The cost of controlling the Stokes system

F.W. Chaves-Silva

BCAM-Basque Center for Applied Mathematics

Benasque 2013

イロト イヨト イヨト イヨ

Given $u_0 \in L^2(\Omega)$, it is well known that there exists $f \in L^2(\omega \times (0, T))$ such that the associated solution v to the heat equation

$$\begin{aligned} v_t - \Delta u &= f \mathbf{1}_{\omega} \quad \text{in} \quad \Omega \times (0, T), \\ v &= 0, \quad \text{on} \quad \partial \Omega \times (0, T), \\ v(0) &= v_0 \quad \text{in} \quad \Omega \end{aligned}$$
 (1)

satisfies:

$$v(T) = 0. \tag{2}$$

イロト イヨト イヨト イヨト

Moreover, one also has the following estimate:

$$||f1_{\omega}||_{L^{2}(Q)} \leq C_{h}||v_{0}||_{L^{2}(\Omega)},$$
(3)

for a constant C_h , the cost of controllability for the heat equation, of the form $e^{C(\Omega,\omega)(1+1/T)}$.

The heat equation has a cost of controllability of order $e^{C/T}$.

イロト イヨト イヨト イヨト

The main reason for the form of the of the constant C_h is due to the fact that the fundamental solution of the heat equation in \mathbb{R}^N is given by

$$\Phi(x,t) = \frac{1}{(4\pi t)^{N/2}} e^{-\frac{|x|^2}{4t}}.$$
(4)

・ロト ・四ト ・ヨト ・ヨ

Consider now the Stokes system:

$$\begin{aligned} y_t - \Delta y + \nabla p &= g \mathbb{1}_{\omega} & \text{in } \Omega \times (0, T), \\ div \ y &= 0 & \text{in } \Omega \times (0, T), \\ y &= 0, & \text{on } \partial \Omega \times (0, T), \\ y(0) &= y_0 & \text{in } \Omega, \end{aligned}$$

We also have that, given $y_0 \in L^2(\Omega)$ with $div \ y_0 = 0$, there exists $g \in L^2(\omega \times (0, T))$ such that the associated solution y_0 to (5) satisfies:

$$y(T)=0$$

A D > A P > A B > A

(5)

Nevertheless, for the Stokes system one has

$$||g1_{\omega}||_{L^{2}(Q)} \leq C_{S}||y_{0}||_{L^{2}(\Omega)},$$
(6)

for a constant C_S , the cost of controllability for the Stokes equation, of the form $e^{C(\Omega,\omega)(1+1/T^4)}$.

メロト メポト メヨト メヨ

The Stokes system has a cost of controllability of order e^{C/T^4} .

イロト イヨト イヨト イヨト

For N = 2, the fundamental solution of the Stokes system can be written as

$$\Gamma(z; x, t) = -\Delta \Psi(z; x, t)I + Hess\Psi(z; x, t),$$

where, for each $z \in \mathbb{R}^2$, t > 0, Ψ satisfies

$$-\Delta\Psi(z;x,t)=\Phi(z-x,t).$$

For N = 3 we have a similar (much more complicated!) formula.

メロト メポト メヨト メヨ

OPEN PROBLEM

Are the cost of the controllability for the heat and the Stokes equation of the same order?

・ロト ・回ト ・ヨト ・