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Compliance problem 

 
Ω ⊂ ℝ𝑁 , 𝑁 ≥ 2,  bounded, open, 

𝛽 > 𝛼 > 0,  0 < 𝜅 <  Ω , 𝑓 ∈ 𝐻−1 Ω   
 

max
 ω ≤𝜅

  𝛼𝜒𝜔 + 𝛽(1 − 𝜒𝜔)  ∇𝑢𝜔  
2𝑑𝑥

Ω

 

 

 
−div  𝛼𝜒𝜔 + 𝛽(1 − 𝜒𝜔 ) ∇𝑢𝜔 = 𝑓  in Ω 

𝑢𝜔 = 0 on 𝜕Ω 
  

 

 

 













𝑟 = 𝐹(𝑠) 





Sketch of the proof.  𝑢 satisfies 

 

−div 
𝐹′  ∇𝑢  

 ∇𝑢 
∇𝑢 = 𝑓 in Ω 

and then 

 

−
1

1 + 𝑐
Δ𝑢 = 𝑓 + div  

𝐹′  ∇𝑢  

 ∇𝑢 
−

1

1 + 𝑐
 ∇𝑢  in Ω, 

 

Using that 𝐹′ 𝑠 = 𝑠/(1 + 𝑐) if 𝑠 > 𝜇, we deduce  

 

𝑓 ∈ 𝑊−1,𝑝 Ω ,   2 ≤ 𝑝 < ∞ ⟹ 𝑢 ∈ 𝑊0
1,𝑝 Ω . 

 

 

 

 

 





but  𝜕𝑖𝜎 = 𝑀∇ 𝜕𝑖𝑢 . Thus 

   𝜕𝑖𝜎  
2 𝜑2𝑑𝑥 =

Ω

  𝑀∇ 𝜕𝑖𝑢  
2 𝜑2𝑑𝑥

Ω

 

≤  𝑀∇ 𝜕𝑖𝑢 ∙ ∇ 𝜕𝑖𝑢  𝜑2𝑑𝑥 < ∞
Ω

. 

 

The proof of 𝜎 ∈ 𝐿∞(Ω)𝑁  is based on  

 

−div 𝑀∇ 𝜕𝑖𝑢  = 𝜕𝑖𝑓 in Ω, 
 

with 𝑀 =
𝐼

1+𝑐
 if  ∇𝑢 > 𝜇 and Stampacchia’s estimates. 

 

 

 

 

 

 











Remark:   
If 𝑓 ∈ 𝐿2 Ω , and there exists an unrelaxed solution (𝜃 = 𝜒𝜔 ), then from the 

condition ∇𝜒𝜔 ∙ ∇𝑢 ∈ 𝐿2 Ω  one hopes to deduce ∇𝜒𝜔 ∙ ∇𝑢 = 0. This would 

imply 

  

− 1 − 𝑐𝜒𝜔 ∆𝑢 = −div  1 − 𝑐𝜒𝜔 ∇𝑢  = 𝑓 𝑖𝑛 Ω 

and as consequence 

 

If  ∃𝑈 ⊂ Ω open set with 𝜔 ∩ 𝑈 ⋐ 𝑈 ⟹  𝑓
𝜔∩𝑈

𝑑𝑥 = 0  

If  ∃𝑈 ⊂ Ω open set with  𝜔𝑐 ∩ 𝑈 ⋐ 𝑈 ⟹  𝑓
𝜔𝑐∩𝑈

𝑑𝑥 = 0.  

 

However the implication 

∇𝜒𝜔 ∙ ∇𝑢 ∈ 𝐿2 Ω ⟹ ∇𝜒𝜔 ∙ ∇𝑢 = 0, 
is not clear. 

 

Remark: On the discontinuity surface of a solution 𝜃, we have  
𝜕𝑢 

𝜕𝜐
= 0.  

 



Eigenvalue problem 

 
We want to mix two materials 𝛼 and 𝛽 in order to minimize the first eigenvalue of 

the operator 

−div 𝛼𝜒𝜔 + 𝛽(1 − 𝜒𝜔)  
 

Namely, for 0 < 𝜅 <  Ω , we have the problem 

 

 

 Λ𝑚       min
 𝜔 ≤𝜅

min
𝑢∈𝐻0

1 Ω 

  𝛼𝜒𝜔 + 𝛽(1 − 𝜒𝜔)  ∇𝑢 2𝑑𝑥
Ω

  𝑢 2𝑑𝑥
Ω

 

 

 

 

 



Remark: For 𝐴 ∈ 𝐿∞ Ω 𝑁 , elliptic, 

𝜆1 𝐴 = min
𝑢∈𝐻0

1 Ω 

 𝐴∇𝑢 ∙ ∇𝑢 𝑑𝑥
Ω

  𝑢 2𝑑𝑥
Ω

 

 

can be characterized by 

1

𝜆1 𝐴 
= max

−div  𝐴∇𝑢 =𝑓

𝑢∈𝐻0
1 Ω 

 𝑓 𝐿2 Ω ≤1

 𝐴∇𝑢 ∙ ∇𝑢 𝑑𝑥
Ω

 

= −   min
𝑢∈𝐻0

1 Ω 

 𝑓 𝐿2 Ω ≤1

  𝐴∇𝑢 ∙ ∇𝑢 𝑑𝑥
Ω

− 2 𝑓𝑢 𝑑𝑥
Ω

 . 

 

 



 

Thus, we have the relaxed formulation 

 

 Λ𝑚      min
 𝑓 𝐿2 𝛺 ≤1

  min
𝑢∈𝐻0

1 𝛺 

 𝜃𝑑𝑥 ≤𝜅
𝛺

  
 𝛻𝑢 2

1 + 𝑐𝜃
 𝑑𝑥

𝛺

− 2 𝑓𝑢 𝑑𝑥
𝛺

          𝑐 =
𝛽 − 𝛼

𝛼
 

 

 

The regularity results for the compliance  problem can then be applied. 

 

Theorem: Assume Ω ∈ 𝐶2,𝛾 , 𝛾 ∈  0,1   

𝜎 =
∇𝑢

1 + 𝑐𝜃
∈ 𝐻1(𝛺)𝑁 ∩ 𝐿∞ 𝛺 𝑁 ,    𝜕𝑖𝜃𝜎𝑗 − 𝜕𝑗𝜃𝜎𝑖 ∈ 𝐿2 Ω ,    1 ≤ 𝑖, 𝑗 ≤ 𝑁.  

 

 



Theorem: Assume there exists an unrelaxed  solution 𝜒𝜔  for  Λm . Then,  

𝜎 =  𝛼𝜒𝜔 + 𝛽 1 − 𝜒𝜔  𝛻𝑢 ∈ 𝑊2,𝑝 Ω ,    ∀𝑝 ∈  1,∞ ,   curl𝜎 = 0 

Moreover, if there exist two open sets 𝑂 ⋐ 𝑈 ⊂ Ω, 𝑂 ∈ 𝐶2, such that 𝜒𝜔 = 𝑟 in 𝑂, 𝜒𝜔 =
1 − 𝑟 in 𝑈\O. Then, 𝑂 is a sphere. 

 

Proof.                                   

It is a consequence of  
−∆𝑢 = 𝜆1𝑢   in 𝑂

𝑢 = constant on 𝜕𝑂,   
𝜕𝑢

𝜕𝜈
= constant on 𝜕𝑂.

  

 

and Serrin’s theorem. 

 

 

It would be only possible if the  
interior blue zones were circles  



Counterexample: Ω =  −
𝜋

4
,
𝜋

4
 ×  −

𝜋

2
,
𝜋

2
 
𝑁−1

,  𝛼 = 1, 𝛽 = 2. For 𝜀 > 0 small enough the 

solutions 𝜃 of 

min 
 

 ∇𝑢 2

1 + 𝜃
𝑑𝑥

Ω

  𝑢 2𝑑𝑥
Ω

: 𝑢 ∈ 𝐻0
1 Ω , 𝜃 ∈ 𝐿∞ Ω,  0,1  , 𝜃𝑑𝑥

Ω

≤  Ω − 𝜀  

 

is not a characteristic 

 

Proof. If  𝜒𝜔𝜀 , 𝑢𝜀  were a solution  then 𝑢𝜀 ≈ cos 2𝑥1  cos 𝑥𝑗  
𝑁
𝑗=2 . 

∃ a smooth connected component 𝑂𝜀  of  Ω\𝜔𝜀,,      
 

𝑂𝜀 ≈  
𝑥1

2

8
+  

𝑥𝑖
2

2

𝑁

𝑖=2
= 1 − 𝑐𝜀 ,      𝑐𝜀 ↘ 0 

 



Numerical experiments. 
 

Problem Ω =  −
𝜋

2
,
𝜋

2
 ×  −

𝜋

4
,
𝜋

4
 ,  Ω ≈ 4,935, 𝛼 = 1, 𝛽 = 2 

 

min
 

 ∇𝑢 2

1 + 𝜃
𝑑𝑥

Ω

  𝑢 2𝑑𝑥
Ω

 

 

𝑢 ∈ 𝐻0
1 Ω , 𝜃𝑑𝑥

Ω

≤ 𝜅 

 

 








































