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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Quasilinear Hyperbolic System

rj(ti)(t,x) ona

We consider the following quasilinear hyperbolic system for
star-shaped network of N edges (i € {1, ..., N}):

0 4 AD (e, D, /0y 2,0yl 00y
200 A D0y 2 0yl 00
with t € [0, T], x € [0, L®)] and C-functions AY), W of the form
AD (e, D) = ADG) + £, A0, )

)

VR0 D) = (A ) ul00 + gl A )
ff)(x, 0,0) =0,

where ) ) )
A >0, AV <o, ol >0,
2-8(x,0,0) = 0.

—2-g(x,0,0) =
ol

g(x,0,0) =
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Coupling Condition and Feedback Controls

o Coupling conditions at the central node w (x = L{):
(e, L0) = 20D (£, 1), ., AN (£, L))
for i € {1,..., N} with C'-functions =() with =()(0, ...,0) = 0.
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Coupling Condition and Feedback Controls

o Coupling conditions at the central node w (x = L{):
i i —(i 1 N
(e, L0) = 20D (£, 1), ., AN (£, L))
for i € {1,..., N} with C'-functions =() with =()(0, ...,0) = 0.
o Feedback controls with time-varying delay at the free nodes (x = 0):

() 90 (t) for t € [0,27()]
r+ (t,O) == . (,) . w7
KO Pt —70)(2),0) for te (27D, T]

with appropriate C1-functions 9{9), feedback constants k() e (-1,1)
and time delay C!-functions 7()) that satisfy

0<70(t) <70 < L 14-0(1)] < 1.
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Coupling Condition and Feedback Controls

o Coupling conditions at the central node w (x = L{):
rD(e, 1Dy = O D (e, 10), L AN, 1))
for i € {1,..., N} with C'-functions =() with =()(0, ...,0) = 0.
o Feedback controls with time-varying delay at the free nodes (x = 0):
0)(z.0) — { ﬁ(f)(t) | for t €0, 2#"’]
kO /D —2(0(8),0) for te (270, T]

with appropriate C1-functions 9{9), feedback constants k() e (-1,1)
and time delay C!-functions 7()) that satisfy

0<70(t) <70 < L 14-0(1)] < 1.

2

@ Result by T. Li and Z. Wang:
Existence of a Cl-solution ri’)(t, x) on a finite time interval [0, T]
for initial and boundary conditions with sufficiently small C!-norms.
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Network Lyapunov Function with Delay Terms

Network Lyapunov function &,(t) for rj(ti)(t,x):

£.(t) = 32 €0(t) + DO(t)

with
L A(’) i i A(I) i i
() = [ e (602 + (2, %))? o,
0 AY(x) A ()
, A0 o
pO(t) = [ AD exp(—pDs) (r(t — 5,0))2 ds
0

with appropriate constants u(i) >0, Ag) > 0 and exponential weights

hg)(X):exp< u()fk(,) 8 )
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Stabilization of Hyperbolic Systems on Star-Shaped Networks

Exponential Stability

Network Lyapunov function &,(t) for rj(ti)(t,x):

() = 32 £0() + DI (r).
=1
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Stabilization of Hyperbolic Systems on Star-Shaped Networks
Exponential Stability

Network Lyapunov function &,(t) for rj(ti)(t,x):

N

E.(t) = S EO(t) 4+ DU().
i=1

Exponential decay of the Lyapunov function with time:

If |k())| and the C'-norms of the functions ¥() and of the initial data are
small enough, we have (7 > 0, Tmax = max{7()}):

Eu(t) < Euw(2Tmax) exp(—n(t — 2Tmax)) for t € [27max, T]-
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Application: Stabilization of the Isothermal Euler Equations

Isothermal Euler Equations with Friction

pipe 1

x=0
Conservation of mass:
Momentum equation:

mass flux: q)(t,x) #0

friction factor: v > 0

Markus Dick (Benasque 2013)

pipe 2
x=L0 x=0
o = pipe 3
a (i o (i) _
2,004 2400 = o
8 (i) . 0 (@")? ) M\ _ _vaDq®
2td T ox 0 +a?p) = —% 2000

density: pU)(t,x) >0 pipe diameter: § > 0

. . 0]
sonic speed: a > 0 subsonic states: ‘Z(,)l <a
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Application: Stabilization of the Isothermal Euler Equations

Isothermal Euler Equations with Friction

pipe 1
x=0

Conservation of mass:
Momentum equation:

mass flux: q)(t,x) #0

friction factor: v > 0

System equation:

9
ot
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o)
g

(o

0 1 )
()2 0 | ==
Gy 25w ) Ox

pipe 2
x=L0 x=0
ipe 3
® =0 pipe
0 (i) D () —
250 4 040 = g
8 (). @ (q) M\ _ _vaDq®
5d0 5 (e +a) = 550

density: pU)(t,x) >0 pipe diameter: § > 0

sonic speed: a > 0 subsonic states:

lg®]
o0 <a
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Application: Stabilization of the Isothermal Euler Equations

Euler Equations in Characteristic Variables

o Eigenvalues of the system matrix: E(ii) =

(i) .
o F aln(p?)

o Characteristic variables / Riemann invariants: R{) = —7

@ System equation in Riemann invariants:

o [ RY £ 0 N o (RN v i el g0 g (1
8t<R") g 20 ) ax | gl ) T T (REHRDIIREHRII

with £ = —L(RY + RY) + 2
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Application: Stabilization of the Isothermal Euler Equations

Coupling Conditions for a Star-Shaped Network

x=L® x=0

pipe 1

x=0 ® x=0

Continuity of the density:  p((t,L3)) = p()(t, L) (i=2,...,N)

N . .
Conservation of mass: S gi(t, L) =0
i=1
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Application: Stabilization of the Isothermal Euler Equations

Coupling Conditions for a Star-Shaped Network

pipe 2
x=L® x=0

pipe 1

x=0 [0) - pipe 3

Continuity of the density:  p((t,L3)) = p()(t, L) (i=2,...,N)

N . .
Conservation of mass: S gi(t, L) =0
i=1

Coupling conditions in Riemann invariants:

RM (£, L) RO(t, L)
: = A, :
RM (¢, L) RV (t, L)

with an orthogonal, symmetric matrix A, (A2 = 1)
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Application: Stabilization of the Isothermal Euler Equations

Nonstationary States

For a given stationary state RY )( ) we consider a nonstationary state
I?E_L')(x) + rf_L')(t,x) in a local C'-neighborhood of Ri)(x)

Quasilinear system for r{(t, x):

%rg) + Ag)(x,rg),rg))%rg) = lll( (X, +, ())
%r_i) + /\(')(X rJ(r), ())%r_i) = Wg)(x,rg),rg))
with
NG, 2,0y = AP0 = 3+ D),
W00y = (4 ) () — sign(RY + RO) 2 () + ry2

where /\(ii) and 77/11) only depend on the given stationary state.
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Application: Stabilization of the Isothermal Euler Equations

Feedback Stabilization and Exponential Stability

e Coupling conditions at the central node w (x = L():

(e, L) ri”(z: LW)
: = A, :
rM (e, L) AW (e, L)
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Application: Stabilization of the Isothermal Euler Equations

Feedback Stabilization and Exponential Stability

e Coupling conditions at the central node w (x = L():

(e, L) ri”(z: LW)
: = A, :
rM (e, L) AW (e, L)

@ Boundary controls at the free nodes (x = 0):

0r.0) 90(t) for t e [0,27)]
t = N . .
KO FDe — 700(1),0) for te (270, T]
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Application: Stabilization of the Isothermal Euler Equations

Feedback Stabilization and Exponential Stability

e Coupling conditions at the central node w (x = L():

(e, L) (e, L)
: = A, 5
riN)(t, L) rJ(rN)(t7 L)

@ Boundary controls at the free nodes (x = 0):

0 90(t) for t e [0,27)]
ri’(t,0) = N () ; ;
kD Dt —70)(t),0) for te (270, T]

N

@ Lyapunov function: &,(t) = > £O(t) + DU)(t)
i=1
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Application: Stabilization of the Isothermal Euler Equations

Feedback Stabilization and Exponential Stability

e Coupling conditions at the central node w (x = L():

(e, L) (e, L)
: = A, 5
riN)(t, L) rJ(rN)(t7 L)

@ Boundary controls at the free nodes (x = 0):
- 90t for te[0,27"
kO 0 —70(1),0) for te (277, T)
N . .
@ Lyapunov function: &,(t) = > £O(t) + DU)(t)
i=1
e For an appropriate choice of M, AY k@ (5 > 0, Tmax = max{7"}):
Eu(t) < Euw(2Tmax) exp(—n(t — 2Tmax)) for t € [27max, T]
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