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VICENT CASELLES: A LIFE DEVOTED TO MATHEMATICS

Vicent (Gata, Alacant, 10-8-1960,
Barcelona, 14-8-2013) was an
outstanding mathematician, capable of
the most rigorous mathematical
formalism and, at the same time, eager
to find challenging applications for him
and his collaborators and to get
excellent numerical results.
As his many collaborators and friends
know, he was an excellent person, with
an uncommon combination of sincerity,
modesty and willingness to help, that
made him so charming.
I hope this little tribute to his memory
will serve to illustrate Vicent’s personal
and scientific achievements.
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Biography Academic trajectory

ACADEMIC TRAJECTORY

1977-78 - 1981-82: M.Sc. in Mathematics, Univ. València.
1982-83 - 1985: Ph.D. in Mathematics, Univ. València.
1985 - 1987: Post-doc at Univ. Tübingen.
1987 - 1988: Post-doc at Univ. Franche-Comté, Besançon.
1989 - 1990: Research and Teaching Assistant (ATER) at Univ.
Franche-Comté, Besançon.
1990 - 1999: Univ. Illes Balears, Palma.
1999 - 2013: Univ. Pompeu Fabra, Barcelona.

Data taken mainly from Vicent’s CV
http://www.dtic.upf.edu/ vcaselles/CV-Vicent.pdf
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Biography Academic trajectory

VICENT’S NUMBERS

142 papers in international journals.
64 other publications.
81 invited conferences.
4742 citations (two papers with more than 2000 citations)†

74 coauthors (48 with more than one paper)†

15 Ph.D. thesis

†Source: ISI-WOK
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Biography Awards and prizes

AWARDS AND PRIZES

2003: Ferran Sunyer i Balaguer Prize.
2006: Invited Conference at ICM, Madrid, Spain.
2008: SIAM Outstanding Paper Prize 2008.
2009: ICREA Acadèmia (Gen. Cat.) prize for excellence in research.
2011: Invited plenary speaker at ICIAM, Vancouver, Canada.
2011: Test of Time Award at International Conference on Computer
Vision (ICCV) for the ICCV paper “Geodesic Active Contours” in
collaboration with R. Kimmel and G. Sapiro.
2012: SIAM Activity Group on Imaging Science (SIAG/IS) prize for
the PAMI paper “A Perceptually Inspired Variational Framework for
Color Enhancement”.
2012 : Invited lecture at the ECM, Krakow, Poland.
2012 : ERC Advanced Grant (2.3M euros) “Inpainting Tools for
Video Post-production. Variational Theory and Fast Algorithms.”.

Pep Mulet (Univ. València) Scientific achievements of Vicent Caselles 6 / 41



Biography Coauthors

COAUTHORS

SAPIRO G (31) MOLL S (5) CONSTANTINOPOULOS C (2) MALLADI R (1)
MOREL JM (30) SBERT C (5) DIBOS F (2) MARQUES A (1)
MAZON JM (20) SOLE A (5) KALMOUN E (2) MARTINEZ J (1)
ANDREU F (20) ALMANSA A (4) LAZCANO V (2) PALMA-AMESTOY R (1)
BERTALMIO M (17) BELLETTINI G (4) LISANI JL (2) PARDO A (1)
BALLESTER C (16) BERNOT M (4) MEINHARDT-LLOPIS E (2) PRECIOZZI J (1)
NOVAGA M (11) MEINHARDT E (4) MIRANDA M (2) RANCHIN F (1)
CHAMBOLLE A (10) MONASSE P (4) RANDALL G (2) RIZZI A (1)
FACCIOLO G (10) ROUGE B (4) ADALSTEINSSON D (1) SANDER O (1)
COLL B (8) ALTER F (3) AUJOL JF (1) SETHIAN JA (1)
ARIAS P (7) BUGEAU A (3) CALDERERO F (1) SOLER J (1)
GARRIDO L (7) FERRADANS S (3) CAO F (1) TANNENBAUM A (1)
VERDERA J (7) GARGALLO P (3) CHUNG DK (1) VERBENI M (1)
IGUAL L (6) SADEK R (3) D’HONDT O (1) ZACUR E (1)
KIMMEL R (6) TANG B (3) DIAZ JI (1)
PAPADAKIS N (6) ALEMAN-FLORES M (2) DONAT R (1)
PROVENZI E (6) ALVAREZ L (2) FRANGI AF (1)
ARANDIGA F (5) BAEZA A (2) GONZALEZ M (1)
HARO G (5) CARDELINO J (2) HERVIEUX A (1)
LIU YQ (5) CATTE F (2) LUNARDI A (1)
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Biography Coauthors

PH.D. THESIS

Francesc Aràndiga Llaudes, UV, 1992.
Coloma Ballester Nicolau,UIB , 1995. (co-supervisor: J.M. Morel)
Catalina Sbert Juan, UIB, 1995. (J.M. Morel)
Manuel González Hidalgo, UIB, 1995. (J.M. Morel)
Andrés Solé Martínez, UPF, 2002.
Joan Verdera Ribas, UPF, 2004.
José Salvador Moll Cebolla, UV, 2005. (J.M. Mazón, F. Andreu)
Gloria Haro Ortega, UPF, 2005. (R. Donat)
Marc Bernot, ENS Cachan, 2005. (J.M. Morel)
Laura Igual, UPF, 2006. (Luis Garrido)
François Alter, ENS Cachan, 2008. (J.M. Morel)
Gabriele Facciolo Furlan, UPF, 2010.
Enric Meinhardt Llopis, UPF, 2010.
Sira Ferradans Ramonde, UPF, 2011. (M. Bertalmío).
Rida Sadek, UPF , 2012.
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Some selected topics

THE QUEST FOR EXCELLENT MATHEMATICS THAT ALSO WORK IN PRACTICE

PREVIOUS RESEARCH INTERESTS (1982-1990)
Functional Analysis: geometry of Banach spaces and operator
theory.

RESEARCH INTERESTS (1990-2013)
Image processing
Partial Differential Equations and their applications
Differential geometry and its applications
Computer vision
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Some selected topics Gray image denoising

IMAGE DENOISING

Image (gray): u : Ω := (0, 1)2 → R (R3 ≡ R×G×B for color),
u(x, y) ≡ gray level at (x, y):

Image acquisition introduces noise: z = u + n, z recorded image, n
noise (unknown, up to some statistics):

Pictures taken from [Rudin, Osher, Fatemi, 92]
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Some selected topics Gray image denoising

IMAGE DENOISING

Goal: approximate u, preserving discontinuities (edges)

Assume we know ‖n‖2 :=
(�

Ω n2
) 1

2 = σ; then solve

min F (u), subject to‖
n︷ ︸︸ ︷

z − u ‖2 = σ

where F : X → R measures the regularity of u in some sense.
This is equivalent to

min F (u) +
λ

2
‖z − u‖2

2

for suitable Lagrange multiplier λ, with Euler-Lagrange equation:

F ′(u) + λ(u− z) = 0.
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Some selected topics Gray image denoising

IMAGE DENOISING

If
F (u) =

�
Ω
|∇u|2dxdy, |∇u| =

√
u2

x + u2
y,

for u ∈ X = H1(Ω), then the E-L equation reads:

−∆u + λ(u− z) = 0

a linear elliptic equation with continuous solutions (no edge
recovery).
[Rudin, Osher and Fatemi, 1992] use

F (u) = TV (u) :=

�
Ω
|∇u|dxdy (1)

(Total Variation of u), u ∈ BV(Ω), for then u can be discontinuous
along curves. Of course, (1) is only valid for differentiable functions, a
weak formulation applies otherwise.
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Some selected topics Gray image denoising

IMAGE DENOISING

The (formal) E-L equation is now:

−div
(
∇u

|∇u|

)
+ λ(u− z) = 0

and the associated parabolic equation reads

ut = div
(
∇u

|∇u|

)
− λ(u− z)

These equation do not make sense for non-differentiable functions or
with extrema (where the denominator |∇u| vanishes).
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Some selected topics Total variation flow

TOTAL VARIATION FLOW

Of course, somebody had to give sense to all these equations.
Vicent, together with F. Andreu and J.M. Mazón, studied the total
variation flow in a series of papers starting at 2000:

ut = div
(
∇u

|∇u|

)
, (2)

giving correct sense to all the terms involved in these formulation.
This equation corresponds to the minimization of the total variation
and can be used to denoise without prior knowledge of σ:

min

�
Ω
|∇u|. (3)

Related to anisotropic diffusion ([Perona, Malik, 1987], [Catte, Coll,
Lions, Morel, 1992]).
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Some selected topics Total variation flow

TOTAL VARIATION FLOW

1 Minimizing total variation flow, Andreu, F; Ballester, C; Caselles, V; Mazon,
JM, C.R. Acad. Sci. 2000.

2 The Dirichlet problem for the total variation flow, Andreu, F; Ballester, C;
Caselles, V; Mazon, JM J., Functional Analysis, 2001.

3 The total variation flow in RN , Bellettini, G; Caselles, V; Novaga, M, J. Diff.
Eq., 2002.

4 Some qualitative properties for the total variation flow, Andreu, F; Caselles,
V; Diaz, JI; Mazon, JM, J. Functional Analysis, 2002.

5 The minimizing total variation flow with measure initial conditions, Andreu,
F; Mazon, JM; Moll, JS; Caselles, V, Comm. Contemp. Math., 2004.

6 Evolution of characteristic functions of convex sets in the plane by the
minimizing total variation flow, Alter, F; Caselles, V; Chambolle, A,
Interfaces and Free Boundaries, 2005.

7 Explicit solutions of the eigenvalue problem −div(∇u/|∇u|) = u in R2,
Bellettini, G; Caselles, V; Novaga, M, SIAM J. Math. Analysis, 2005.

8 On the jump set of solutions of the Total Variation flow, Caselles V, Jalalzai
K, Novaga M, Sem. Matematico della Università di Padova, 2013.
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Some selected topics Minimizing flow for linear growth functionals

MINIMIZING FLOW FOR LINEAR GROWTH FUNCTIONALS

Vicent and coauthors then study generalizations of (2) and (3):

min
u

�
Ω

f(x,∇u(x))dx, Ω open subset of RN

for suitable convex functions f(x, ξ) with linear growth (on ξ ≡ ∇u),
which give gradient flows:

ut(x, t) = div [a(x,∇u(x, t))] , a(x, ξ) = ∇ξf(x, ξ).

(f(x, ξ) = |ξ| gives the minimizing total variation flow)
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Some selected topics Minimizing flow for linear growth functionals

MINIMIZING FLOW FOR LINEAR GROWTH FUNCTIONALS

1 Existence and uniqueness of a solution for a parabolic quasilinear
problem for linear growth functionals with L1 data, Andreu, F;
Caselles, V; Mazon, JM, Mathematische Annalen, 2002.

2 A parabolic quasilinear problem for linear growth functionals, Andreu,
F; Caselles, V; Mazon, JM, Rev. Matem. Iberoamericana, 2002

3 The Cauchy problem for linear growth functionals, Andreu, F;
Caselles, V; Mazon, JM, J. Evol. Equat., 2003.

4 Evolution problems associated to linear growth functionals: The
Dirichlet problem, Andreu, F; Caselles, V; Mazon, JM, Evolution
equations: Applications to physics, industry, life sciences and
economics, 2003.
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Some selected topics Image restoration

IMAGE RESTORATION

Image acquisition introduces blur and noise: z = Ku + n, z recorded
image, n noise and Ku = k ∗ u, for known kernel k, with the goal of
getting û ≈ u (preserving edges)

u

J Sci Comput (2008) 34: 209–236 225

Fig. 1 Reference image and a
filtered and noised image. The
top image is the reference image
which is used to assess the
quality of the results. The bottom
image represents the data z, it has
been generated by applying filter
(44) to the reference image and
adding a white Gaussian noise of
standard deviation σ = 1. Both
images are of size 256 × 256

Remark 7 For the sake of completeness, let us point out the following algorithm for the
case β > 0, which is due to Bermúdez-Moreno [6]. The Bermúdez-Moreno algorithm for
(37) (with ω = 0 [6]) can be written as:

Aum = v + $ths ∗ ((G ∗ λ)z) + $t div ξm, in X,

ξm+1(i, j) = Gα(∇um(i, j) + αξm(i, j)), in R2, ∀(i, j),
(41)
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getting û ≈ u (preserving edges)

z

J Sci Comput (2008) 34: 209–236 225

Fig. 1 Reference image and a
filtered and noised image. The
top image is the reference image
which is used to assess the
quality of the results. The bottom
image represents the data z, it has
been generated by applying filter
(44) to the reference image and
adding a white Gaussian noise of
standard deviation σ = 1. Both
images are of size 256 × 256

Remark 7 For the sake of completeness, let us point out the following algorithm for the
case β > 0, which is due to Bermúdez-Moreno [6]. The Bermúdez-Moreno algorithm for
(37) (with ω = 0 [6]) can be written as:

Aum = v + $ths ∗ ((G ∗ λ)z) + $t div ξm, in X,

ξm+1(i, j) = Gα(∇um(i, j) + αξm(i, j)), in R2, ∀(i, j),
(41)

Pep Mulet (Univ. València) Scientific achievements of Vicent Caselles 18 / 41



Some selected topics Image restoration

IMAGE RESTORATION

Image acquisition introduces blur and noise: z = Ku + n, z recorded
image, n noise and Ku = k ∗ u, for known kernel k, with the goal of
getting û ≈ u (preserving edges)

û

226 J Sci Comput (2008) 34: 209–236

Fig. 2 Restored images with a
Lagrange multiplier for the
global constraint (with β = 0).
a The top image has been
obtained using the global
parameter λ = 10 which gives a
solution that satisfies the
constraint

∑N
i,j=1(h ∗ u(i, j)

− z(i, j))2 = σ 2N2. The attained
value for this quantity is
mean((h ∗ u − z)2) = mean(G ∗
(h ∗ u − z)2) = 0.9947 and
variance(G ∗ (h ∗ u − z)2)
= 0.0699 using a Gaussian G
with σG = 6.5. The RMSE
between this result and the
reference image is
RMSE = 9.4148. b The bottom
one has been obtained with a
global parameter λ = 40 which is
bigger than the previous value
that permits to satisfy the
constraint. In this case,
mean((h ∗ u − z)2) =
mean(G∗ (h∗u− z)2) = 0.6327,
variance(G ∗ (h ∗ u − z)2)
= 0.0069 with a Gaussian G of
σG = 6.5, and RMSE = 9.0970

where A is given in (40),

Gα := I − (I + α∂ϕβ)−1

α
, α > 0,

ϕβ(ξ) =
√

β2 + |ξ |2, ξ ∈ R2.

In that case, assuming that {ξm(i, j)}i,j is already known, the first equation of (41) can be
solved for um by means of a conjugate gradient algorithm. Let us write ξm ∈ R2 as one of
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Some selected topics Image restoration

IMAGE RESTORATION

Assume that we know that n = z −Ku is a Gaussian white noise
with variance σ2 (and 0 mean) uncorrelated to Ku; then

Pr
( 

Ω′
n2 ≤ σ2

)
= 1

for any open Ω′ ⊆ Ω = (0, 1)2.
If we impose globally

�
Ω n2 ≤ σ2, then variational problem reads as:

min TV (u), subject to
1

2
(

�
Ω
(Ku− z)2 − σ2) ≤ 0 (4)

The Euler-Lagrange equation is now:

−div
(
∇u

|∇u|

)
+ λK∗(Ku− z) = 0 (K∗ ≡ adjoint of K)

where λ is the Lagrange multiplier for the (global) constraint.
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Some selected topics Image restoration

IMAGE RESTORATION

It is observed that the solution û of (4) yields an approximated noise
n̂ = z −Kû which is correlated with Kû:

n̂

228 J Sci Comput (2008) 34: 209–236

Fig. 4 Residual values h ∗ u − z.
a The top image displays the
residual values |h ∗ u − z|,
rescaled between 0 and 255,
corresponding to the image
of Fig. 2a. b The bottom one
displays the residual values
corresponding to the image
of Fig. 3a

and using that ∂ϕβ(v) = v√
β2+|v|2

, after some simple computations, the second equation of

(41) can be written as

vm+1 + α
vm+1

√
β2 + |vm+1|2

= ∇um + αξm. (43)
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Some selected topics Image restoration

IMAGE RESTORATION

It is also observed that the approximated noise n̂ does not verify
 

Ω′
n̂2 ≤ σ2, ∀ open Ω′ ⊆ Ω

In [Almansa, Ballester, Caselles, Haro 2008] they propose a suitable
discretization of the problem (with local constraints)

min TV (u),

subject to
 

Bδ(x,y)
(Ku− z)2 ≤ σ2,∀(x, y) ∈ Ω

for some δ > 0.
They use a variant of Uzawa’s algorithm for the numerical solution.
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Some selected topics Image restoration

IMAGE RESTORATION: RESULTS

n̂ global constraint

228 J Sci Comput (2008) 34: 209–236

Fig. 4 Residual values h ∗ u − z.
a The top image displays the
residual values |h ∗ u − z|,
rescaled between 0 and 255,
corresponding to the image
of Fig. 2a. b The bottom one
displays the residual values
corresponding to the image
of Fig. 3a

and using that ∂ϕβ(v) = v√
β2+|v|2

, after some simple computations, the second equation of

(41) can be written as

vm+1 + α
vm+1

√
β2 + |vm+1|2

= ∇um + αξm. (43)
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Some selected topics Image restoration

IMAGE RESTORATION: RESULTS

û global constraint
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Some selected topics Image restoration

IMAGE RESTORATION: RESULTS

û local constraints

J Sci Comput (2008) 34: 209–236 227

Fig. 3 Restored image using
local constraints. a The top
image corresponds to the restored
image obtained using functional
(22) with β = 0, σ 2 = σ 2 = 1
using a Gaussian window with
σG = 6.5. In this case we have
RMSE = 9.0739, mean(G ∗ (h ∗
u − z)2) = 0.9669, and
variance(G ∗ (h ∗ u − z)2)
= 0.0012. b The bottom one is
the function λ(i, j) obtained

the vectors ξm(i, j), i, j ∈ {1, . . . ,N} and, for simplicity, write ∇um instead of ∇um(i, j).
Writing

vm+1 = ∇um + αξm − αξm+1, (42)
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Some selected topics Image restoration

IMAGE RESTORATION

1 TV based image restoration with local constraints, Bertalmio, M;
Caselles, V; Rouge, B; Sole, A, J. Sci. Comput., 2003.

2 Restoration and zoom of irregularly sampled, blurred, and noisy
images by accurate total variation minimization with local constraints,
Almansa, A; Caselles, V; Haro, G; Rouge, B, Multiscale Modeling &
Simulation, 2006.

3 A TV based restoration model with local constraints, Almansa, A.;
Ballester, C.; Caselles, V.; Haro, G., J. Sci. Comput., 2008.
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Some selected topics Color image denoising

COLOR IMAGE DENOISING

Color image: u : Ω := (0, 1)2 → R3 ((R, G, B)-components)
Typical strategy for color image processing: apply gray-level
procedure to each component ⇒ false colors.
In [Tang, Sapiro, Caselles, 2001], u is decomposed in a different way:

M = |u| : Ω → R brightness (magnitude)

C = u/|u| : Ω → S2 chromaticity (direction)

M is processed by a gray-level technique
C is processed by solving variational problem:

min

�
Ω

(
|Cx|2 + |Cy|2

)p/2
, 1 < p < 2

subject to |C(x, y)|2 = 1, ∀(x, y) ∈ Ω
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Some selected topics Color image denoising

COLOR IMAGE DENOISING

original
TANG et al.: COLOR IMAGE ENHANCEMENT VIA CHROMATICITY DIFFUSION 705

Fig. 2. Examples of our algorithm and comparison with discrete approaches. See text for details.

(the brightness, vector magnitude, was not processed at all).
Note how the proposed chroma diffusion removes the “color”
noise while preserving the details in the image. The third
column repeats this, but now the noise has been added to
the full color image (original on the top). That is, both the
chroma and brightness are noisy (middle row). To illustrate the
effects of chroma diffusion alone, the bottom figure shows the
results of the isotropic direction (chroma) flow, while the noisy
magnitude (brightness) was kept without processing.

InFig. 2we showexamples of our algorithmandcomparewith
the approach and [22], where the discrete vector directional and
magnitude median filters are combined. In all the columns, orig-
inal isshownfirst, followedbythenoisyone, theresultof [22],and
the result of our algorithm. In the first column we use Gaussian
noise (second row), and the anisotropic chroma diffusion is com-
bined with median filtering for the magnitude (last row). This is
repeated in the second column. This time, scalar anisotropic dif-
fusion for the brightness is combined with isotropic chroma dif-
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Some selected topics Color image denoising
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Some selected topics Color image denoising

COLOR IMAGE DENOISING

vector directional filter ([Karakos, Trahanias, 1997])

TANG et al.: COLOR IMAGE ENHANCEMENT VIA CHROMATICITY DIFFUSION 705

Fig. 2. Examples of our algorithm and comparison with discrete approaches. See text for details.
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magnitude (brightness) was kept without processing.
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Some selected topics Color image denoising

COLOR IMAGE DENOISING

Vicent’s model

TANG et al.: COLOR IMAGE ENHANCEMENT VIA CHROMATICITY DIFFUSION 705

Fig. 2. Examples of our algorithm and comparison with discrete approaches. See text for details.

(the brightness, vector magnitude, was not processed at all).
Note how the proposed chroma diffusion removes the “color”
noise while preserving the details in the image. The third
column repeats this, but now the noise has been added to
the full color image (original on the top). That is, both the
chroma and brightness are noisy (middle row). To illustrate the
effects of chroma diffusion alone, the bottom figure shows the
results of the isotropic direction (chroma) flow, while the noisy
magnitude (brightness) was kept without processing.

InFig. 2we showexamples of our algorithmandcomparewith
the approach and [22], where the discrete vector directional and
magnitude median filters are combined. In all the columns, orig-
inal isshownfirst, followedbythenoisyone, theresultof [22],and
the result of our algorithm. In the first column we use Gaussian
noise (second row), and the anisotropic chroma diffusion is com-
bined with median filtering for the magnitude (last row). This is
repeated in the second column. This time, scalar anisotropic dif-
fusion for the brightness is combined with isotropic chroma dif-
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GEODESIC ACTIVE CONTOURS

Goal: detect object boundaries in image.
Classical approach [Kass et. al., 1988] based on deforming an initial
contour C0 towards boundary of the object to be detected.
The deformation is obtained by trying to minimize a functional
designed so that its (local) minimum is obtained at the boundary of
the object.
Let I : Ω := (0, 1)2 → R be the (given) image and g : [0,∞) → (0,∞)
be strictly decreasing and g(r) → 0, when r →∞, define energy of a
closed curve C : [0, 1] → Ω by:

E(C) =

� 1

0
|C′(q)|2 dq + β

� 1

0
g(|∇I(C(q))|)dq

Pep Mulet (Univ. València) Scientific achievements of Vicent Caselles 26 / 41



Some selected topics Geodesic active contours

GEODESIC ACTIVE CONTOURS

Classical active contours (snakes):

min
C

� 1

0
|C′(q)|2 dq︸ ︷︷ ︸

internal energy

+β

� 1

0
g(|∇I(C(q))|)dq︸ ︷︷ ︸

external energy

Internal energy forces C to be regular (i.e. |C′| ↓ 0).
External energy pushes C to discontinuity of I
(|∇I(C(q))| → ∞ ⇒ g(|∇I(C(q))|) → 0).
But functional is not intrinsic (energy changes with reparametrization
of the curves), depends on parameter β and cannot deal with
topological changes of the curve.
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GEODESIC ACTIVE CONTOURS

Geodesic active contours: [Caselles, Kimmel, Sapiro, 1997] define

E(C) =

� 1

0
g(|∇I(C(q))|)|C′(q)|dq.

E is independent of parametrizations.
In fact, E(C) is the length of C when considering the Riemannian
metric given by the first fundamental form gi,j = g(|∇I|)δi,j .
Therefore

min
C

E(C)

is equivalent to finding a geodesic for the new metric.
Minimizing flow for C = C(t, q):

Ct = (g̃(C)κ(C)−∇g̃(C) · N )N , g̃(x) = g(|∇I(x)|), (5)

where κ(C) is the curvature of C and N is the inward unit normal to C.
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GEODESIC ACTIVE CONTOURS

To deal with topological changes in C a level set formulation can be
applied: embed C as 0-level set of unknown u(x, t), so (5) is
equivalent to:

ut =

(
g̃ div

(
∇u

|∇u|

)
+∇g̃ · ∇u

|∇u|

)
|∇u|

ut = div
(

g(|∇I|) ∇u

|∇u|

)
|∇u|,

where we have taken into account that

κ(level set of u) = div
(
∇u

|∇u|

)
N (level set of u) = − ∇u

|∇u|
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GEODESIC ACTIVE CONTOURS

Example of tumor detection in MRI
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GEODESIC ACTIVE CONTOURS

1 A geometric model for active contours in image-processing,
CASELLES, V; CATTE, F; COLL, T; DIBOS, F, Numerische
Mathematik, 1993.

2 Geodesic active contours, CASELLES, V; KIMMEL, R; SAPIRO, G,
Fifth ICCV, Proceedings, 1995.

3 Geometric models for active contours, Caselles, V, International
Conference on Image Processing - Proceedings, vols I-III, 1995.

4 Geodesic active contours, Caselles, V; Kimmel, R; Sapiro, G,
International J. Comput. Vision, 1997.

5 Texture-oriented anisotropic filtering and geodesic active contours in
breast tumor ultrasound segmentation, Aleman-Flores, M; Alvarez, L;
Caselles, V, J. Math. Imag. Vis., 2007.

6 Breast nodule ultrasound segmentation through texture-based active
contours, Aleman-Flores, M; Alvarez, L; Caselles, V, Progress in
Industrial Mathematics at ECMI 2006, 2008.
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IMAGE INPAINTING

Filling-in missing data (inpainting in art restoration) in digital images
has a number of fundamental applications:

Removal of scratches in old photographs and films,
Removal of superimposed text like dates, subtitles, or publicity from a
photograph,
Recovery of pixel blocks corrupted during binary transmission.

1208 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 8, AUGUST 2001

Fig. 7. Example of the proposed filling-in algorithm.

Fig. 8. Detail of the example in Fig. 7. Note the smooth continuation of the
edges.

(a)

(b) (c)

Fig. 9. Level-set corresponding to the region in Fig. 8. (a) Original and the
results with (b) and (c) .

. This is imposed in the initialization of the level
set and is maintained at each iteration of the algorithm by
taking the supremum of the current solution with the charac-
teristic function of . With this approach, we diminish the
diffusive effects of the above algorithm and we better capture
the shapes and discontinuities on the interpolated image.
The constraints on and can be introduced after each

iteration of the above equations. We also comment that the con-
straint , which was introduced as a penalization
term, could also be introduced by brute force after each time
step iteration of the algorithm. Let us describe the experiments.

Fig. 10. Example of automatic text removal.

First, in Fig. 4 we display some experiment to illustrate func-
tional (21). Fig. 4(a) displays the full image without the hole.
Fig. 4(b) displays the image with the hole. The vector field has
been computed on Fig. 4(a) and we see in Fig. 4(c) the result of
interpolating the gray level knowing the vector field inside .
We see that the shape of the eye is recovered but not the gray
level. This is not a surprise since the gray level inside the eye
cannot be recovered from the gray level on the boundary of .
The algorithm is able to capture the shapes inside the eye by in-
tegrating the vector field .
In the following experiments, we show the results of the joint

interpolation of gray level and the vector field of directions using
functional (10). The experiments have been done with
and/or . The results are quite similar. Unless explicitly
stated, we display the results obtained with . Fig. 5(a)
displays an image made of four circles covered by a square. In
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IMAGE INPAINTING

Inpainting may be tackled by interpolatory techniques, e.g.

∆u = 0 harmonic extension

∇2u(∇u,∇u) = 0 Absolute Minimal Lipschitz Extension

with u|
∂ eΩ = u0|∂ eΩ, where:

Ω̃ ⊂⊂ Ω ⊂⊂ (0, 1)2 is the hole,
B = Ω \ Ω̃ is the band surrounding the hole Ω̃

u0 : (0, 1)2 \ Ω̃ → R is known.

This may work well for small Ω̃, specially AMLE (studied by Vicent
and coauthors in a series of papers), but need more sophisticated
techniques for larger Ω̃.
Idea: try to continue the level sets of u0 affected by occlusion.
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IMAGE INPAINTING

Euler’s elastica: to continue a partially occluded curve, knowing end
points p, q and tangent vectors τp, τq at p, q

q

p

solve for given parameters α, β > 0

min
C

�
C
(α + βκ2)ds,

subject to C(0) = p, C(1) = q, C′(0) = τp, C′(1) = τq

for ds the arc length measure and κ the curvature.
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IMAGE INPAINTING

[Ambrosio, Masnou, 2001] extend Euler’s elastica to join level sets of
u0 (defined on (0, 1)2 \ Ω̃):

min
u

�
Ω
|∇u|(α + β|div

(
∇u

|∇u|

)
|p)ds, p ≥ 1

u|B = u0|B.
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IMAGE INPAINTING

[Ballester, Bertalmio, Caselles, Sapiro, Verdera, 2001], [Ballester,
Caselles, Verdera, 2003] relax a similar problem, introducing an
auxiliary variable θ that should be in the limit ∇u

|∇u| , i.e., the (outward)
normal to the level set:

min
u,θ

�
Ω
|div(θ)|p(γ + β|∇k ∗ u|)

|θ| ≤ 1,∇u− θ|∇u| = 0

u|B = u0|B
(θ − θ0) · ν|∂Ω = 0

where u0 is the image known in (0, 1)2 \ Ω̃ ⊇ B and θ0 is any vector
field in B such that (∇u0 − θ0|∇u0|)|B = 0 and ν is the unit normal to
∂Ω.
Convolution by kernel k necessary for proving well-posedness.
Recent (and future!) work on video inpainting and stereo video
inpainting (“3D” video) (got ERC advanced grant with these topics).
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Fig. 7. Example of the proposed filling-in algorithm.

Fig. 8. Detail of the example in Fig. 7. Note the smooth continuation of the
edges.

(a)

(b) (c)

Fig. 9. Level-set corresponding to the region in Fig. 8. (a) Original and the
results with (b) and (c) .

. This is imposed in the initialization of the level
set and is maintained at each iteration of the algorithm by
taking the supremum of the current solution with the charac-
teristic function of . With this approach, we diminish the
diffusive effects of the above algorithm and we better capture
the shapes and discontinuities on the interpolated image.
The constraints on and can be introduced after each

iteration of the above equations. We also comment that the con-
straint , which was introduced as a penalization
term, could also be introduced by brute force after each time
step iteration of the algorithm. Let us describe the experiments.

Fig. 10. Example of automatic text removal.

First, in Fig. 4 we display some experiment to illustrate func-
tional (21). Fig. 4(a) displays the full image without the hole.
Fig. 4(b) displays the image with the hole. The vector field has
been computed on Fig. 4(a) and we see in Fig. 4(c) the result of
interpolating the gray level knowing the vector field inside .
We see that the shape of the eye is recovered but not the gray
level. This is not a surprise since the gray level inside the eye
cannot be recovered from the gray level on the boundary of .
The algorithm is able to capture the shapes inside the eye by in-
tegrating the vector field .
In the following experiments, we show the results of the joint

interpolation of gray level and the vector field of directions using
functional (10). The experiments have been done with
and/or . The results are quite similar. Unless explicitly
stated, we display the results obtained with . Fig. 5(a)
displays an image made of four circles covered by a square. In
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Image inpainting, Bertalmio, M; Sapiro, G; Caselles, V; Ballester, C,
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OTHER TOPICS

Image histogram equalization / contrast enhancement.
Irrigation / transport problems.
Image compression
Flux limited equations / “relativistic” heat equation
Optical flow
Video editing / camera replay simulation
and many more . . .
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AN OUTSTANDING MATHEMATICIAN AND A BETTER PERSON
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