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Boundary control of the heat equation

Let Ω ⊂ RN be a bounded smooth open set, Γ0 ⊂ ∂Ω be a (nonempty) open
set, and T > 0.

We are concerned with the null controllability problem:
given θ0, find a function u s.t. the solution of

θt −∆θ = 0 (t , x) ∈ (0,T )× Ω,

∂θ

∂ν
= 1Γ0 u(t , x) (t , x) ∈ (0,T )× Ω,

θ(0, x) = θ0(x), x ∈ Ω.

satisfies
θ(T , x) = 0 x ∈ Ω

Huge literature...
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Null controllability of the heat equation

Duality methods (observability estimate for the adjoint eq.)
Fattorini-Russell ’71, Luxembourg-Korevarr ’71, Dolecki ’73 (1D, using
biorthogonal families and complex analysis)
Imanuvilov-Fursikov 95’, Lebeau-Robbiano ’95 (ND, ∀(Ω, Γ0,T ), using
Carleman estimates)

Direct methods
Jones ’77, Littman ’78 (construction of a fundamental solution with compact
support in time, Γ0 = ∂Ω)
Littman-Taylor ’07 (solution of ill-posed problems)
Laroche-Martin-Rouchon ’00 (approximate controllability using a flatness
approach)

Here, we shall revisit the flatness approach, deriving the null controllability,
and show its relevance to numerics.
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Flatness approach

Introduced in 1995 by M. Fliess, J. Lévine, Ph. Martin, P. Rouchon for
(linear or nonlinear) ODEs; very useful for motion planning of
mechanical systems

The basic idea is as follows. Assume given a smooth control system

ẋ = f (x , u), x ∈ Rn, u ∈ Rm

together with an output y ∈ Rm depending on x , u and a finite number of
derivatives of u:

y = h(x , u, u̇, ..., u(r))

y is a flat output if, conversely, for given smooth y , there is a unique
solution (x , u) of the control system with output y , and x and u can be
expressed as functions of y and a finite number of its derivatives:

x = k(y , ẏ , ..., y (p))

u = l(y , ẏ , ..., y (q))
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Control problem

Since x and u are parameterized by y , to solve the control problem

ẋ = f (x , u)

x(0) = x0, x(T ) = xT

it is sufficient to pick y ∈ C∞([0,T ]) such that

k(y , ẏ , ..., y (p))(0) = x(0) = x0 (1)

k(y , ẏ , ..., y (q))(0) = x(T ) = xT (2)

(1)-(2) are (in general) easy to satisfy.

The control is then given by

u = l(y , ẏ , ..., y (q))
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Example

Consider the double integrator

ẋ1 = x2

ẋ2 = u

Then y = x1 is a flat output, as (x1, x2, u) = (y , ẏ , ÿ).
Note that z = x2 is not a flat output, for x1 =

R
z(t)dt

To steer the system from x0 = (0, 0) to xT = (1, 0), we have to find
y ∈ C∞([0,T ]) s.t.

y(0) = 0, ẏ(0) = 0, y(T ) = 1, ẏ(T ) = 0.

A simple solution is y(t) = t2(2T − t)2/T 4.
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Flatness approach for PDEs

Method applied by Laroche-Martin-Rouchon to derive the approximate
controllability of (i) the 1D heat eq; (ii) the beam equation; (iii) the
linearized KdV equation.

The heat control problem reads:

θt − θxx = 0, x ∈ (0, 1)

θx (t , 0) = 0, θx (t , 1) = u(t),

θ(0, x) = θ0(x).

They proved in 2000 that for initial data decomposed as

θ0(x) =
X
i≥0

yi
x2i

(2i)!

where

|yi | ≤ C
i!s

R i , i ≥ 0

with s ∈ (1, 2), C, R > 0, then the system can be driven to 0 with a
control that is Gevrey of order s.
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Flat output, trajectory, control,...

Take y = θ(t , 0) as output. It is flat, in the sense that the map θ → y is a
bijection between appropriate spaces of functions.

Seek a formal solution (analytic in x) in the form

θ(t , x) =
X
i≥0

ai (t)
x i

i!

Plugging this sum in the heat eq. gives
P

i≥0[ai+2 − ai
′ ] x i

i! = 0, and hence

ai+2 = a′i , i ≥ 0.

Since a0(t) = θ(t , 0) = y(t) and a1(t) = 0, we arrive to

a2i+1 = 0, a2i = y (i), i ≥ 0,

and

θ(t , x) =
X
i≥0

y (i)(t)
x2i

(2i)!
, u(t , x) =

X
i≥1

y (i)(t)
(2i − 1)!
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Gevrey functions

Since θ(t , x) =
P

i≥0 y (i)(t) x2i

(2i)!
, it remains to find y ∈ C∞([0,T ]) s.t. the

series converges and

y (i)(0) = yi , y (i)(T ) = 0, i ≥ 0.

Impossible to do with an analytic function, but possible with a function
Gevrey of order s > 1

y ∈ C∞([0,T ]) is Gevrey of order s ≥ 0 if there exist R,C > 0 such that

|y (p)(t)| ≤ C
p!s

Rp , ∀p ∈ N, ∀t ∈ [0,T ]

The larger s, the less regular y is (s = 1 ⇐⇒ y ∈ Cω)

θ ∈ C∞([t1, t2]× [0, 1]) is Gevrey of order s1 in x and s2 in t if

|∂p1
x ∂

p2
t θ(t , x)| ≤ C

(p1!)s1 (p2!)s2

Rp1
1 Rp2

2

∀p1, p2 ∈ N, ∀(t , x) ∈ [t1, t2]× [0, 1]

10 / 30



The results

Theorem

Let θ0 ∈ L2(0, 1) and T > 0. Pick τ ∈ (0,T ) and s ∈ (1, 2). There exists
y ∈ C∞([τ,T ]) Gevrey of order s on [τ,T ] such that, setting

u(t) =

(
0 if 0 ≤ t ≤ τP

i≥0
y(i)(t)

(2i−1)!
if τ < t ≤ T ,

the solution θ of

θt − θxx = 0, x ∈ (0, 1)

θx (t , 0) = 0, θx (t , 1) = u(t),

θ(0, x) = θ0

satisfies θ(T , .) = 0. Furthermore, u is Gevrey of order s in t on [0,T ], and
θ ∈ C([0,T ], L2(0, 1)) ∩ C∞((0,T ]× [0, 1]) is Gevrey of order s in t and s/2
in x on [ε,T ]× [0, 1] for all ε ∈ (0,T ).
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Proof: Step 1 (free evolution)

We apply a null control to smooth the state and reach the class of states for
which the result by Laroche-Martin-Rouchon is valid.

Decomposing the initial state θ0 as a Fourier series of cosines
θ0(x) =

P
n≥0 cn

√
2 cos(nπx), we obtain

θ(τ, x) =
X
n≥0

cne−n2π2τ
√

2 cos(nπx) =
X
i≥0

yi
x2i

(2i)!

where yi =
√

2
P

n≥0 cne−n2π2τ (−1)i (nπ)2i

Lemma

|yi | ≤ C||θ0||L1(0,1)(1 + τ−
1
2 )

i!
τ i ∀i ≥ 0

for some constant C > 0, so that x → θ(τ, x) is Gevrey of order 1/2.
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Step 2: Design of the control

Proposition

(Flatness property) Let s ∈ (1, 2) and y ∈ C∞([t1, t2]) (−∞ < t1 < t2 <∞)
be Gevrey of order s on [t1, t2]. Let

θ(t , x) :=
X
i≥0

x (2i)

(2i)!
y (i)(t).

Then θ is Gevrey of order s in t and s/2 in x on [t1, t2]× [0, 1] and it solves
the ill-posed problem

θt − θxx = 0, (t , x) ∈ [t1, t2]× [0, 1],

θ(t , 0) = y(t), θx (t , 0) = 0.

Thus u(t) = θx (t , 1) =
P

i≥1
y(i)(t)

(2i−1)!
is Gevrey of order s on [t1, t2].

It remains to design a function y ∈ C∞([τ,T ]) Gevrey of order s ∈ (1, 2) such
that

y (i)(τ) = yi , y (i)(T ) = 0, ∀i ≥ 0.
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Step 2: Design of the control (2)

For any s ∈ (1, 2), we introduce the “step function”

φs(t) =

8><>:
1 if t ≤ 0

e−(1−t)−κ

e−(1−t)−κ
+e−t−κ if 0 < t < 1

0 if t ≥ 1.

where κ = (s − 1)−1. Then φs is Gevrey of order s on [−T ,T ] for all
T > 0.
Let

ȳ(t) =
X
i≥0

yi
(t − τ)i

i!

Since |yi | ≤ Ci!/τ i , ȳ is Gevrey 1 (analytic) on [τ, τ + R] if R < τ .
Actually, we noticed that ȳ can be extended to (0,+∞) as an analytic
function: indeed, since yi =

√
2
P

n≥0 cne−n2π2τ (−1)i (nπ)2i , we have

ȳ(t) =
√

2
X
n≥0

cne−n2π2t

For y , it is sufficient to pick s ∈ (1, 2), 0 < R ≤ T − τ (where 0 < τ < T ),
and to set

y(t) := φs(
t − τ

R
)ȳ(t), t ∈ [τ,T ].
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The dimension N

So far, the flatness approach was applied to 1D PDEs (and for radial
solutions of 2D problems). The expansion of the solution as an entire
series in all the spatial coordinates seems not to work well, even in 2D.

Here, we shall see that we can deal with the null controllability of the
heat equation on a cylinder

Ω = ω × (0, 1) ⊂ RN

where ω ⊂ RN−1 is a smooth, bounded open set, and N ≥ 2. We thus
consider the control problem (x = (x ′, xN))

θt −∆θ = 0, (t , x) ∈ (0, t)× Ω

∂θ

∂ν
(t , x ′, 1) = u(t , x ′), (t , x ′) ∈ (0,T )× ω

∂θ

∂ν
(t , x) = 0 (t , x) ∈ (0,T )× ∂Ω \ ω

θ(0, x) = θ(x), x ∈ Ω

For N = 3, this is nothing but the control of the temperature of a metallic
rod by the heat flux on one lateral section.
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Expansion of the solution

The good way to solve the problem is to consider “hybrid” expansions of
θ mixing Fourier decomposition in x ′ (no control on ∂ω) and analytic
decomposition in xN (control at xN = 1).
Introduce an orthonormal basis in L2(ω), (ej )j≥0, constituted of
eigenvectors for the Neumann Laplacian in ω, i.e.

−∆′ej = λjej in ω
∂ej

∂ν′
= 0 on ∂ω

where ∆′ = ∂2
x1 + · · · ∂2

xN−1
, ν′ = outward unit normal to ω,

0 = λ0 < λ1 ≤ λj ≤ λj+1.
Decompose θ(t , x ′, 0) as

θ(t , x ′, 0) =
X
j≥0

zj (t)ej (x ′).

We claim that the system is flat, with (zj (t))j≥0 as “flat output”. Indeed,
given a sequence (zj (t))j≥0 of smooth functions, we seek a formal
solution of the heat equation in the form

θ(t , x ′, xN) =
X
i≥0

x i
N

i!
ai (t , x ′)

where the ai ’s are still to be defined.
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Expansion of the solution (2)

Plugging the formal solution θ =
P

i≥0
x i

N
i! ai in the heat equation gives

X
i≥0

x i
N

i!
[ai+2(t , x ′)− (∂t −∆′)ai (t , x ′)] = 0

so that ai+2 = (∂t −∆′)ai for all i ≥ 0. Moreover

a0(t , x ′) = θ(t , x ′, 0) =
X
j≥0

zj (t)ej (x ′), a1(t , x ′) = 0.

Therefore, for all i ≥ 0

a2i+1 = 0,

a2i = (∂t −∆′)ia0 =
X
j≥0

(∂t −∆′)i [zj (t)ej (x ′)] =
X
j≥0

ej (x ′)(∂t + λj )
izj (t)

=
X
j≥0

ej (x ′)e−λj ty (i)
j (t)

where we have set yj (t) := eλj tzj (t). We arrive to

θ(t , x ′, xN) =
X
j≥0

e−λj tej (x ′)
X
i≥0

y (i)
j (t)

x (2i)
N

(2i)!
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Flatness property

Proposition

Let s ∈ (1, 2), −∞ < t1 < t2 <∞, and let y = (yj )j≥0 in C∞([t1, t2]) satisfy for
some constants M,R > 0

|y (i)
j (t)| ≤ M

i!s

R i , ∀i , j ≥ 0, ∀t ∈ [t1, t2].

Then the function

θ(t , x ′, xN) =
X
j≥0

e−λj tej (x ′)
X
i≥0

y (i)
j (t)

x (2i)
N

(2i)!

is well defined in [t1, t2]× Ω, and it is Gevrey of order s in t, 1/2 in x1, ..., xN−1

and s/2 in xN . It solves the ill-posed problem

θt −∆θ = 0, (t , x) ∈ [t1, t2]× Ω,

θ(t , x ′, 0) =
X
j≥0

e−λj tyj (t)ej (x ′),

θxN (t , x ′, 0) = 0.

The proof is similar to the one in dimension 1, but more technical (we need
Weyl’s formula λj ∼ j

2
N−1 ).
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Null controllability of the heat equation on cylinders

Consider the control system

(S)

8>>><>>>:
θt −∆θ = 0, (t , x) ∈ (0, t)× Ω
∂θ
∂ν

(t , x ′, 1) = u(t , x ′), (t , x ′) ∈ (0,T )× ω
∂θ
∂ν

(t , x) = 0 (t , x) ∈ (0,T )× ∂Ω \ ω
θ(0, x) = θ(x), x ∈ Ω

Theorem

Let Ω = ω × (0, 1) ⊂ RN−1 ×R be as above, and let θ0 ∈ L2(Ω) and T > 0 be
given. Pick any τ ∈ (0,T ) and any s ∈ (1, 2). Then there exists a sequence
(yj )j≥0 of functions in C∞([τ,T ]) which are Gevrey of order s on [τ,T ] and
such that the control input

u(t , x ′) =

(
0 if 0 ≤ t ≤ τ,P

i,j≥0 e−λj t
y(i)

j (t)

(2i−1)!
ej (x ′) if τ ≤ t ≤ T ,

is Gevrey of order s in t and 1/2 in x1, ..., xN−1 on [0,T ]× ω, and the solution
θ of (S) satisfies θ(T , .) = 0.
Furthermore, θ ∈ C([0,T ], L2(Ω)) ∩ C∞((0,T ]× Ω), and θ is Gevrey of order
s in t, 1/2 in x1, ..., xN−1 and s/2 in xN on [ε,T ]× Ω for all ε ∈ (0,T ).
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Numerical approximation

Assume given T > 0, τ ∈ (0,T ), s ∈ (1, 2), and θ0 ∈ L2(Ω) decomposed as

θ0(x ′, xN) =
X
j,n≥0

cj,nej (x ′)
√

2 cos(nπxN).

The exact solution θ of the previous control problem such that θ(T , .) = 0 was
given as

θ(t , x ′, xN) =
X
j,n≥0

cj,ne−(λj +n2π2)tej (x ′)
√

2 cos(nπxN), 0 ≤ t ≤ τ,

θ(t , x ′, xN) =
X
j≥0

e−λj tej (x ′)
X
i≥0

y (i)
j (t)

x2i
N

(2i)!
, τ ≤ t ≤ T ,

where

yj (t) = φ(t)
X
n≥0

cj,ne−n2π2t , τ ≤ t ≤ T ,

φ(t) = φs(
t − τ
T − τ ), τ ≤ t ≤ T .

In practice, only partial sums can be computed.
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Numerical approximation (2)

Introduce for given i , j , n ∈ N

θ(t , x ′, xN) =
X

0≤j≤j

X
0≤n≤n

cj,ne−(λj +n2π2)tej (x ′)
√

2 cos(nπxN), 0 ≤ t ≤ τ.

for the free evolution, and

θ(t , x ′, xN) =
X

0≤j≤j

e−λj tej (x ′)
X

0≤i≤i

yj
(i)(t)

x2i
N

(2i)!
, τ ≤ t ≤ T .

with
yj (t) = φ(t)

X
0≤n≤n

cj,ne−n2π2t , τ ≤ t ≤ T ,

for the controlled evolution.

The approximation of the free evolution is easily estimated. Let us focus on
the approximation of the controlled evolution.
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Numerical approximation (3)

θ(t , x ′, xN) =
P

0≤j≤j e−λj tej (x ′)
P

0≤i≤i yj
(i)(t) x2i

N
(2i)!

yj (t) = φ(t)
P

0≤n≤n cj,ne−n2π2t

Theorem

Let N ≥ 2 and let T , τ and s be as above. Then there exist some positive
constants Ci , i = 1, ..., 4 such that for any θ0 ∈ L2(Ω) and any i , j , n ∈ N, we
have for all t ∈ [τ,T ]

||θ(t)− θ(t)||L∞(Ω) ≤ C1

„
e−C2 j

2
N−1

+ e−C3 i ln i + e−C4 n2
«
||θ0||L2(Ω).

In applications, one would like to apply to the (physical) system the
approximate control ū = ∂θ̄

∂xN
(t , x ′, 1). Let us denote by θ̂ the (real) trajectory

associated with θ0 and ū.

Corollary

Let N ≥ 2, T , τ, s,C2,C3,C4 be as above. Then there exists some positive
constant C′1 such that for any θ0 ∈ L2(Ω) and any i , j , n ∈ N, we have

||θ − θ̂||L∞((0,T )×Ω) ≤ C′1

„
e−C2 j

2
N−1

+ e−C3 i ln i + e−C4 n2
«
||θ0||L2(Ω).
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Some references about the numerical control of the heat equation

Carthel-Glowinski-Lions 1994

Münch-Zuazua 2010

Micu-Zuazua 2011

Belgacem-Kaber 2011

Boyer-Hubert-Le Rousseau 2011

Fernandez Cara-Münch 2012
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Numerical simulations (N=1) Trajectory

Initial state: θ0 := 1(1/2,1)(x)− 1(0,1/2)(x)

Parameters: τ = 0.3, R = 0.2, T = τ + R = 0.5, s = 1.6

0 0.1 0.2 0.3 0.4 0.5 0

0.5

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

space x

time t

Fig.1. θ̄(t , x)

Computations by Philippe Martin
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Numerical simulations (N=2) Control

Initial state: θ0 := 1(1/2,1)(x)− 1(0,1/2)(x)

Parameters: τ = 0.3, R = 0.2, T = τ + R = 0.5, s = 1.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−25

−20

−15

−10

−5

0

5

10

15

Fig. 2. ū(t) (blue) and ||ū(t)||L2(0,t) (green)
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Numerical simulations (N=2) Trajectory

Initial state: θ0 :=
`
1(1/2,1)(x1)− 1(0,1/2)(x1)

´`
1(0,1/2)(x2)− 1(1/2,1)(x2)

´
Parameters: τ = 0.05, R = 0.25, T = τ + R = 0.3, s = 1.65
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Numerical simulations (N=2) Trajectory (end)

Initial state: θ0 :=
`
1(1/2,1)(x1)− 1(0,1/2)(x1)

´`
1(0,1/2)(x2)− 1(1/2,1)(x2)

´
Parameters: τ = 0.05, R = 0.25, T = τ + R = 0.3, s = 1.65

Computations by Philippe Martin
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Numerical simulations (N=2) Control

Initial state: θ0 :=
`
1(1/2,1)(x1)− 1(0,1/2)(x1)

´`
1(0,1/2)(x2)− 1(1/2,1)(x2)

´
Parameters: τ = 0.05, R = 0.25, T = τ + R = 0.3, s = 1.65

0
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0.1
0.15

0.2
0.25

0.3 0
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0.4
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0.8

1

−20

−10

0

10

20

x1

Control effort u

t

Fig. 4. ū(t , x1)
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Concluding remarks

The flatness approach allows to recover the null controllability of the heat
equation in cylinders, with explicit controls and trajectories easy to
approximate

Similar results have been obtained for the control of Schrödinger
equation. Smoothing effect (step 1) obtained in a different way
Future direction of research:

Extension to any pair (Ω, Γ0) (challenging)
Determination of the space of reachable states (for those Gevrey controls)
Other linear/nonlinear equations
Numerical investigation of the cost of the control in terms of the parameters
τ (free evolution), R (active control), s (Gevrey regularity)
Numerical cost for the computation of derivatives
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Thank you for your attention!!
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