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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Quasilinear Hyperbolic System

We consider the following quasilinear hyperbolic system for r
(i)
± (t, x) on a

star-shaped network of N edges (i ∈ {1, ...,N}):
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− ) ∂
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− ) ∂
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− = Ψ
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− (x , r

(i)
+ , r
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with t ∈ [0,T ], x ∈ [0, L(i)] and C 1-functions Λ
(i)
± , Ψ

(i)
± of the form
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+ , r
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where
λ
(i)
+ > 0, λ

(i)
− < 0, ψ

(i)
± > 0, f

(i)
± (x , 0, 0) = 0,

g
(i)
± (x , 0, 0) = ∂

∂r
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+

g
(i)
± (x , 0, 0) = ∂

∂r
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−
g
(i)
± (x , 0, 0) = 0.
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Coupling Condition and Feedback Controls

Coupling conditions at the central node ω (x = L(i)):

r
(i)
− (t, L(i)) = Ξ(i)(r

(1)
+ (t, L(1)), ..., r

(N)
+ (t, L(N)))

for i ∈ {1, ...,N} with C 1-functions Ξ(i) with Ξ(i)(0, ..., 0) = 0.

Feedback controls with time-varying delay at the free nodes (x = 0):

r
(i)
+ (t, 0) =

{
ϑ(i)(t) for t ∈ [0, 2τ (i)]

k(i) r
(i)
− (t − τ (i)(t), 0) for t ∈ (2τ (i),T ]

with appropriate C 1-functions ϑ(i), feedback constants k(i) ∈ (−1, 1)
and time delay C 1-functions τ (i) that satisfy

0 < τ (i)(t) ≤ τ (i) < T
2 , | ddt τ

(i)(t)| < 1.

Result by T. Li and Z. Wang:
Existence of a C 1-solution r

(i)
± (t, x) on a finite time interval [0,T ]

for initial and boundary conditions with sufficiently small C 1-norms.
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Network Lyapunov Function with Delay Terms

Network Lyapunov function Eω(t) for r
(i)
± (t, x):

Eω(t) =
N∑
i=1
E(i)(t) + D(i)(t)

with

E(i)(t) =
L(i)∫
0

A
(i)
+

λ
(i)
+ (x)

h
(i)
+ (x)(r

(i)
+ (t, x))2 +

A
(i)
−

|λ(i)− (x)|
h
(i)
− (x)(r

(i)
− (t, x))2 dx ,

D(i)(t) =
τ (i)(t)∫
0

A
(i)
− exp(−µ(i)s) (r

(i)
− (t − s, 0))2 ds

with appropriate constants µ(i) > 0, A
(i)
± > 0 and exponential weights

h
(i)
± (x) = exp

(
−µ(i)

x∫
0

1

λ
(i)
± (ξ)

dξ

)
.
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Exponential Stability

Network Lyapunov function Eω(t) for r
(i)
± (t, x):

Eω(t) =
N∑
i=1
E(i)(t) + D(i)(t).

Exponential decay of the Lyapunov function with time:

If |k(i)| and the C 1-norms of the functions ϑ(i) and of the initial data are
small enough, we have (η > 0, τmax = max{τ (i)}):

Eω(t) ≤ Eω(2τmax) exp(−η(t − 2τmax)) for t ∈ [2τmax,T ].
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Application: Stabilization of the Isothermal Euler Equations

Isothermal Euler Equations with Friction

Conservation of mass: ∂
∂t ρ

(i) + ∂
∂x q

(i) = 0

Momentum equation: ∂
∂t q

(i) + ∂
∂x

(
(q(i))2

ρ(i)
+ a2ρ(i)

)
= −ν

δ
q(i)|q|(i)
2ρ(i)

mass flux: q(i)(t, x) 6= 0 density: ρ(i)(t, x) > 0 pipe diameter: δ > 0

friction factor: ν > 0 sonic speed: a > 0 subsonic states: |q
(i)|
ρ(i)

< a

System equation:

∂

∂t

(
ρ(i)

q(i)

)
+

(
0 1

a2 − (q(i))2

(ρ(i))2
2 q(i)

ρ(i)

)
∂

∂x

(
ρ(i)

q(i)

)
=

(
0

−νδ
q(i)|q(i)|
2ρ(i)

)
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Application: Stabilization of the Isothermal Euler Equations

Euler Equations in Characteristic Variables

Eigenvalues of the system matrix: L(i)
± = q(i)

ρ(i)
± a

Characteristic variables / Riemann invariants: R
(i)
± = − q(i)

ρ(i)
∓ a ln(ρ(i))

System equation in Riemann invariants:

∂

∂t

(
R

(i)
+

R
(i)
−

)
+

(
L(i)

+ 0

0 L(i)
−

)
∂

∂x

(
R

(i)
+

R
(i)
−

)
= − ν

8δ
(R

(i)
+ +R

(i)
− )|R(i)

+ +R
(i)
− |
(

1
1

)

with L(i)
± = − 1

2 (R
(i)
+ + R

(i)
− )± a
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Application: Stabilization of the Isothermal Euler Equations

Coupling Conditions for a Star-Shaped Network

Continuity of the density: ρ(1)(t, L(1)) = ρ(i)(t, L(i)) (i = 2, ...,N)

Conservation of mass:
N∑
i=1

q(i)(t, L(i)) = 0

Coupling conditions in Riemann invariants: R
(1)
− (t, L(1))

...

R
(N)
− (t, L(N))

 = Aω

 R
(1)
+ (t, L(1))

...

R
(N)
+ (t, L(N))


with an orthogonal, symmetric matrix Aω (A2

ω = I )
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Application: Stabilization of the Isothermal Euler Equations

Nonstationary States

For a given stationary state R̄
(i)
± (x) we consider a nonstationary state

R̄
(i)
± (x) + r

(i)
± (t, x) in a local C 1-neighborhood of R̄

(i)
± (x):

Quasilinear system for r
(i)
± (t, x):

∂
∂t r

(i)
+ + Λ

(i)
+ (x , r

(i)
+ , r

(i)
− ) ∂

∂x r
(i)
+ = Ψ

(i)
+ (x , r

(i)
+ , r

(i)
− ),

∂
∂t r

(i)
− + Λ

(i)
− (x , r

(i)
+ , r

(i)
− ) ∂

∂x r
(i)
− = Ψ

(i)
− (x , r

(i)
+ , r

(i)
− )

with

Λ
(i)
± (x , r

(i)
+ , r

(i)
− ) = λ

(i)
± (x)− 1

2 (r
(i)
+ + r

(i)
− ),

Ψ
(i)
± (x , r

(i)
+ , r

(i)
− ) = −(r

(i)
+ + r

(i)
− )ψ

(i)
± (x)− sign(R̄

(i)
+ + R̄

(i)
− )

ν

8δ
(r

(i)
+ + r

(i)
− )2

where λ
(i)
± and ψ

(i)
± only depend on the given stationary state.
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Application: Stabilization of the Isothermal Euler Equations

Feedback Stabilization and Exponential Stability

Coupling conditions at the central node ω (x = L(i)): r
(1)
− (t, L(1))

...

r
(N)
− (t, L(N))

 = Aω

 r
(1)
+ (t, L(1))

...

r
(N)
+ (t, L(N))



Boundary controls at the free nodes (x = 0):

r
(i)
+ (t, 0) =

{
ϑ(i)(t) for t ∈ [0, 2τ (i)]

k(i) r
(i)
− (t − τ (i)(t), 0) for t ∈ (2τ (i),T ]

Lyapunov function: Eω(t) =
N∑
i=1

E (i)(t) +D(i)(t)

For an appropriate choice of µ(i),A
(i)
± , k

(i) (η > 0, τmax = max{τ (i)}):

Eω(t) ≤ Eω(2τmax) exp(−η(t − 2τmax)) for t ∈ [2τmax,T ]
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