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Origin of the problem




Origin of the problem

We were interested in the determination of a system of orthonormal functions

Y = (Ym)m>1 satistying

10 Y — Aty + (V + V) Py = 0 in (0, T) x Q
11) —AV = n; AlPm(x, O in (0, T) X Q
libm(or X) = IJDOm(x) in Q)
Ym(t,0)=0 on [0, T] X Q)

A standing wave solution is an orthonormal system of functions (¢@.,)m>1 such
that the family defined by

Pm(t, x) = e, (x)
satisfies (1.1).

For instance ((o)m=0 may be a Hilbert basis of L*(Q) with each ¢, € Hy(Q).



Origin of the problem

The Schrodinger-Poisson system becomes: find a system of orthonormal func-
tions @ = (@m)m=1 and a sequence of real eigenvalues (A,,)>1 satisfying

A+ (V + V) Qi = Aoy in O
(1.2) < —AV = Z Al om()P  inQ
m=1
Pm(0)=0 on dQ)

The coefficients a,, are assumed to satisfy

(o]

ay, >0, Zam<00.

m=1

Various types of domains Q) and boundary conditions may be considered.

The potential Vis given and may be singular.



A global approach




A global approach

Even the linear case (that is dropping the second equation in (1.2) and setting
V = 0) deserves a new approach... also in the finite dimensional case

In other words: can one characterize the whole eigensystem of a linear op-
erator through one variational problem?

Consider a selfadjoint positive definite matrix A : H — H where H is an
n-dimensional Hilbert space

The eigenvalues of A can be found through the critical values of the Rayleigh
quotient
(Aufu)

(2.1) W)




A global approach

Namely, for1 <k <n-1,

_ . (Aufu)
(2.2) M= 1/11215 (UT),

(Aulu)
(ueue)

where ey, ..., e are eigenvectors for Ay, ..., Ag.

Ayl = inf{ ; u € spanfey, ... ,ek}l}

In practice, one finds #n critical values (or critical points), each depending on
the previous ones.

When H) is a separable, infinite dimensional Hilbert space and (A, D(A)) is
an unbounded positive self-adjoint operator such that the imbedding H :=
D(A'Y?) c Hy is compact, then the above procedure (2.2) yields all the eigen-
values of A.



A global approach: finite dimensional space

Finding (A)); is equivalent to find a Hilbert basis (u;); such that Au; = Aju;

Fix (ej)1<j<n, @ Hilbert basis of H
Denoting by U the matrix such that Ue; = 1, the problem is thus to find a
unitary operator U such that

Allej = A]Ue] — U*Allej = A]€]

For simplicity, assume A positive definite, and denote
S={U:H— H; UU=1}.
and choose n numbers a; > 0, with a; # ay for j # k, and denote D := diag(a))

Let ] : S — R be defined by

n

(2.3) J(U) := tr(DU*AU) = Z o (U AlUejle;).

j=1



A global approach: finite dimensional space A

» We show the following

Theorem. The functional | is smooth and achieves its minimum on S, at some Uy €
S. Moreover if uj := Uge;, then (uj)1<j<y is the eigensystem of A.




Finite dimension: Idea of proof

Let M be skew-adjoint, that is M* = —M. Then for all t € R we have
U(t) := exp(tM)Uy € S.
Thus for all t € R we have J(Up) < J(U(t))

We conclude that

d
(EI(U(t))) =0,

|t=0
This means that for all M such that M* = -M
tr(DU,MAUy) = tr(DUAMUy).
Setting B := UoDUj, , we have that for all M such that M* = —M,

tr(M(AB — BA)) = 0



Finite dimension: Idea of proof

This implies that BA = AB, that is
UoDUyA = AUDU,,.
Set u; := Upe; , and apply the above operators to u;
(UoDUy)Au; = AUoDUyu; = AUgDe; = ajAllpe; = ajAuj,
Thus UyDUjAu; = ajAu;, and
D(UyAu)) = aj(UyAu;).

Since a; is a simple eigenvalue of D, with a corresponding eigenvector e;, and
since Au; # 0 we conclude that

UBAM] = /\]8] — AM] = /\]M]

and finally UyAlp = diag(Aq,...,An) . Q?



A global approach: infinite dimension A




A global approach: infinite dimension

Assumptions: H infinite dimensional, separable, complex Hilbert space,
scalar product (-|-), norm || - |.

(A, D(A)) operator H, with D(A) C H dense and compact, A* = A > 0.
(¢/);>1 a Hilbert basis of H, such that e; € D(A'/?) for each j > 1.

(a))j>1, with a; > 0, such that

(31) Z 0(]' ||ej||2D(A1/2) < 0o,

j=1

and we denote by D the diagonal operator defined by De; := aje; for j > 1
(note that @; — 0 and D is compact).

Consider U : H — H such that

(32) WU=UU =1 Ue; DAY for j>1, a (U Alejle;) < oo.
j J j j1€j



A global approach: infinite dimension

Define the set S by

S = {U : H — H ; U satisfies (3.2)}.
S # Qisnon trivial: for A > 0, onehas e* € Sand U, := ([+iAA)(I-iAA)' €S
For U € S define Jo(U) by

(3.3) To(U) := tr(DU* AU := Z o (U Allejle;)
=1

Theorem. | achieves its minimum on S. There exists ﬁo € S such that

Jo(Up) = min Jo(Ul),
UeS

and Uy is a diagonalization operator for A; more precisely, for each j > 1, the vector
@; := Uoe; is an eigenvector of A corresponding to the eigenvalue A := (Apj|p;).



Infinite dimension: idea of proof

Consider b := inf ;g Jo(U) > 0.
Let (U,)y>1 € Sbesuchthatb < J(U,) <b+1/n<b+1.

For fixed j > 1, setting u’]’? := Uyej, we have for alln > 1

+1
=1+ (Au]’?lu]’?) <1+ b—

aj

2
1

By Cantor’s diagonal scheme, one finds a subsequence (denoted by) (u’]?)n such
that there exists a family (u;); such that for j > 1 fixed

u’; — u;=: Upe; weaklyin D(A'?), u;.l — u;j =: Upe; strongly in H.
Uy can be extended to H, and Uy'Uy = 1.

Finally, one shows that Jo(Up) < oo and Uy € S and that Jo(Uyp) = b.



Infinite dimension: idea of proof

Let M : H — H be bounded, skew-adjoint, that is M* = —M, and moreover
M : D(AY?) — D(A'?) continuous. Then for all t € R we have

U(t) := exp(tM)Uy € S.

Thus for all t € R we have J(Up) < J(U(t)) =: go(t). We conclude that ¢}(0) =
tr(DUy MAUy) — tr(DUy"AMUp) = 0.

Since tr(DUy"MAUy) = — }.; aj(Au;iMu;) and tr(DUy’AMUp) = ). ; a(Muj|Auy)
this means

(3.4) Re Y aj(AujMu,) = 0.
j>1

Choosing M :=iL with L* = L, one gets

(3.5) m Z oj(Au L) = 0,

j=1



Infinite dimension: idea of proof

Let n # k and let the operators M and L be defined by:
Muy :=u,, Muy, = —uy, Lug:=u,, Lu,:=uy, Lu;j=Mu;=0if j¢ {k n}
Using (3.4) and (3.5), we conclude that
(an — ai)(Autylug) = 0.
Thus if a;,, # oy, we have
0 = (Auylux) = (Uo"AUoeyex).
Assume for instance for all n # k one has a,, # a;. Then the above means that

Uo'Alpey, € spanfe,} & A, € R, Au, = Au,.

Y



Remarks




Remarks

When in (2.3) one chooses a; > a1 for all j > 1, then one can check that the
eigenvalues A; are ordered in a non decreasing order.

In the infinite dimenional case, a typical example of application is the case
Au = —-Au+Vu, for u € D(A),
with
D(A) := {u € HY(Q) ; —Au+ Vu € LXQ)}.

Here Q) C RV is bounded, and V* € L; (Q) while V- € L/(Q) for some p >
N/2.

In the case of Q = RV, one can adapt the above method if one assumes that
there exists a sequence (¢;);>1 which is total in L?(RN) and such that

f ej(x)ex(x)dx = 6r;, andforallj>1, f (|Ve].|2 + Vle]-(x)|2) dx < 0.
RN RN



Remarks

Bob Kohn mentioned to us a result due to J. von Neumann which states that
for two n X n matrices A and B

tr(AB)| < ) 0(A)o(B)

=1

where (0(A))1<j<n» and (0(B))1<j<» denote the decreasing singular values of A
and B respectively.

From this L. Mirsky (1975) points out that one can conclude another result
due to J. von Neumann, stating that:

n

sup itr(BUAV)| = Z o {(A)a(B).

j=1
Our result, which is specialized to self-adjoint matrices, can be interpreted as
another proof of the above result in that particular case, and also characterizes
the diagonalization matrice by a variational method.



