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Benasque’s spirit

Open problem presented in Benasque 2007
(keep hoping!)

Greatly inspired by the work of Juan Casado-D́ıaz, Manuel
Luna-Laynez and François Murat

Involved mathematics applied to a concrete model



Introduction: wind instruments

A musical note is the sum of several frequencies:

A lowest frequency, the fundamental one, which is responsible
of the note produced.

Higher frequencies (or overtones), being multiple of the
fundamental one, the harmonics, whose relative amplitudes
are responsible of the tone of the note.

A musical instrument is an objet generating sounds, whose
overtones are as close as possible of the multiples of the lowest
frequency (this is the difference between a bell and a pot).



Introduction: wind instruments

A wind instrument is the combination of an exciter (fipple,
reed. . . ) and a tube. The exciter creates the oscillation and the
eigenfrequencies of the tube selects the produced note.

Excitateur Resonateur

Images coming from: Philippe Bolton www.flute-a-bec.com



Introduction: the resonances

Assume that:

the pressure u in the tube follows the wave equation
∂2
ttu = ∆u

at the inner surface of the tube, the pressure satisfies
Neumann B.C. ∂νu = 0

at an open part of the tube, the pressure is equal to the
exterior pressure u = 0.

∂νu = 0

u = 0

∂2
ttu = ∆u

The resonances are the square roots of the eigenvalues of the
Laplacian operator.



Introduction: the resonances

If the tube is sufficiently thin, then the 3D Laplacian operator is
well approximated by the 1D Laplacian operator.

flute
recorder
open organ pipe
. . .
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reed instruments
(clarinet,
oboe. . . )
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Introduction: wind instruments

What happens when a hole of the flute is open?

1st case: large hole
(modern instruments)
The flute behaves as a tube truncated at
the place of the hole. We recover a
harmonic sound.

2nd case: small hole
(recorder, baroque flutes)
Not so simple: fork fingering, half-holes,
not harmonic (high frequencies are less
modified by the hole). . .



Main result

Set x = (x1, x̃) ∈ R3.
Let a ∈]0, 1[ and δ > 0. Consider the domain Ωε as follows.

x1 = 0 x1 = 1

(a, 0, 0)

ε

ε

ε
δε2

Gray: Dirichlet B.C., white: Neumann B.C.

∆ε is the positive Laplacian operator in Ωε with the associated
B.C.



Main result

∀u, v ∈ D(∆ε) , 〈∆εu|v〉L2(Ωε) =

∫
Ωε

∇u∇v .

Let A : D(A) −→ L2(0, 1) given by Au = −u′′ and

D(A) = {u ∈ H2((0, a)∪(a, 1))∩H1
0 (0, 1) | u′(a+)− u′(a−) = αδu(a)}

with α depending on the geometry of the hole.

∀u, v ∈ D(A) , 〈Au|v〉L2(0,1) =

∫ 1

0
u′(x)v ′(x)dx+αδu(a)v(a) .



Main result

Let 0 < λ1
ε < λ2

ε ≤ λ3
ε ≤ . . . be the eigenvalues of ∆ε.

Let 0 < λ1 < λ2 ≤ λ3 ≤ . . .be the eigenvalues of A.

Theorem – R.J. (2011)

When ε −→ 0, the spectrum of ∆ε converges to the one of A, i.e.

∀k ∈ N∗ , λkε −−−−−−→
ε−→0

λk .

Main idea: use the techniques of J. Casado-D́ıaz, M. Luna-Laynez
and F. Murat dealing with domains with several orders of thickness.



Discussion

µ2 is an eigenvalue of A iff αδ =
−µ sinµ

sin(µa) sin(µ(1− a))
.
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It is the expected profile of pressure.

One can adjust a or δ ⇒ creation of fork fingerings,
half-holes. . .

The overtones are not really harmonic.



Sketch of the proof (simplified case)

First consider the tube without open holes.

∂νu = 0

u = 0

∂2
ttu = ∆u

Min-Max principle

λkε = min
E k vect. space of dim k of H1

0 (Ωε)
max
u∈E k

∫
|∇u|2∫
|u|2

.

Lower-semicontinuity of the spectrum: Min-Max principle and
embedding of the eigenfunctions of A in H1

0 (Ωε).

Upper-semicontinuity of the spectrum: Min-Max principle and
weak convergence of the k−th eigenfunction of ∆ε to an
eigenfunction of A.



Sketch of the proof (simplified case)

Proof of the lower-semicontinuity of the spectrum:

Let ϕk = sin(kπ·) be the eigenfunctions of ∂2
x1x1

. We embed
ϕk in D(∆ε) by setting ϕk

ε (x) = sin(kπx1), we get

〈ϕj
ε|ϕk

ε 〉L2(Ωε) = ε2〈ϕj |ϕk〉L2(0,1)

〈∇ϕj
ε|∇ϕk

ε 〉L2(Ωε) = ε2〈∂x1ϕ
j |∂x1ϕ

k〉L2(]0,1[)

We apply Min-Max principle

λkε = min
E k vect. space of dim k of H1

0 (Ωε)
max
u∈E k

∫
|∇u|2∫
|u|2

≤ max
u∈vect(ϕj

ε)j≤k

∫
|∇u|2∫
|u|2

≤ λk



Sketch of the proof (simplified case)

Proof of the upper-semicontinuity of the spectrum:

Up to extracting, λkε converges to λk0 .

We move to Ω = (0, 1)3 by setting vk
ε (x) = ϕk

ε (x1, εx̃). We
have ∫

Ω
|∂x1vk

ε |2 +
1

ε2
|∂x̃vk

ε |2 = λkε .

Up to extracting, vk
ε converges to vk weakly in H1(0, 1) and

strongly in H3/4(0, 1).



Sketch of the proof (simplified case)

Let ψ be a 1D test function. We embed ψ in Ωε by setting
ψε(x) = ψ(x1). We get

1

ε2

∫
Ωε

∇ϕk
ε∇ψε =

1

ε2
λkε

∫
Ωε

ϕk
εψε

−−−−−−−→
ε−→0

∫ 1

0
∂x1vk∂x1ψ = λk0

∫ 1

0
vkψ .

Thus, vk is a eigenfunction of ∂2
x1x1

for the eigenvalue λk0 and
λk0 ≥ λk because the vk are orthogonal.



Sketch of the proof

Consider the original domain with an open hole

x1 = 0 x1 = 1

(a, 0, 0)

ε

ε

ε
δε2

We cannot use the canonical embedding 1D→3D: one needs to
study what happens around the hole.

Method: one introduces a zoom close to the hole and the
corresponding functional spaces following
[J. Casado-D́ıaz, M. Luna-Laynez and F. Murat].



Zoom around the hole

Let K be the half-space {x , x2 < 0} with the boundary condition
u = 0 on ∂K (hole) and ∂νu = 0 on ∂K (up).

x2= 0

1/ε

Box Kε

∂K (up)

Box Bε

1
∂K (hole)

Ḣ1(K ) = {v ∈ H1
loc(K ) , ∇v ∈ L2(K ) and u|∂K(hole) = 0}

Ḣ1
0 (K ) = closure of C∞0 (K ) in Ḣ1(K )

We endow both spaces of the scalar product 〈u|v〉 =
∫
∇u∇v .



Zoom around the hole

Let χ ∈ C∞(K ) satisfying the boundary conditions and χ ≡ 1
outside a bounded ball.

Theorem

Ḣ1(K ) and Ḣ1
0 (K ) are Hilbert spaces and

Ḣ1(K ) = Ḣ1
0 (K )⊕ Rχ .

Moreover, u ∈ Ḣ1(K ) belongs to Ḣ1
0 (K ) if and only if u ∈ L6(K ).

Finally, u ∈ Ḣ1(K ) splits in u = u̇ + uχ where

u̇ ∈ Ḣ1
0 (K ) u = lim

ε→0

1

Kε

∫
Kε

u(x)dx .



Zoom around the hole

We define ζ as the unique solution in Ḣ1(K ) of
∆ζ = 0

ζ = 1
+B.C .

Let α =
∫
K |∇ζ|

2.
ζ is the orthogonal projection of χ on the orthogonal space of
Ḣ1

0 (K )

〈u|v〉Ḣ1(K) =

∫
∇u̇∇v̇ + α u v

Proposition

There exists a sequence (ζε) converging to ζ in Ḣ1(K ) such that
ζε ≡ 1 outside Kε.

We set ζ̃ε = ζε(·/ε2) which is supported in Bε.



Lower-semicontinuity

Sketch of the proof of the lower-semicontinuity of the
spectrum:

Let (ϕk) be the eigenfunctions of A. We embed ϕk in D(∆ε)
to ϕk

ε such that

〈ϕj
ε|ϕk

ε 〉L2(Ωε) = ε2〈ϕj |ϕk〉L2(0,1) + o(ε2)

〈∆εϕ
j
ε|ϕk

ε 〉L2(Ωε) = ε2〈Aϕj |ϕk〉L2(0,1) + o(ε2)

We apply Min-Max principle

λkε = min
E k vect. space of dim k of H1

0 (Ωε)
max
u∈E k

∫
|∇u|2∫
|u|2

≤ max
u∈vect(ϕj

ε)j≤k

∫
|∇u|2∫
|u|2

≤ λk + o(ε)



Lower-semicontinuity

box Bε ϕk
ε = ϕk(a)ζ̃ε

ε

ε

0

ε

ϕk
ε ≡ ϕk(a)

ϕk

1

ε2

∫
Ωε

|∇ϕk
ε |2 '

∫ 1

0
|∂xϕk |2 + δ|ϕk(a)|2

∫
K
|∇ζ|2



Upper-semicontinuity

Sketch of the proof of the upper-semicontinuity of the
spectrum:

Up to extracting, λkε converges to λk0 .

We move to Ω = (0, 1)3 by setting vk
ε (x) = ϕk

ε (x1, εx̃). We
have ∫

Ω
|∂x1vk

ε |2 +
1

ε2
|∂x̃vk

ε |2 = λkε .

Up to extracting, vk
ε converges to vk weakly in H1(0, 1) and

strongly in H3/4(0, 1).

We prove that vk is an eigenfunction of A for the eigenvalue
λk0 .



Upper-semicontinuity

Let ψ ∈ H1
0 (]0, 1[) be a test function. We embed ψ in Ωε as above

and we show that

1

ε2

∫
Ωε

∇ϕk
ε∇ψε =

1

ε2
λkε

∫
Ωε

ϕk
εψε

−−−−−−−→
ε−→0

∫ 1

0
∂x1vk∂x1ψ + αδvk(a)ψ(a) = λk0

∫ 1

0
vkψ .

Crucial point: what happens in the box Bε?

x2= 0

1/ε

Box Kε

∂K (up)

Box Bε

1
∂K (hole)



Upper-semicontinuity

Why
1

ε2

∫
Bε

∇ϕk
ε∇ψε =

∫
Kε

∇wε∇(ψ(a)ζε)

converges to vk(a)ψ(a)
∫
K |∇ζ|

2?

By construction ψ(a)ζε → ψ(a)ζ in Ḣ1(K ).

We can assume that wε converges weakly to w0 in Ḣ1(K )

If φ ∈ C∞0 (K ), then
∫
K ∇w0∇φ = 0

The mean value of w0 is given by

w 0 = lim
εn→0

1

|Kεn |

∫
Kεn

wεn = vk(a) .

Thus wε ⇀ w0 = vk(a)ζ in Ḣ1(K ).



Further discussions

Several holes: several discontinuities of the derivative.

Cylindrical flutes: no changes for the first order.

Conical flutes: the 1D Laplacian operator is replaced by a
Laplacian operator with a different metric 1

S(x)∂x(S(x)∂x ·)
where S(x) is the sectional volume.

External radiation: one has to compute the second order.

Interaction with the exciter: ???




