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A Traffic-Flow Model with Switching Speed Limit Control

Consider the LWR traffic flow model, for a link [0, L] given by
Pt + (fj(p))x =0

with a finite family {f/'}].’i1 of Greenshield flux functions

P(p) = p Uax(1 — =)

Pmax
where
» p models the traffic density at time t on [0, L]
> ulr'nax is the prescribed maximum velocity in mode j
> Pmax IS the critical (congestion) density.



A Dynamic (Mixed-)Integer Optimization Problem

® Minimize the cost .
f
f f (x,t)dxdt

by choosing j(t) € {1,..., N} for all t € [0, t;] s.t. known initial data
p(0,X) = po(X)
and boundary data
p(t.0) = p.(t), p(t.L) = pr(1).

m We assume that the initial and boundary data is piecewise W1,
m Cost function motivated by [Fuegenschuh, Herty, Martin: 2006].



Some Remarks on the Problem

m Total discretization and dynamic programming are too expensive to
solve the problem accurately in reasonable time (real time?)
m Will consider relaxation techniques which can provide g-optimal
solutions by solving only one classical optimal control problem.
m Similar problem and approach in [Bayen, Raffard, Tomlin: HSCC
2004], but
» the control is boundary inflow (on/off ramp metering)
» no analysis!
m We aim at
» a-priori estimates on the quality of the solution
» a numerical method to provide the controls
» proving convergence of the method.
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A Hyperbolic Relaxation of the LWR-Model

Hyperbolic Relaxation [Jin-Xin: 1995]

m For k > 0, a constant a > 0 satisfying
d .
-a< d—f’(p) <a, forallp, j
0
and a new variable n defined on [0, ;] x [0, L] consider
pt+1x =0
1 . .
m+a’px= = =(n1-F(p)) = ¢(n.p)
with the initial and boundary data
p(0,x) = po(x),  n(0,X)=no(x) := PO(po(x)),  xe€[o,L]
p(t.0) =p(t), n(t,0) =nr(t) =0 (1)), te(0.t]
p(t,L) = pr(t), n(t.L) =nu(t) = PO(or(t),  te[o,t].

m Resulting system is a switching semilinear hyperbolic system
[H., Leugering, Seidman: Appl. Math. Opt. 2009]



A Hyperbolic Relaxation of the LWR-Model

Control Variable Transformation

Introducing new binary control functions
Q;j: [O,tf] —-{0,1}, j=1,...,N

satisfying
N

Z aj(t) =1, fora.e. t € (0,t)
j=1
the control problem is equivalent to

pt+1nx =0
N .
ne+a’px = ) g (n.p)
=1

subject to appropriate boundary conditions, with
N

i) = ) aj(t)j.
=1



A Hyperbolic Relaxation of the LWR-Model

L*-Solution of the Semilinear System

Recall that the solution y = (n, p) is given by the fixed point of a
transformation T = (Ty, T2)T acting on Y := C([0, t;]; (L1(0, L))?)

* t .
Ti(y)(t,x) = Yir + 2 . (DG (9. si(9:1,))) d9,  x €(0,5)
! ’ B * t . ~
Yio + b1 o ()@ (y(®, si(9; t. x))) d¥, xeEL)
with appropriate boundary points y;, . ¥;,. Si and
Si(t;T,U') =0 + a(t_T)

denoting the characteristic curves. T is a contraction in the norm

L L
il = sup e ( fo a(t, X)ldx + fo |y2(t,x)|dx)

te [0, tf]

for a suitable constant K.



Binary-Relaxation and Main Result

Binary-Relaxation

m We now relax the restriction «;(t) € {0,1}, t € [0, ] a.e. by
aj(t) €[0,1], te[0,t] a.e.

Theorem (Binary-Relaxation)

Letw € L*(0, tr; [0, 1]N) be a feasible control of the binary-relaxed
problem. Then, for every € > 0, there exists a feasible control

a: [0,t7] — {0, 1}N piecewise constant

satisfying
lly(a) - y(w)lly < Ce

for some constant C (depending only on w, k and known data).

For abstract semilinear systems: [H., Sager: Comp. Opt. Appl. 2013]
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Proof of the Binary-Relaxation Theorem

Lemma (Sager, Bock, Diehl: Math. Prog. 2011)

Letw e L=(0,t;[0,1]V), XN, wi(t) = 1 fora.e. t € [0,t] and A > 0.
Then, there exists a function

a: [0,t] — {0, 1}N piecewise constant

such that
< (N-1)A,

fot @i(7) — wi(t) dr

Y := max sup
i=1,...,N te[0, ]

N
Z aj(t)=1forallt e [0, t].

i=1

Hence, choosing A such that (N — 1)A < ¢ it suffices to show that

lly(a) - y(w)ll < Cy
for some C.



Binary-Relaxation and Main Result

Proof of the Binary-Relaxation Theorem (continued)

m Since y is defined by a fixed point of T, it suffices to show

(#) f [Ti(y(a)) - Ti(y(o))](t. )| dx < Cy, i=1,2.

for some C, since then |ly(a) — y(w)|| < eXC.
m To this end, integration by parts yields

fOLl[Tl(y(a))—Tl(y( tx|dx<C17+)’Z(ff|Dﬁg’ (@, 51(8; 1, X)))| dx

[ 9t st £k + f @(y(q(t,x),sl(t;(t,x);t,x)))mx).

(and a similar estimate for T5).

m The estimate (#) then follows from a subtle regularity result for
semilinear hyperbolic systems: yy(t,-), y2(t,-) is piecewise Wt?
[Oberguggenberger: 1986].
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Limit of the solution for k — 0?

Suppose that TV(p.), TV(pr) and TV (po) are sufficiently small. Then,
the L*-solutions (as a fixed-point of T) converge to the weak entropy
solutions of the LWR model with boundary conditions

F(p(.0).p(1).J(1)) = 0. E(p(t, L).pr(t).j(t)) =0

where — . 9 3

F(p1.p2.j) = sup (sg(p1 —p2)(F(01) - F(p)),
pEl(p1,p2)

F(p1.p2.) = inf (sg(p1 —p2)(F(p1) - F(p))
pEl(p1,p2)

and I(p1, p2) = [inf(p1, p2), sup(p1, p2)].

m For ngc—solutions on R without boundary conditions, the convergence
was proved in [Bianchini: 2001].

m Can show a uniformity of C w.r.t. «?



Open Problems

Other Open Questions

m For ¢ — 0, we obtain convergence of the optimal state and the
optimal cost. Do the controls w(&) converge? In which topology?

m Does it also work with other cost functions, e. g., total travel time?
m How to include switching costs?

m Can we obtain similar results for non-linear hyperbolic systems, e. g.,
the Euler gas equations?

m Does binary-relaxation work with boundary control?



Conclusions

Conclusions

m Considered switching control for the flux function of a conservation
law, exemplary for LWR-traffic.

m Have a binary-relaxation result based on a hyperbolic relaxation.
m All proofs are constructive providing a numerical method.

m Have an implementation based on IMEX-schemes (using adjoint
based derivatives to compute w and SUR for «)

m Have similar results for semilinear parabolic equations with distributed
mixed-integer control on reflexive spaces.

m Many open questions left for switching systems with PDEs.
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