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Motivations
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J. Lohéac Swimming is seen as a con-
trol problem.

Introduction

Given two points, does a fish
can swim from one point to
the other?

The motion of the fish is due
to fluid-structure interactions.
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The fluid
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m'jmber UL
SR Reynolds number: Re = ey
J. Lohéac M
Introduction Re << 1 | | Re > 1 R
> Re
Stokes Navier-Stokes Euler

’ H L(cm) ‘ U(cm.s_l)‘ T (s) ‘ Re ‘

Bacteria 10~° 1073 10~% [ 10°°
Spermatozoon || 1073 1072 1072 [ 1073

Fish 50 100 0.5 |5.10%
Pigeon 25 103 51071 10°
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The Deformations |

Ront All deformations are not interesting from the point of view of

number the motion.

swimmers
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Theorem (Scallop,

Introduction For a periodic motion described by one parameter, the
displacement on one period is null.

<> No motion

=

% in Stokes fluid

Taylor's experience
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Introduction

The Deformations
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N |

N

Motion

Purcell's swimmer s

’

in Stokes fluid

Helical
Deformation
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@ Low Reynolds number:

Introduction

o Explicit solutions have been computed by J. Blake, 1973
and J. Happel and H. Brenner, 1983.

@ Swimming model:

o Experiences realised by G. Taylor, 1951.

o Model and specificities of low Reynolds swimmers given by
E. M. Purcell, 1977 and S. Childress, 1981.

o First vision of the swimming problem as a control problem:

A. Shapere and F. Wilczek, 1989.
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Tt o Controllability results:

o Perfect fluid: T. Chambrion and A. Munnier, 2010.
o Stokes fluid, with a swimmer formed by n spheres:
F. Alouges, A. DeSimone and A. Lefebvre, 20009.

o Stokes fluid, with a ciliated swimmer: J. San Martin,
T. Takahashi and M. Tucsnak, 2007.
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B @) Cstablishment of a Model

Introduction

e A finite dimensional control problem
© Controlability

@ Conclusion
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Modelisation

@ Establishment of a Model

J. Lohéac (IECL-BCAM)

Low Reynolds number swimmers



Domain

Low
Reynolds

e Let BT(t) be the domain filled by the swimmer, ¥1(t) it's

swimmers

IR boundary and FT(t) = R3\ Bi(t) the domain filled by the fluid.

Modelisation

Figure: Domain

J. Lohéac (IECL-BCAM) Low Reynolds number swimmers



The fluid
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- p <8ut + (u'- V)uT> + Vp' —vAu

Modelisation div UT

Navier-Stokes Equations:
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The fluid
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- p<aaut+(uT~V)uT> +Vpl —vAu' = 0 in Fi(z)
Modelisation dIV UT =0 in FT(t)

(NS)
The fluid is assumed to be at rest at infinity and to glue the
swimmer,

Navier-Stokes Equations:

ul = v, on X(t),

where v; is the velocity of the swimmer.

J. Lohéac (IECL-BCAM) Low Reynolds number swimmers



The fluid
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- p<aaut+(uT~V)uT> +Vpl —vAu' = 0 in Fi(z)
Modelisation dIV UT =0 in FT(t)

(NS)
The fluid is assumed to be at rest at infinity and to glue the
swimmer,

Navier-Stokes Equations:

ul = v, on X(t),
where v; is the velocity of the swimmer.

Let 0 = 1/(VuJr + (Vul)™) — p'ls € R3*3 be the Cauchy stress
tensor. The force exerted by the fluid on a part dI' of ¥(t) is
ondr.
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The swimmer

Deformation

Low

R Id: - - . .
s The swimmer is located by the position of it's center of mass

h € R? and an angular position R € O*(3).

swimmers
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XT(.,t)

Modelisation
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The swimmer

Deformation speed

ow H H T _ 1- T .
Re;"olds The velocity of a point x" = XT(y, t) of Bi(t) is:
number

swimmers Vg = h + Rw x (XT — h) + RW(XT, t)?

J. Lohéac

with:

Modelisation @ w the non-rigid velocity of the swimmer:

wix', t) = X (X(., HL(RT(x" — h(t))), t) .
@ w the angular velocity:

R = RA(w),

where, A(w)
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The swimmer

Deformation constraints

Low The deformation X(t) must be:

Reynolds
number e a Cl-diffeomorphism of R3;

swimmers
J. Lohéac and must preserve:
@ the mass:
1

B ’det(JaCX(-, t))}

Modelisation

— P(‘, t)

@ the position of the mass center:

0= / p(x, t)xdx;
B(t)

@ the angular momentum:
' -1
0 :/ p(x, t)x x X (X(.,t) (x), t) dx .
B(t)
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The swimmer

Equation of motion
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Newton's principle gives:

Modelisation .
mh = / on'drl,
(1) (PFD)
dJw t
— = (x —h) x on"dx,
dt ()

with J(t) the inertial matrix at time t.
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Modelisation

The coupled problem

In dimensionless variables, taking the formal limit L — 0, we

obtain the quasi-static problem:

0 = Vpl — Auf, in Fi(t)
0 = divuf, in Fi(t)
lim uf(x) =0
[x| =00
ul =h+ Rw x (x —h) + Rw,on X'(t)

0 = / o(ul, pHnfdr
sH(t)

0 :/ (
> (t)

J. Lohéac (IECL-BCAM)
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Examples
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J. Lohéac X is constant but w # 0.

e 2007: J. San Martin, T. Takahashi and M. Tucsnak proved
that with six independent controls on w, the swimmer is
exactly controllable.

e 2008: M. Sigalotti and J.-C. Vivalda proved that
generically with respect to the shape of the swimmer only
three control are need.

Modelisation

o Golestanian’s swimmer:
B(t) is the union of three aligned spheres.
e 2009: F. Alouges, A. DeSimone and A. Lefebvre proved
the controllability of this swimmer and studied optimal
controls.
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Equations in the axi-symmetric case
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0 = Vp-Au, in F(t),
0 = divu, in F(t),
Modelisation (S)
lim u(x) =0
[x| =00
u=he,+w, on3(t), (BQ)

0= (/z(t) o(u, p)n dl') ey, (CM)

with w(x, t) = X (X(-, t)7}(x), t).
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Finite
dimension

e A finite dimensional control problem
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X(t,x) =x+ Z t)Di(x).

Finite
dimension One can redefine X by X(s) = Ip+ >._;s;D;. s is the
deformation parameter.

For every i € {1,...,n}, we define (vj(s), gi(s)) the Stokes
solution with boundary condition v;(s) = D; o X(s)™! on

Y (s) = X(s)(X).

We also define (vo(s), go(s)) the Stokes solution with boundary
condition v;(s) = e, on X(s).
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J. Lohéac / U(VO(S)7 qo(s)) dr . ez h
(s)
=—Z/ vi(s), qi(s)) dT - e, §;.

f):(s (vi,qi)dl - e,
fZ(s VO: qO) dr-e;’

h= Z fi(s)\i
i=1

s=A.

Finite
dimension

Setting fi(s) = , we have:
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Controlability e Controlability
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Chow's theorem |
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2= f(2)ur. (*)
i=1

- set on R”".
Controlabiiey We associated to this system the Lie algebra Lie{f,..., f;}
which is the smallest Lie algebra containing {fi,...,f,} stable

for the Lie bracket:

f.g] : R" — R"
z — D,g-f(z)—D,f g(z).
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Theorem (Chow)
Let assume that f; € C*(R",R") and u;(t) € Brm(0, r)

(r>0).
SUELETEN  /f for every z € R, Lie {fi,...,fm} = R", then the system (*)
is controllable.
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Control result

Low Let consider the control problem:
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) Lohéac Given hf € R* does-it exists T > 0 and XA € C*([0, T],R")
such that:

Problem

h(T)=h" and s(T)=0,

with the initial conditions:
Controlability

h(0) =0 and s(0)=07?
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Low Let consider the control problem:
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) Lohéac Given hf € R* does-it exists T > 0 and XA € C*([0, T],R")
such that:

Problem

h(T)=h" and s(T)=0,

with the initial conditions:
Controlability

h(0) =0 and s(0)=07?

Using shape differentiation, explicit solution (given by Lamb)
and Chow's theorem, we prove that the answer is positive for
the elementary deformations given by :

Di(r,0,¢) = Pa(cos0)x(r)er(0,9),
Dy(r,0,¢) = Ps(cos0)x(r)e-(0, ¢).
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Introduction
Modelisation

Finite
dimension

Controlability

Conclusion

Example of control
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Conclusion

@ Conclusion
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Conclusion
Other results
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@ Controllability holds if we had rotations, we then need four
elementary deformations.

@ Generically with respect to the shape, we can do motion
planning (both for the rigid and the non-rigid
deformations).

Conclusion

@ There exists optimal controls. In the axi-symmetric case,
we looked at the time optimal control problem.
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Conclusion
Open problems
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Minimal number of independent controls?
Swimming in a bounded domain?
Swimming with a flagella?

Collective swimming?

If we had inertia to the system?

Conclusion

Does microorganisms try to minimize a cost function?
Which one?

Numerical simulations?
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