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Generic problem

min
|Ω|=m

F (λ1(Ω), ..., λk(Ω)),

or (to be simple)
min
|Ω|=m

λk(Ω),

Ω ⊆ RN open, |Ω| the Lebesgue measure,

λ1(Ω) ≤ λ2(Ω) ≤ ... ≤ λk(Ω)

the first k eigenvalues of the Laplacian with Dirichlet b.c.
Questions :

I existence of a solution : Ω
I properties of Ω coming from optimality : regularity, symmetry,

convexity,...is it the ball ?
I numerical computations
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Examples

{
−∆u = λu in Ω

u = 0 ∂Ω

0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤→ +∞

Variational definition :

λ1(Ω) = min
u∈H1

0 (Ω),u 6=0

∫
Ω |∇u|

2dx∫
Ω |u|2dx

λk(Ω) = min
Sk∈H1

0 (Ω)
max
u∈Sk

∫
Ω |∇u|

2dx∫
Ω |u|2dx
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Rayleigh 1877

Faber-Krahn 1920 : the solution of

min
|Ω|=m

λ1(Ω)

is the ball.

Proof : Schwarz rearrangement of u ∈ H1
0 (Ω), u ≥ 0 on a ball.
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Other eigenvalues

I min|Ω|=m λ2(Ω) : two balls of volume m
2 , Faber-Krahn 1923

I min λ1(Ω)
λ2(Ω) : ball, Ashbaugh-Benguria 1993

I min|Ω|=m λ3(Ω) : conjecture : ball in 2D

I min|Ω|=m λ4(Ω) : conjecture : two balls of different measures
in 2D

I min|Ω|=m λ13(Ω) : is not a union of balls, Wolf and Keller 1992

I min|Ω|=m λ5(Ω) : is not a union of balls, Oudet 2002

Dorin Bucur: Sub and supersolutions in shape optimization, 6



Oudet 2004, Antunes-Freitas 2012 : λ5 to λ15
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Existence of a solution

Theorem Buttazzo-Dal Maso 1991
Let D be bounded and open. If F is increasing in each variable and
l.s.c., the problem

min
|Ω|=c,Ω⊂D

F (λ1(Ω), ..., λk(Ω))

has a solution.

Examples :

I F (λ1, .., λk) = 5λ1 + λ2λ5

I F (λ1, .., λk) = λk
I not admissible F (λ1, .., λk) = λ1 − λ2
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Idea of the proof

I (Ωn)n minimizing sequence

I Ωnk −→ µ in an appropriate sense : γ-convergence

I λj(Ωnk ) −→ λj(µ) the spectrum follows the geometry{
−∆u + µu = λu in D

u ∈ H1
0 (D) ∩ L2(D, µ)

I monononicity implies that µ is a true domain

The solution depends on D, and is a priori not smooth (even not
open) !
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Global minimizers ?

I replace D = RN : key point for optimality conditions
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Global minimization in RN

Concentration-compactness principle for functions P.L. Lions : 3
possibilities

I compacntess :

;;;.........

.....

Ω1 Ω2 Ω3 Ωn

by translation one can concentrate the mass
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I dichotomy :

Ω Ω1
2

”two distancing pieces”
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I vanishing :

nowhere mass concentration
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Theorem B. 1998
Denote RΩ := (−∆)−1 : L2(RN)→ H1

0 (Ω) ⊂ L2(RN).
Let {Ωn}n (quasi) open, |Ωn| = c .

I compactness : ∃yk ∈ RN , ∃µ t.q.

RΩnk
+yk −→ Rµ, in L(L2(RN))

I dichotomy : ∃Ω1
k ,Ω

2
k , t.q.

d(Ω1
k ,Ω

2
k)→ +∞

Ω1
k ∪ Ω2

k ⊆ Ωnk

lim inf
n→∞

|Ωi
k | > 0

‖RΩnk
− RΩ1

k
− RΩ2

k
‖L(L2(RN)) → 0
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Application to λ3

B. Henrot 1998
min
|Ω|=m

λ3(Ω)

I if compactness, we construct µ and by monotonicity =⇒
existence of a solution

I if dichotomy, we replace the minimizing sequence by Ω1
k ∪Ω2

k !
The optimum consists on three balls...
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Mazzoleni and Pratelli JMPA 2013

Different approach for existence in RN .

Theorem (Independent on the optimization problem)

For every smooth open set there exists a bounded open set of the
same measure, with controlled diameter and lower or equal first
k-eigenvalues.

Consequence : the existence result of Buttazzo-Dal Maso is global
in RN ! Existence of one bounded minimizer.
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Free boundary approach
Alt and Caffarelli 1981 : the capacity problem
K given

min{
∫
|∇u|2dx + |{u > 0}| : u ∈ H1

0 (box), u = 1 on K}.

The free boundary ∂{u > 0} = the shape

I exists

I is smooth

I satisfies density estimates

Tool : local perturbations in balls.

Energy and λ1 : Pierre-Briançon-Hayouni-Lamboley-Landais
1996-2008
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Free boundary approach : shape subsolutions

For f ≡ 1, the torsion energy

E (Ω) = min
u∈H1

0 (Ω)

1

2

∫
|∇u|2dx −

∫
udx .

Definition
The set Ω is a shape subsolution for the energy problem ∃ c > 0
such that

∀Ω̃ ⊆ Ω E (Ω) + c |Ω| ≤ E (Ω̃) + c |Ω̃|. (1)
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Free boundary approach : shape subsolutions

For f ≡ 1, the torsion energy

E (Ω) = min
u∈H1

0 (Ω)

1

2

∫
|∇u|2dx −

∫
udx = − torsion(Ω)

2
.

Definition
The set Ω is a shape subsolution for the energy problem ∃ c > 0
such that

∀Ω̃ ⊆ Ω torsion(Ω)− torsion(Ω̃) ≥ c(|Ω| − |Ω̃|). (2)
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Free boundary approach : shape subsolutions

Theorem (B. ARMA 2012)

If Ω is a subsolution then Ω is bounded and has finite perimeter.

I Only inner perturbations alowed !

I If

∫
B2r (x)

udx is small enough, then u ≡ 0 on Br (x) =⇒ inner

density, boundedness and control of the diameter.

I Control on

∫ ε

0
|∇u|dx =⇒ finite perimeter.
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Free boundary approach : shape subsolutions

Theorem
For every k ∈ N,m > 0, there exists c > 0 such that every solution
of

min
|Ω|=m

λk(Ω)

is a subsolution of the energy problem E (Ω) + c |Ω|.
=⇒ existence of minimizers for λk + boundedness, finite
perimeter, inner density and control of the diameter of every mini
minimizer
The variation of the torsion controls the variation of the
eigenvalue, with a constant depending on the larger domain :

c(|Ω| − |Ω̃|) ≤ λk(Ω̃)− λk(Ω) ≤ CΩ(torsion(Ω)− torsion(Ω̃)).
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Shape supersolutions : regularity of minimizers

Supersolution= optimal for outer geometric perturbations !

Theorem (Alt-Caffarelli, ... Pierre)

Let f ∈ L∞(Ω) and the function u ∈ H̃1
0 (Ω) which satisfies the

following conditions :

(a) −∆u = f in [H̃1
0 (Ω)]′ ;

(b) there are constants r0 ≤ 1 and Cb such that for every x ∈ Rd ,
every 0 < r ≤ r0 and every ϕ ∈ H1

0 (Br (x)) we have

|〈∆u + f , ϕ〉| ≤ Cb‖∇ϕ‖L2 |Br |1/2. (3)

Then u is Lipschitz continuous on Rd , with controlled constant.

If λk were simple =⇒ the result applies !
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Shape supersolutions : openness, regularity of minimizers

Conjecture : for every minimizer of λk , the k-th eigenvalue is
multiple and equals λk−1.
Numerical evidence by Oudet 2004, Antunes-Freitas 2012,
Kao-Osting 2012.

Numerical observation by Kao and Osting : assume Ω∗k is optimal
for λk . There exists ε > 0 such that Ω∗k is also optimal for

(1− ε)λk(Ω) + ελk−1(Ω).

Ideas :

I work with supersolutions of (1− ε)λk(Ω) + ελk−1(Ω)

I if Ω is supersolution for λk then it is also supersolution (with
different constant) for λk−1
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Theorem (B., Mazzoleni, Pratelli, Velichkov 2013)

For every bounded shape supersolution Ω∗ of the problem

min
{
λk(Ω) : Ω ⊂ Rd , |Ω| = c

}
,

there exists a Lipschitz k-th eigenfunction.

Example : under the constraint |Ω| = m, any minimizer Ω of

λ1(Ω) + ...+ λk(Ω)

is an open set and all eigenfunctions up to k are Lipschitz.
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Multiphase shape optimization (B. Velichkov 2013)

min{
N∑
i=1

λki (Ωi ) + c |
N⋃
i=1

Ωi | : Ωi ∩ Ωj = ∅, Ωi ⊆ D}

I general existence of quasi-open sets B. Buttazzo, Henrot 1998

I each cell is a sub solution : finite perimeter, density estimates

I no triple junction points : multiphase monotonicity formula
Caffarelli, Jerison and Kenig

3∏
i=1

(
1

r2+ε

∫
Br

|∇ui |2

|x |d−2
dx

)
≤ Cd

(
1 +

3∑
i=1

∫
B1

|∇ui |2

|x |d−2
dx

)
.
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Numerical results (Bogosel 2013)

3 cells
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3 cells
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Thank you for your attention !
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