Exponential Decay: From Semi-Global to Global

Martin Gugat

Benasque 2013

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

[m] = =
Martin Gugat (FAU) From semi-global to global.




How to get solutions that are global in time?

@ Sometimes, the semiglobal solutions are in spaces with max-norms,
for example classical solutions (L1 TA-TSIEN, ZHIQIANG WANG, ...).
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How to get solutions that are global in time?

© 0 o o

Sometimes, the semiglobal solutions are in spaces with max-norms,
for example classical solutions (L1 TA-TSIEN, ZHIQIANG WANG, ...).

Lyapunov functions usually yields exponential decay of certain
integral norms (JEAN-MICHEL CORON, GEORGES BASTIN ...).

This means, that additional work is necessary to extend the time interval
where the state is well-defined!

There are two possibilities to avoid this problem:

> Solution 1: Change the space
> Solution 2: Change the method

Here we consider Solution 2 and present a method that is based upon
integral inequalities

to proceed from semi-global to global for stabilized systems.
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ﬂ How can we get solutions that are global in time?
9 Example System: The isothermal Euler equations
© The System in diagonal form

@ The Characteristic Field

© The System in Characteristic Form

© The Integral Inequality

ﬂ The Exponential Decay

© Conclusion
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Example System: The isothermal Euler equations

pr+ qx2: 0
pe+ (5 +ap)e = —5047

@ Important: The stationary states are not constant for 6 > 0.
Moreover, they become critical after a finite length, that is, the velocity

q
u=—

P

approaches the sound speed a and the derivative tends to infinity in a
monotone way.
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@ Important: The stationary states are not constant for 6 > 0.
Moreover, they become critical after a finite length, that is, the velocity

_q
U=~

P

approaches the sound speed a and the derivative tends to infinity in a
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2 2 _ 1 |
pe+ (L + a2p), = —302ld

@ Important: The stationary states are not constant for 6 > 0.
Moreover, they become critical after a finite length, that is, the velocity

_q
U=~

P

approaches the sound speed a and the derivative tends to infinity in a
monotone way.

@ We work with subcritical states that is |u| < Umax < a.
© The Riemann invariants are

R+ =R+(p.q) = *% Faln(p) = —uF aln(p)

@ Note that i
u= —§(R+ + R_)
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The System in diagonal form

@ We have
Re+ D(R)R. = S(R)

R=(7) o= ("5" ) sw=(

with

2
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c Cc

N

N———
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The System in diagonal form

@ We have
Re+ D(R)R. = S(R)

R= <gf) » D(R) = <3‘g ’ —ao+ u) » S(R) = (gﬁ) '

@ Let R denote a stationary state, D(R)R, = S(R).

with
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The System in diagonal form

@ We have
Re+ D(R)R. = S(R)

R= (gt) » D(R) = <3‘g ’ —ao+ u) » S(R) = (gﬁ) '

@ Let R denote a stationary state, D(R)R, = S(R).
© We are interested in the difference r to the stationary state that is

with

We have
re + D(R+ r)r, = [S(R) — S(R)] + [D(R) — D(R + r)] R«

that is

re+ D(R+r)re =4 [3(ry +r-)? — (rp +r2)0] <}> + 2(rs + r-) R..
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The Characteristic Field

@ To define the system in characteristic form, we need the characteristic
curves
Ei(t,x,t) = x, 0s€4(s,x,t) = u+a.

EL(t,x, t) =x+a(t—t)+ fts u(r, €L (s,x,7))dr € [0, L]
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The Characteristic Field

@ To define the system in characteristic form, we need the characteristic
curves

Ei(t,x,t) = x, 0s€4(s,x,t) = u+a.

Ei(t,x, t)=xxa(t—t)+ fts u(r, &4(s,x,7))dT € [0, L]

@ Lemma 11f ue C([0, T] x [0, L]) is Lipschitz continuous with respect to x
(with Lipschitz constant L,) and there exist a number umax such that

lu(t,x)| < tmax < a
the characteristics are well defined. We have
I€4(s,x,t) = &5(s, x, t)| < Texp(Ly T)|u — vl (o, 11x[0,7)-

Let t1(x,t) < t denote the time where £ (-, x, t) hits the boundary of
[0, T] x [0, L]. Then

v 1
tE (1) = tL0x, )] < ———— T exp(Ly T)l|u = vllc(po, m1xfo,1))-
max
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The System in Characteristic Form

@ The system in characteristic form is

t

r:t(t’ X) = ri(t:lll:(xv t)a E:lll:(t:lll:(x7 t)’ X, t))"’/ p(r++r—)(€:L|l:(s7 X, t)) ds

t4 (x1)
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The System in Characteristic Form

@ The system in characteristic form is

t

re(t,x) = re(ti(x, t), EL(tL(x,t), x, t))+/ ( )p(r++r_)(§j”t(s, x,t))ds
th (x,t
with py(z) = 4[222 + (J0xRy — T)z].
@ We use the simple boundary control

| r(£,0)=0, r (t,1)=0|

for compatible initial data.
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with py(z) = 4[222 + (J0xRy — T)z].
@ We use the simple boundary control

| r(£,0)=0, r (t,1)=0|

for compatible initial data.
© Step 1: Choose
L
a— Umax.
By a suitable fixed point argument, construct the solution on
[0,2T] x [0, L].
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The System in Characteristic Form

@ The system in characteristic form is

t

re(t,x) = re(ti(x, 1), EL(tL(x 1), x, t))+/ p(ri+r-)(EL(s, x, 1)) ds

t4 (x1)

with py(z) = 4[222 + (J0xRy — T)z].
@ We use the simple boundary control

| re(t,0)=0, r(t,L)=0 |

for compatible initial data.

© Step 1: Choose
L

8 — Umax
By a suitable fixed point argument, construct the solution on
[0,2T] x [0, L].

@ For example: With continuous (ry, r—) that are Lipschitz with constant 1,
provided that 6 < exp(—2T)/2, the stationary state is sufficiently small in

C*(0, L) and the initial data is sufficiently small in C(0, L) with small
Lipschitz constant.

T
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The integral inequality

@ Step 2: Derive an integral inequality to show the decay.
To show the decay we need some factor from (0, 1) in this inequality.
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The integral inequality

@ Step 2: Derive an integral inequality to show the decay.
To show the decay we need some factor from (0, 1) in this inequality.
@ Define

h(t) = lIrellco,g + -l cpo,-
For t € [0,2T] we have the a priori bound h(t) < M with M <1 depending
on the (sufficiently small) initial data. Let D =[0,2T] x [0, L]. Then

1 _ )
M= h0)exp (276 (5 + 18Rl + 10:R- ety + alcco ) )
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The integral inequality

@ Step 2: Derive an integral inequality to show the decay.
To show the decay we need some factor from (0, 1) in this inequality.
@ Define

h(t) = lIrellco,g + -l cpo,-
For t € [0,2T] we have the a priori bound h(t) < M with M <1 depending
on the (sufficiently small) initial data. Let D =[0,2T] x [0, L]. Then

1 _ )
M= h0)exp (276 (5 + 18Rl + 10:R- ety + alcco ) )

@ For t € [0, T] we have

_ _ t+T
AT +t) < 0(M+0«Rellcoy+ 10xR-llccoy + Tl cpy) / h(s) ds.
t
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The integral inequality

@ Step 2: Derive an integral inequality to show the decay.
To show the decay we need some factor from (0, 1) in this inequality.
@ Define

h(t) = lIrellco,g + -l cpo,-
For t € [0,2T] we have the a priori bound h(t) < M with M <1 depending
on the (sufficiently small) initial data. Let D =[0,2T] x [0, L]. Then

M= h0)exp (276 (5 + 18Rl + 10:R- ety + alcco ) )
@ For t € [0, T] we have
B B t+T
MT+0) < 0(M+ RN + IR llco) + [Elco) [ s)as
t
O Let A =0(M + [|0«Ry[lc(py + 10«R-Ilc(py + [Tl c(p))- Then
h(T+1t)< /\/ s)ds < ATM.
By controlling the initial data and the stationary state, we can make the

factor (AT) arbitrarily small.
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The integral inequality

@ We have .
h(t+T) < )\/ h(s)ds < (AT)M.
t

Thus we can make h(2T) arbitrarily small by making the factor (AT)
sufficiently small.
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The integral inequality

Q@ We have .
h(t+ T) < A/ h(s) ds < (AT)M.
t
Thus we can make h(2T) arbitrarily small by making the factor (AT)

sufficiently small.

@ The next part is
Step 3: Take care of the growth of the Lipschitz constant,
that we omit here.
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The integral inequality

@ We have .
h(t+T) < )\/ h(s)ds < (AT)M.
t

Thus we can make h(2T) arbitrarily small by making the factor (AT)
sufficiently small.
@ The next part is
Step 3: Take care of the growth of the Lipschitz constant,
that we omit here.

© After Step 3, if we are sure that the Lipschitz constant at time 2T is small
enough, we can continue the solution to [2T,4T] and proceed inductively.
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The Exponential Decay
For t € [0, T], we have

+T
h(t+ T) < )\/ h(s)ds < (AT)M

=] 5 = £ DA
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The Exponential Decay
For t € [0, T], we have

h(t+T) < )\/t+Th(s) ds < (AT)M.

@ For k > 2, we get inductively

KT+t
h(kT +¢t) < A h(s) ds
(k—1)T+t

- )\/T+th((k—1)T+s)ds

IN

;
)\/ (AT) " IM ds
0

< (AT)m.

Martin Gugat (FAU) From semi-global to global. 10 / 13



The Exponential Decay
For t € [0, T], we have

h(t+T) < )\/t+Th(s) ds < (AT)M.

@ For k > 2, we get inductively

KT+t
h(kT +¢t) < A h(s) ds
(k—1)T+t

- )\/T+th((k—1)T+s)ds

;
< )\/ (AT)*"*M ds
0

< (AT)m.

@ In this way we get the global existence and at the same time the exponential
decay of h(t) with the rate

I(AT)|
T
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The Exponential Decay

Define U = [|0«R[|c(p) + |10«R-|lc(py + ||Tllc(p)- Then we have the decay rate
1 1 - _
= —?ln (T@ [h(O) exp <2T9 (Z + U)> + U}) .

h(kT) < exp(—u(kT))M = exp (2T6’ (% + D)) h(0) exp(—u(kT)).

We have

The decay rate i can be made arbitrarily large by choosing h(0) and U sufficiently
small.
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Conclusion

o LyAapuNov-functions are an excellent tool to show exponential stability
provided that the corresponding local solutions are available.
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Conclusion

o LyAapuNov-functions are an excellent tool to show exponential stability
provided that the corresponding local solutions are available.

@ However, also other approaches are possible that use semiglobal solutions
This is useful if the system decay has a stepwise rather than a continuous
character.

@ In engineering practice, we often have nonlinear dynamics on networks:

There are lots of open questions!
Find a better feedback law!
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Thank you for your attention!
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