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A Traffic-Flow Model with Switching Speed Limit Control

Consider the LWR traffic flow model, for a link [0, L ] given by

ρt + (f j(ρ))x = 0

with a finite family {f j}Nj=1 of Greenshield flux functions

f j(ρ) = ρ uj
max(1 −

ρ

ρmax
)

where

◮ ρ models the traffic density at time t on [0, L ]

◮ uj
max is the prescribed maximum velocity in mode j

◮ ρmax is the critical (congestion) density.
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A Dynamic (Mixed-)Integer Optimization Problem

Minimize the cost
∫ tf

0

∫ L

0
ρ2(x , t) dx dt

by choosing j(t) ∈ {1, . . . ,N} for all t ∈ [0, tf ] s. t. known initial data

ρ(0, x) = ρ0(x)

and boundary data

ρ(t , 0) = ρL (t), ρ(t , L) = ρR(t).

We assume that the initial and boundary data is piecewise W1,1.

Cost function motivated by [Fuegenschuh, Herty, Martin: 2006].



A Hyperbolic Relaxation of the LWR-Model Binary-Relaxation and Main Result Open Problems Conclusions

Some Remarks on the Problem

Total discretization and dynamic programming are too expensive to
solve the problem accurately in reasonable time (real time?)

Will consider relaxation techniques which can provide ε-optimal
solutions by solving only one classical optimal control problem.

Similar problem and approach in [Bayen, Raffard, Tomlin: HSCC
2004], but
◮ the control is boundary inflow (on/off ramp metering)
◮ no analysis!

We aim at
◮ a-priori estimates on the quality of the solution
◮ a numerical method to provide the controls
◮ proving convergence of the method.
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Hyperbolic Relaxation [Jin-Xin: 1995]

For κ > 0, a constant a > 0 satisfying

−a ≤
d
dρ

f j(ρ) ≤ a, for all ρ, j

and a new variable η defined on [0, tf ] × [0, L ] consider


















ρt + ηx = 0

ηt + a2ρx = −
1
κ
(η − f j(ρ)) =: gj(η, ρ)

with the initial and boundary data

ρ(0, x) = ρ0(x), η(0, x)= η0(x) := f j(0)(ρ0(x)), x ∈ [0, L ]

ρ(t , 0) = ρL (t), η(t , 0) = ηR(t) := f j(t)(ρL (t)), t ∈ [0, tf ]

ρ(t , L) = ρR(t), η(t , L) = ηL (t) := f j(t)(ρR(t)), t ∈ [0, tf ].

Resulting system is a switching semilinear hyperbolic system
[H., Leugering, Seidman: Appl. Math. Opt. 2009]
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Control Variable Transformation

Introducing new binary control functions

αj : [0, tf ]→ {0, 1}, j = 1, . . . ,N

satisfying
N

∑

j=1

αj(t) = 1, for a. e. t ∈ (0, tf)

the control problem is equivalent to






























ρt + ηx = 0

ηt + a2ρx =
N

∑

j=1

αjg
j(η, ρ)

subject to appropriate boundary conditions, with

j(t) =
N

∑

j=1

αj(t)j.



A Hyperbolic Relaxation of the LWR-Model Binary-Relaxation and Main Result Open Problems Conclusions

L1-Solution of the Semilinear System

Recall that the solution y = (η, ρ) is given by the fixed point of a
transformation T = (T1,T2)

⊤ acting on Y := C([0, tf ]; (L1(0, L))2)

Ti(y)(t , x) =



















y∗i,L/R +
∑N

j=1

∫ t

t∗1
αj(t)gj(y(ϑ, si(ϑ; t , x))) dϑ, x ∈ (0, s̄i)

y∗i,0 +
∑N

j=1

∫ t
0
αj(t)gj(y(ϑ, si(ϑ; t , x))) dϑ, x ∈ (s̄i , L)

with appropriate boundary points y∗i,L/R , y∗i,0, s̄i and

si(t ; τ, σ) = σ ± a(t − τ)

denoting the characteristic curves. T is a contraction in the norm

‖y‖† = sup
t∈[0,tf ]

e−Kt
(∫ L

0
|y1(t , x)|dx +

∫ L

0
|y2(t , x)|dx

)

for a suitable constant K .
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Binary-Relaxation

We now relax the restriction αj(t) ∈ {0, 1}, t ∈ [0, tf ] a. e. by

αj(t) ∈ [0, 1], t ∈ [0, tf ] a. e.

Theorem (Binary-Relaxation)

Let ω ∈ L∞(0, tf ; [0, 1]N) be a feasible control of the binary-relaxed
problem. Then, for every ε > 0, there exists a feasible control

α : [0, tf ]→ {0, 1}
N piecewise constant

satisfying
‖y(α) − y(ω)‖Y ≤ Cε

for some constant C (depending only on ω, κ and known data).

For abstract semilinear systems: [H., Sager: Comp. Opt. Appl. 2013]
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Proof of the Binary-Relaxation Theorem

Lemma (Sager, Bock, Diehl: Math. Prog. 2011)

Let ω ∈ L∞(0, tf ; [0, 1]N),
∑N

i=1 ωi(t) = 1 for a. e. t ∈ [0, tf ] and ∆ > 0.
Then, there exists a function

α : [0, tf ]→ {0, 1}
N piecewise constant

such that

1 γ := max
i=1,...,N

sup
t∈[0,tf ]

∣

∣

∣

∣

∣

∣

∫ t

0
αi(τ) − ωi(τ) dτ

∣

∣

∣

∣

∣

∣

≤ (N − 1)∆,

2

N
∑

i=1

αi(t) = 1 for all t ∈ [0, tf ].

Hence, choosing ∆ such that (N − 1)∆ ≤ ε it suffices to show that

‖y(α) − y(ω)‖ ≤ Cγ

for some C.
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Proof of the Binary-Relaxation Theorem (continued)

Since y is defined by a fixed point of T , it suffices to show

(#)
∫ L

0

∣

∣

∣[Ti(y(α)) − Ti(y(ω))](tf , ·)
∣

∣

∣ dx ≤ C̃γ, i = 1, 2.

for some C̃, since then ‖y(α) − y(ω)‖ ≤ eKt C̃.

To this end, integration by parts yields
∫ L

0

∣

∣

∣[T1(y(α)) − T1(y(ω))](t , x)
∣

∣

∣ dx ≤ C1γ + γ
N

∑

j=1

( ∫ t

t∗1

∫ L

0

∣

∣

∣Dϑg
j(y(ϑ, s1(ϑ; t , x)))

∣

∣

∣ dx

+

∫ L

0
|gj(y(t , s1(t; t , x)))|dx +

∫ L

0
|gj(y(t∗1(t , x), s1(t

∗
1(t , x); t , x)))|dx

)

.

(and a similar estimate for T2).

The estimate (#) then follows from a subtle regularity result for
semilinear hyperbolic systems: y1(t , ·), y2(t , ·) is piecewise W1,1

[Oberguggenberger: 1986].
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Limit of the solution for κ→ 0?

Conjecture

Suppose that TV(ρL), TV(ρR) and TV(ρ0) are sufficiently small. Then,
the L1-solutions (as a fixed-point of T) converge to the weak entropy
solutions of the LWR model with boundary conditions

F(ρ(t , 0), ρL (t), j(t)) = 0, F(ρ(t , L), ρR(t), j(t)) = 0

where
F(ρ1, ρ2, j) = sup

ρ∈I(ρ1,ρ2)
(sg(ρ1 − ρ2)(f

j(ρ1) − f j(ρ)),

F(ρ1, ρ2, j) = inf
ρ∈I(ρ1,ρ2)

(sg(ρ1 − ρ2)(f
j(ρ1) − f j(ρ))

and I(ρ1, ρ2) = [inf(ρ1, ρ2), sup(ρ1, ρ2)].

For L1
loc-solutions on R without boundary conditions, the convergence

was proved in [Bianchini: 2001].

Can show a uniformity of C w.r.t. κ?
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Other Open Questions

For ε→ 0, we obtain convergence of the optimal state and the
optimal cost. Do the controls ω(ε) converge? In which topology?

Does it also work with other cost functions, e. g., total travel time?

How to include switching costs?

Can we obtain similar results for non-linear hyperbolic systems, e. g.,
the Euler gas equations?

Does binary-relaxation work with boundary control?
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Conclusions

Considered switching control for the flux function of a conservation
law, exemplary for LWR-traffic.

Have a binary-relaxation result based on a hyperbolic relaxation.

All proofs are constructive providing a numerical method.

Have an implementation based on IMEX-schemes (using adjoint
based derivatives to compute ω and SUR for α)

Have similar results for semilinear parabolic equations with distributed
mixed-integer control on reflexive spaces.

Many open questions left for switching systems with PDEs.
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