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How to get solutions that are global in time?

1 Sometimes, the semiglobal solutions are in spaces with max-norms,
for example classical solutions (Li Ta-Tsien, Zhiqiang Wang, ...).

2 Lyapunov functions usually yields exponential decay of certain
integral norms (Jean-Michel Coron, Georges Bastin ...).

3 This means, that additional work is necessary to extend the time interval
where the state is well–defined!

4 There are two possibilities to avoid this problem:
I Solution 1: Change the space
I Solution 2: Change the method

5 Here we consider Solution 2 and present a method that is based upon

integral inequalities

to proceed from semi-global to global for stabilized systems.
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Example System: The isothermal Euler equations{
ρt + qx = 0

ρt + ( q2

ρ + a2ρ)x = − 1
2θ

q |q|
ρ

1 Important: The stationary states are not constant for θ > 0.
Moreover, they become critical after a finite length, that is, the velocity

u =
q

ρ

approaches the sound speed a and the derivative tends to infinity in a
monotone way.

2 We work with subcritical states that is |u| ≤ umax < a.

3 The Riemann invariants are

R± = R±(ρ, q) = −q

ρ
∓ a ln(ρ) = −u ∓ a ln(ρ)

4 Note that

u = −1

2
(R+ + R−).
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The System in diagonal form
1 We have

Rt + D(R)Rx = S(R)

with

R =

(
R+

R−

)
, D(R) =

(
a + u 0

0 −a + u

)
, S(R) =

(
θ
2u

2

θ
2u

2

)
.

2 Let R̄ denote a stationary state, D(R̄)R̄x = S(R̄).
3 We are interested in the difference r to the stationary state that is

r = R − R̄.

We have

rt + D(R̄ + r)rx = [S(R)− S(R̄)] + [D(R̄)− D(R̄ + r)] R̄x

that is

rt + D(R̄ + r)rx = θ
2

[
1
4 (r+ + r−)2 − (r+ + r−)ū

](1
1

)
+ 1

2 (r+ + r−) R̄x .
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](1
1

)
+ 1

2 (r+ + r−) R̄x .

Martin Gugat (FAU) From semi-global to global. 5 / 13



The System in diagonal form
1 We have

Rt + D(R)Rx = S(R)

with

R =

(
R+

R−

)
, D(R) =

(
a + u 0

0 −a + u

)
, S(R) =

(
θ
2u

2

θ
2u

2

)
.

2 Let R̄ denote a stationary state, D(R̄)R̄x = S(R̄).
3 We are interested in the difference r to the stationary state that is

r = R − R̄.

We have

rt + D(R̄ + r)rx = [S(R)− S(R̄)] + [D(R̄)− D(R̄ + r)] R̄x

that is

rt + D(R̄ + r)rx = θ
2

[
1
4 (r+ + r−)2 − (r+ + r−)ū
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The Characteristic Field
1 To define the system in characteristic form, we need the characteristic

curves
ξu±(t, x , t) = x , ∂sξ

u
±(s, x , t) = u ± a.

ξu±(t, x , t) = x ± a(t − t) +
∫ s

t
u(τ, ξu±(s, x , τ)) dτ ∈ [0, L]

2 Lemma 1 If u ∈ C ([0,T ]× [0, L]) is Lipschitz continuous with respect to x
(with Lipschitz constant Lu) and there exist a number umax such that

|u(t, x)| ≤ umax < a

the characteristics are well defined. We have

|ξu±(s, x , t)− ξv±(s, x , t)| ≤ T exp(LuT )‖u − v‖C([0,T ]×[0,L]).

Let tu±(x , t) ≤ t denote the time where ξ±(·, x , t) hits the boundary of
[0,T ]× [0, L]. Then

|tu±(x , t)− tv±(x , t)| ≤ 1

a− ūmax
T exp(LuT )‖u − v‖C([0,T ]×[0,L]).
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The System in Characteristic Form
1 The system in characteristic form is

r±(t, x) = r±(tu±(x , t), ξu±(tu±(x , t), x , t))+

∫ t

tu±(x,t)

p(r++r−)(ξu±(s, x , t)) ds

with p±(z) = θ
2 [ 14z

2 + ( 1
2∂xR̄± − ū)z ].

2 We use the simple boundary control

r+(t, 0) = 0, r−(t, L) = 0

for compatible initial data.
3 Step 1: Choose

T ≥ L

a− umax
.

By a suitable fixed point argument, construct the solution on
[0, 2T ]× [0, L].

4 For example: With continuous (r+, r−) that are Lipschitz with constant 1,
provided that θ ≤ exp(−2T )/2, the stationary state is sufficiently small in
C 1(0, L) and the initial data is sufficiently small in C (0, L) with small
Lipschitz constant.
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The integral inequality
1 Step 2: Derive an integral inequality to show the decay.

To show the decay we need some factor from (0, 1) in this inequality.

2 Define
h(t) = ‖r+‖C [0,L] + ‖r−‖C [0,L].

For t ∈ [0, 2T ] we have the a priori bound h(t) ≤ M with M ≤ 1 depending
on the (sufficiently small) initial data. Let D = [0, 2T ]× [0, L]. Then

M = h(0) exp

(
2Tθ

(
1

4
+ ‖∂x R̄+‖C(D) + ‖∂x R̄−‖C(D) + ‖ū‖C(D)

))
.

3 For t ∈ [0,T ] we have

h(T + t) ≤ θ
(
M + ‖∂x R̄+‖C(D) + ‖∂x R̄−‖C(D) + ‖ū‖C(D)

) ∫ t+T

t

h(s) ds.

4 Let λ = θ(M + ‖∂x R̄+‖C(D) + ‖∂x R̄−‖C(D) + ‖ū‖C(D)). Then

h(T + t) ≤ λ
∫ t+T

t

h(s) ds ≤ λTM.

By controlling the initial data and the stationary state, we can make the
factor (λT ) arbitrarily small.
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))
.

3 For t ∈ [0,T ] we have

h(T + t) ≤ θ
(
M + ‖∂x R̄+‖C(D) + ‖∂x R̄−‖C(D) + ‖ū‖C(D)
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) ∫ t+T

t

h(s) ds.

4 Let λ = θ(M + ‖∂x R̄+‖C(D) + ‖∂x R̄−‖C(D) + ‖ū‖C(D)). Then
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The integral inequality

1 We have

h(t + T ) ≤ λ
∫ t+T

t

h(s) ds ≤ (λT )M.

Thus we can make h(2T ) arbitrarily small by making the factor (λT )
sufficiently small.

2 The next part is
Step 3: Take care of the growth of the Lipschitz constant,
that we omit here.

3 After Step 3, if we are sure that the Lipschitz constant at time 2T is small
enough, we can continue the solution to [2T , 4T ] and proceed inductively.
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The Exponential Decay
For t ∈ [0,T ], we have

h(t + T ) ≤ λ
∫ t+T

t

h(s) ds ≤ (λT )M.

1 For k ≥ 2, we get inductively

h(kT + t) ≤ λ

∫ kT+t

(k−1)T+t

h(s) ds

= λ

∫ T+t

t

h((k − 1)T + s) ds

≤ λ

∫ T

0

(λT )k−1M ds

≤ (λT )kM.

2 In this way we get the global existence and at the same time the exponential
decay of h(t) with the rate

µ =
|ln(λT )|

T
.
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The Exponential Decay

Define Ū = ‖∂x R̄+‖C(D) + ‖∂x R̄−‖C(D) + ‖ū‖C(D). Then we have the decay rate

µ = − 1

T
ln

(
Tθ

[
h(0) exp

(
2Tθ

(
1

4
+ Ū

))
+ Ū

])
.

We have

h(kT ) ≤ exp(−µ(kT ))M = exp
(
2Tθ

(
1
4 + Ū

))
h(0) exp(−µ(kT )).

The decay rate µ can be made arbitrarily large by choosing h(0) and Ū sufficiently
small.
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Conclusion

Lyapunov-functions are an excellent tool to show exponential stability
provided that the corresponding local solutions are available.

However, also other approaches are possible that use semiglobal solutions
This is useful if the system decay has a stepwise rather than a continuous
character.

In engineering practice, we often have nonlinear dynamics on networks:

There are lots of open questions!
Find a better feedback law!
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In engineering practice, we often have nonlinear dynamics on networks:

There are lots of open questions!
Find a better feedback law!
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Thank you for your attention!
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