 , ν ∈ (0, 1).

Rewritten in terms of A0. (A0,D(A0)) self-adjoint positive on L2(0, 1).

e−A0tg0 = gr (t) + gs(t).

e−A0tg0 ≡ 0 on (0,T )× ω : gr ≡ 0 on (0,T )× (−1, 0) and gs ≡ 0 on
(0,T )× (−1, 1).

ν ∈
(
0, 1

2

]
: Carleman inequality for P0 =⇒ unique continuation.

ν ∈
( 1

2 , 1
)
: explicit counterexample to unique continuation (Bessel function).
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Open Problems and perspectives

Conclusion
Design of a suitable self-adjoint extension of the operator

−∂2
xx − |x |2γ∂2

yy +
c
x2 .

Necessary and sufficient condition for unique continuation
Classical results for regular parabolic operators + Carleman estimate for 1D
heat equation with boundary singularity
Explicit counterexample

Perspectives
Null controllability
Other extensions Details

Thank you for your attention.
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Carleman inequality

ν ∈
(
0, 1

2

]
: cν = ν2 − 1

4 ≤ 0.

Pn := ∂t − ∂2
xx +

( cν
x2 + (2nπ)2|x |2γ

)
Weights : σ(t, x) := θ(t)p(x) where θ : t 7→ 1

t(T−t) , p ∈ C 4([0, 1],R) such that
on [0, 1]

p(x) ≥ m0 > 0, px(x) ≥ m1 > 0, −pxx(x) ≥ m2 > 0.

Let T > 0 and QT := (0,T )× (0, 1). There exist R0,C0 > 0 such that for any
R ≥ R0, for any g ∈ C 1((0,T ], L2(0, 1)) ∩ C 0((0,T ],H2 ∩ H1

0 (0, 1)) with
∂xg(t, 0) = 0 on (0,T ),

C0

∫∫
QT

(
R3θ3g2 + Rθg2

x
)
e−2Rσdxdt ≤

∫∫
QT

|Png |2e−2Rσdxdt.

Conclusion :
ν ∈

(
0, 1

2

]
=⇒ unique continuation of the adjoint system.
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Heuristic of the Carleman strategy

Key points : z := e−Rσg
Boundary term

R
∫ T

0
θpxzx(t, 1)2dt ≥ 0.

Potentials

R
∫∫

QT

(
−2 cν

x3 + 2γ(2nπ)2x2γ−1
)
θpxz2dxdt ≥ 0.

cν ≤ 0
Supplementary Neumann condition : h ∈ H2 ∩ H1

0 (0, 1)

h′(0) = 0 =⇒
∫ 1

0

h(x)2

x3 dx < +∞.

End with a classical proof.
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General theory for self-adjoint extensions

Proposition
Let u and v in H̃2

0 ⊕Fs be such that their restriction on (0, 1) (resp. (−1, 0)) are
linearly independent modulo H2

0 (0, 1) (resp. H2
0 (−1, 0)) and

[u, v ](−1) = [u, v ](0−) = [u, v ](0+) = [u, v ](1) = 1.

Let M1, . . . ,M4 be 4× 2 complex matrices. Then every self-adjoint extension of
the minimal operator is given by the restriction to the functions f satisfying the
boundary conditions

M1

(
[f , u](−1)
[f , v ](−1)

)
+ M2

(
[f , u](0−)
[f , v ](0−)

)
+ M3

(
[f , u](0+)
[f , v ](0+)

)
+ M4

(
[f , u](1)
[f , v ](1)

)
= 0,

where the matrices satisfy (M1 M2 M3 M4) has full rank and

M1EM∗1 −M2EM∗2 + M3EM∗3 −M4EM∗4 = 0, with E :=

(
0 −1
1 0

)
.

Conversely, every choice of such matrices defines a self-adjoint extension.
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Application to Grushin operator I

Definition of u and v .
Solutions of

−f ′′(x) +
cν
x2 f (x) = 0, x ∈ (0, 1)

with (u(1) = 0, u′(1) = 1) and (v(1) = −1, v ′(1) = 0) i.e.

u(x) =
1
2ν

xν+1/2 − 1
2ν

x−ν+1/2,

v(x) = −ν − 1/2
2ν

xν+1/2 − ν + 1/2
2ν

x−ν+1/2.

Similar construction on (−1, 0) i.e.

u(x) = − 1
2ν
|x |ν+1/2 +

1
2ν
|x |−ν+1/2,

v(x) = −ν − 1/2
2ν

|x |ν+1/2 − ν + 1/2
2ν

|x |−ν+1/2.
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Application to Grushin operator II

Choice of matrices M1, . . . ,M4.
For any f ∈ Dmax ,

[f , u](1) = f (1), [f , v ](1) = f ′(1),

[f , u](−1) = f (−1), [f , v ](−1) = f ′(−1).

Dirichlet boundary conditions at ±1

M1 =


1 0
0 0
0 0
0 0

 , M2 =


0 0

M̃2

0 0

 , M3 =


0 0

M̃3

0 0

 , M4 =


0 0
0 0
0 0
1 0

 .
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Application to Grushin operator III

Conditions of Proposition : (M̃2 M̃3) has rank 2 and det(M̃2) = det(M̃3).

[f , u](0+) = c+
1 + c+

2 , [f , v ](0+) =

(
ν +

1
2

)
c+
1 +

(
−ν +

1
2

)
c+
2 ,

[f , u](0−) = c−1 + c−2 , [f , v ](0−) = −
(
ν +

1
2

)
c−1 −

(
−ν +

1
2

)
c−2 .

Thus, the choice M̃2 = M̃3 =

(
1 0
0 1

)
lead to the definition of D(An).
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