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Control of underwater vehicles in potential fluids

We consider a rigid body S C R3? with two planes of symmetry,
surrounded by a fluid, and which is controlled by controls fluid
flows, which represent turbines or thrusters.

Bow thruster Longitudinal propeller
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Figure : Example of the a bow thruster and longitudinal propeller
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Control of underwater vehicles in potential fluids
Tiny Submersible Could Search for Life in Europa’s Ocean

Movie sequence of a miniature submarine exploring under the ice. Credit:
Jonas Jonsson, Angstrom Space Technology Centre of Uppsala University
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Control of underwater vehicles in potential fluids

Prototype miniature submersible
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Prototype of a miniature submarine. Credit: Yiming Xu, Zheng Ren, and
Kamran Mohseni, University of Florida
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Control of underwater vehicles in potential fluids

Example of submarine
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System under investigation,  Q(t) = R3\ S(t)

0
a—‘;+(u-V)u+Vp=o, x € Q(t)
divu=0 x € Q(t)
Eul ’
PN A= (W rwx (x—h))- A+ w(t,x), xedQt)
lim u(t,x) =0,

| x| =00

mh" = / phAdo,

20(t)
Newton | £(QhQ'w) = [ (x—h) x pido,
oQ(t)
Q =5w)Q, Sw)y=wxy VyecR3

System supplemented with Initial Conditions, and with the value of
the vorticity at the incoming flow (in 9€(t)) for the uniqueness



System under investigation

Main difficulties

© The systems describing the motions of the fluid and the solid
are nonlinear and strongly coupled.

@ The fluid domain R3\ S(t) is an unknown function of time

We follow in this work the same approach as in:

[{ L. ROSIER and O. GLASS.
On the control of the motion of a boat.

Mathematical Models and Methods in Applied Sciences,
23(04):617-670, 2013.
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System in a frame linked to the solid
After a change of variables we obtain in Q := R*\ S(0)

0
a—\;—f—((v—l—rxy)-V)V—i-rXV+Vq=0, y €9,
div v =0, y €9,
Fluid 9 v a=(I+rxy)-a+ > wilt)(y), y €09,
1<j<n
lim V(t,y):07
ly|—=+o0
m/:/qﬁda—mrxl,
Body 0%
Jor':/q(yxﬁ)da—rxJor,
oQ

and initial conditions (/(0), r(0)) = (h1,r0), v(0,y) = uo(y).
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Relation with Kirchhoff laws

Weconsiderjz(ngd 5) )—l—(é{ ?)and
0

(P,M) € R3 x R3 defined byj( ’{ > = ( ﬁ
Then the dynamics of the system are governed by the following
Kirchhoff equations

dP M

- M M M M
A M = (P CMw)xr— 3w {1+ RY W]
1<p<n
drl J.. J J J J
el = M+ CwyxrePxi— 3w {1+ Rir+ wiw)

1<p<n

where w(t) := (wi(t),..., wn(t)) € R" denotes the control input.



The dynamics of the full system (position and attitude)

Then, the dynamics of (h,q,/,r,w) € R3 x R3 x R3 x R3 x R" is

given by
hl
( q )

(1) = 7w +Frw)

r

S(r) 0 | n (L RY 4+ WY w
F(l,ryw)=— J —Cw|—>w,
r P

S() S(r) p=1 LI+ RIr+ WJw

g(q,l,r)
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Rigid bodies with symmetries
Uncontrollability

Solid of revolution

00 = { (11, f(y2) cos(8). f() sin(8)) -

e Equation for angular velocity
yi € [a,b], B 0,2m)}

Jor':/q(yxﬁ)da—rxJor

[2)9]
, o Jo- & = (Ji,0,0)*
i
i o (v x A)er =0
‘P'\ T Jlf’lEO
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Linearize the system

The linearization of the system around (h, g, /,r,w) = (0,1,0,0,0)

reads
n = |
2¢ = r

(1) = e
r

Taking w’ € R" as control, it is controllable if, and only if,
rank(C) = 6.



Ellipsoidal vehicle

We assume here that the vehicle fills the ellipsoid

2 2 2
e () (201 (2) <)
C1 (@) C3
where ¢; > ¢ > ¢3 > 0. Our first aim is to compute explicitly the
functions ¢; and ; for i =1,2,3 for

2 2 2
o-per (24 (2)"+(2)'-)
C1 Co C3



Controllability of the ellipsoid with six controls
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Controllability of the ellipsoid with six controls
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Controllability of the ellipsoid with six controls

C = diag( Gy, G, G3, G4, G5, Cg) and hence rank(C) =6
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Rigid bodies with symmetries

Let us introduce the operators S;(y) = y — 2y;e;, i.e.

S1(y) = (=y1,¥2,¥3)s
Sa2(y) = (v1, —y2,13),
S3(y) = (1, y2, —y3)-

Definition
o Let i € {1,2,3}. We say that Q is symmetric with respect to
the plane {y; = 0} if S;(Q2) = Q.
o Let f: QC RS- R.If £(Si(y)) =ekf(y) for any y € Q and
some number ¢ € {—1,1}, then f is said to be even (resp.
odd) with respect to S; if ef =1 (resp. ek = —1).
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Symmetric domain

We assume that

@  is invariant under the operators S, and S3, i.e.

SP(Q) - Qa vp € {273}7

Q=1 ie

x1(Sp(y)) = x1(y) Vy € 09,Vp € {2,3}

In other words, the set S and the control x1 are symmetric with
respect to the two planes {y» = 0} and {y3 = 0}.



Symmetric domain, 5,(2) = Q and ef =1Vp € {2,3}
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Symmetric domain, 5,(2) = Q and ef =1Vp € {2,3}
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Symmetric domain, 5,(2) = Q and ef =1Vp € {2,3}
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Loop-shaped trajectory

We consider a special trajectory of the toy problem, constructed as
in the flatness approach due to M. Fliess, J. Levine, P. Martin, P.
Rouchon

@ We first define the trajectory
h1(t) = M1 — cos(27t/ T))
I1(t) = A7/ T)sin(27t/T)
@ We next solve the Cauchy problem
17 7 — —2
w1 =a (I — Bhwy —ywi)
Wl(O) =0

to design the control input.

@ Then wy exists on [0, T] for 0 < A << 1. (hy,/1) =0 at
t =0, T. Nothing can be said about w1(T).



Return Method

We linearize along the above (non trivial) reference trajectory to
use the nonlinear terms. We obtain a system of the form

)15 a5 )Lt [ |

where x = (h,q)* and y = (I, r)*

D(t) = f(t)D+o()\)

A(t) = f(t)A+o(N)
B(t) = f(t)B+o(\)
where 1
f(t) = =1(t)



Control result for potential flows

Theorem

o Assume that S,(Q) = Q and £§, =1 Vp € {2, 3} hold

° 0= #0

o rank (C,B+AJ1C) =6
o rank (C,%jDJ’1C+B+A\7_1C):6
Then for any T > 0 the system with state

(h,q,1,r) € R3 x S3 x R® and control w € R", is locally
controllable around the origin in time T.

In the case when Jy, m >> 1, the rank conditions are satisfied

rank (C,Bx) =6
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Controllability of the ellipsoid with four controls

Control x1 Control x4

Figure : Ellipsoid with four controls.
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Controllability of the ellipsoid with four controls

We consider the same controllers x1, x4, x5 and xe Then the

matrices Boo = lim B and C are given by

m,Jo——+oo

G 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Bs

B 0o 0 0 o0 B 0 0 Bs 0

C=- 0 G 0 o0 Boe==1 19 0 0 o

0 0 Cs 0 0 0 0 0

0 0 0 Ce 0 0 0 0

with

Bs = [ (Vur-Vus)ia, Bo= [ (Vo Vi) o
00 o0
where Av; =0 in Q and 9,1 = x; on 9.
Thus, if Bs # 0 and Bg # 0, we see that the rank conditions are

fulfilled, so that the local controllability of the system is ensured
for m and Jy large enough.
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Path Forward

Global controllability result.
Numerics.

Flow displays some vorticity.
Stabilization.

e 6 6 o6 o

Disturbance rejection.



Thank you!



	Control of underwater vehicles in potential fluids
	Control in a non-linear system using return method


