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Origin of the problem



Origin of the problem

I Wewere interested in the determination of a system of orthonormal functions
ψ := (ψm)m≥1 satisfying

(1.1)



i∂tψm − ∆ψm + (V + Ṽ)ψm = 0 in (0,T) ×Ω

−∆V =

∞∑
m=1

αm|ψm(x, t)|2 in (0,T) ×Ω

ψm(0, x) = ψ0m(x) in Ω
ψm(t, σ) = 0 on [0,T] × ∂Ω

I A standing wave solution is an orthonormal system of functions (ϕm)m≥1 such
that the family defined by

ψm(t, x) = eiλmtϕm(x)

satisfies (1.1).

I For instance (ψ0m)m≥0 may be a Hilbert basis of L2(Ω) with each ψ0m ∈ H1
0(Ω).



Origin of the problem

I The Schrödinger–Poisson systembecomes: find a systemof orthonormal func-
tions ϕ := (ϕm)m≥1 and a sequence of real eigenvalues (λm)m≥1 satisfying

(1.2)


−∆ϕm + (V + Ṽ)ϕm = λmϕm in Ω

−∆V =

∞∑
m=1

αm|ϕm(x)|2 in Ω

ϕm(σ) = 0 on ∂Ω

I The coefficients αm are assumed to satisfy

αm > 0,
∞∑

m=1

αm < ∞.

I Various types of domains Ω and boundary conditions may be considered.

I The potential Ṽ is given and may be singular.



A global approach



A global approach

I Even the linear case (that is dropping the second equation in (1.2) and setting
V ≡ 0) deserves a new approach. . . also in the finite dimensional case

I In other words: can one characterize the whole eigensystem of a linear op-
erator through one variational problem?

I Consider a selfadjoint positive definite matrix A : H −→ H where H is an
n-dimensional Hilbert space

I The eigenvalues of A can be found through the critical values of the Rayleigh
quotient

(2.1)
(Au|u)
(u|u)



A global approach

I Namely, for 1 ≤ k ≤ n − 1,

(2.2) λ1 = inf
u∈H

(Au|u)
(u|u)

, λk+1 = inf
{

(Au|u)
(u|u)

; u ∈ span{e1, . . . , ek}
⊥

}
where e1, . . . , ek are eigenvectors for λ1, . . . , λk.

I In practice, one finds n critical values (or critical points), each depending on
the previous ones.

I When H0 is a separable, infinite dimensional Hilbert space and (A,D(A)) is
an unbounded positive self-adjoint operator such that the imbedding H :=
D(A1/2) ⊂ H0 is compact, then the above procedure (2.2) yields all the eigen-
values of A.



A global approach: finite dimensional space

I Finding (λ j) j is equivalent to find a Hilbert basis (ũ j) j such that Aũ j = λ jũ j

I Fix (e j)1≤ j≤n, a Hilbert basis of H
Denoting by U the matrix such that Ue j = ũ j, the problem is thus to find a
unitary operator U such that

AUe j = λ jUe j ⇐⇒ U∗AUe j = λ je j.

I For simplicity, assume A positive definite, and denote

S := {U : H −→ H ; U∗U = I}.

and choose n numbers α j > 0, with α j 6= αk for j 6= k, and denote D := diag(α j)

I Let J : S −→ R be defined by

(2.3) J(U) := tr(DU∗AU) =

n∑
j=1

α j(U∗AUe j|e j).



A global approach: finite dimensional space

I We show the following
Theorem. The functional J is smooth and achieves its minimum on S, at some U0 ∈

S. Moreover if u j := U0e j, then (u j)1≤ j≤n is the eigensystem of A.



Finite dimension: Idea of proof

I Let M be skew-adjoint, that is M∗ = −M. Then for all t ∈ Rwe have

U(t) := exp(tM)U0 ∈ S.

I Thus for all t ∈ Rwe have J(U0) ≤ J(U(t))

I We conclude that (
d
dt

J(U(t))
)
|t=0

= 0.

I This means that for all M such that M∗ = −M

tr(DU∗0MAU0) = tr(DU∗0AMU0).

I Setting B := U0DU∗0 , we have that for all M such that M∗ = −M,

tr(M(AB − BA)) = 0



Finite dimension: Idea of proof

I This implies that BA = AB, that is

U0DU∗0A = AU0DU∗0.

I Set u j := U0e j , and apply the above operators to u j

(U0DU∗0)Au j = AU0DU∗0u j = AU0De j = α jAU0e j = α jAu j,

I Thus U0DU∗0Au j = α jAu j , and

D(U∗0Au j) = α j(U∗0Au j).

I Since α j is a simple eigenvalue of D, with a corresponding eigenvector e j, and
since Au j 6= 0 we conclude that

U∗0Au j = λ je j ⇐⇒ Au j = λ ju j.

and finally U∗0AU0 = diag(λ1, . . . , λn) . ♥



A global approach: infinite dimension



A global approach: infinite dimension

I Assumptions: H infinite dimensional, separable, complex Hilbert space,
scalar product (·|·), norm ‖ · ‖.

I (A,D(A)) operator H, with D(A) ⊂ H dense and compact, A∗ = A ≥ 0.

I (e j) j≥1 a Hilbert basis of H, such that e j ∈ D(A1/2) for each j ≥ 1.

I (α j) j≥1, with α j > 0, such that

(3.1)
∑
j≥1

α j ‖e j‖
2
D(A1/2) < ∞,

and we denote by D the diagonal operator defined by De j := α je j for j ≥ 1
(note that α j → 0 and D is compact).

I Consider U : H −→ H such that

(3.2) U∗U = UU∗ = I, Ue j ∈ D(A1/2) for j ≥ 1,
∑
j≥1

α j(U∗AUe j|e j) < ∞.



A global approach: infinite dimension

I Define the set S by

S :=
{
U : H −→ H ; U satisfies (3.2)

}
.

S 6= ∅ is non trivial: forλ > 0, one has eiλA
∈ S andUλ := (I+iλA)(I−iλA)−1

∈ S

I For U ∈ S define J0(U) by

(3.3) J0(U) := tr(DU∗AU) :=
∑
j≥1

α j(U∗AUe j|e j)

Theorem. J0 achieves its minimum on S. There exists Û0 ∈ S such that

J0(Û0) = min
U ∈S

J0(U),

and Û0 is a diagonalization operator for A; more precisely, for each j ≥ 1, the vector
ϕ j := Û0e j is an eigenvector of A corresponding to the eigenvalue λ j := (Aϕ j|ϕ j).



Infinite dimension: idea of proof

I Consider b := infU∈S J0(U) ≥ 0.

I Let (Un)n≥1 ∈ S be such that b ≤ J(Un) ≤ b + 1/n ≤ b + 1.

I For fixed j ≥ 1, setting un
j := Une j, we have for all n ≥ 1

‖un
j ‖

2
D(A1/2) = 1 + (Aun

j |u
n
j ) ≤ 1 +

b + 1
α j

.

I ByCantor’s diagonal scheme, one finds a subsequence (denoted by) (un
j )n such

that there exists a family (u j) j such that for j ≥ 1 fixed

un
j ⇀ u j =: U0e j weakly in D(A1/2), un

j → u j =: U0e j strongly in H.

I U0 can be extended to H, and U0
∗U0 = I.

I Finally, one shows that J0(U0) < ∞ and U0 ∈ S and that J0(U0) = b.



Infinite dimension: idea of proof

I Let M : H −→ H be bounded, skew-adjoint, that is M∗ = −M, and moreover
M : D(A1/2) −→ D(A1/2) continuous. Then for all t ∈ Rwe have

U(t) := exp(tM)U0 ∈ S.

I Thus for all t ∈ R we have J(U0) ≤ J(U(t)) =: g0(t). We conclude that g′0(0) =
tr(DU0

∗MAU0) − tr(DU0
∗AMU0) = 0 .

I Since tr(DU0
∗MAU0) = −

∑
j α j(Au j|Mu j) and tr(DU0

∗AMU0) =
∑

j α j(Mu j|Au j)
this means

(3.4) Re
∑
j≥1

α j(Au j|Mu j) = 0.

I Choosing M := iL with L∗ = L, one gets

(3.5) Im
∑
j≥1

α j(Au j|Lu j) = 0.



Infinite dimension: idea of proof

I Let n 6= k and let the operators M and L be defined by:

Muk := un, Mun := −uk, Luk := un, Lun := uk, Lu j = Mu j = 0 if j 6∈ {k,n}.

I Using (3.4) and (3.5), we conclude that

(αn − αk)(Aun|uk) = 0.

I Thus if αn 6= αk, we have

0 = (Aun|uk) = (U0
∗AU0en|ek).

I Assume for instance for all n 6= k one has αn 6= αk. Then the above means that

U0
∗AU0en ∈ span{en} ⇐⇒ ∃λn ∈ R, Aun = λnun.

♥



Remarks



Remarks

I When in (2.3) one chooses α j > α j+1 for all j ≥ 1, then one can check that the
eigenvalues λ j are ordered in a non decreasing order.

I In the infinite dimenional case, a typical example of application is the case

Au := −∆u + Vu, for u ∈ D(A),

with

D(A) :=
{
u ∈ H1

0(Ω) ; −∆u + Vu ∈ L2(Ω)
}
.

I Here Ω ⊂ RN is bounded, and V+
∈ L1

loc(Ω) while V− ∈ Lp(Ω) for some p >
N/2.

I In the case of Ω = RN, one can adapt the above method if one assumes that
there exists a sequence (e j) j≥1 which is total in L2(RN) and such that∫

RN
e j(x)ek(x)dx = δkj, and for all j ≥ 1,

∫
RN

(
|∇e j|

2 + V|e j(x)|2
)
dx < 0.



Remarks

I Bob Kohn mentioned to us a result due to J. von Neumann which states that
for two n × n matrices A and B

|tr(AB)| ≤
n∑

j=1

σ j(A)σ j(B)

where (σ j(A))1≤ j≤n and (σ j(B))1≤ j≤n denote the decreasing singular values of A
and B respectively.

I From this L. Mirsky (1975) points out that one can conclude another result
due to J. von Neumann, stating that:

sup
U,V
|tr(BUAV)| =

n∑
j=1

σ j(A)σ j(B).

I Our result, which is specialized to self-adjoint matrices, can be interpreted as
another proof of the above result in that particular case, and also characterizes
the diagonalization matrice by a variational method.


