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Generic problem

|Slr)rlwi:nm F(A1(9), ..., Ae(9)),

or (to be simple)

in Ae(Q
i, ()

Q C RN open, |Q| the Lebesgue measure,
A1(R2) < X2(Q) < ... <X (Q)

the first k eigenvalues of the Laplacian with Dirichlet b.c.
Questions :
> existence of a solution : Q
> properties of 2 coming from optimality : regularity, symmetry,
convexity,...is it the ball ?
» numerical computations
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Examples

—Au= AXuin Q
u= 0 00

D<A < <. <<=+

Variational definition :

2
d
M(Q)=  min Jo [VuPdx
ueHH(Q),u£0  [q |ul?dx
Jo |V ul?dx

M(Q) = min ma
) Skeng(Q)uGS): Jo lul?dx
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Rayleigh 1877

Faber-Krahn 1920 : the solution of

in (0
i, (&)

is the ball.

Proof : Schwarz rearrangement of u € H}(Q), u > 0 on a ball.
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Other eigenvalues

> minjgl—m A2(Q2) : two balls of volume 7, Faber-Krahn 1923
> min 325  ball, Ashbaugh-Benguria 1993

> minjg—m A3(Q) : conjecture : ball in 2D

> minjg—m A4(Q) : conjecture : two balls of different measures
in 2D

> minjg|—m A13(£2) : is not a union of balls, Wolf and Keller 1992
> minjg|—m A5(€2) : is not a union of balls, Oudet 2002
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Oudet 2004, Antunes-Freitas 2012 : A5 to A5
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Existence of a solution

Theorem Buttazzo-Dal Maso 1991
Let D be bounded and open. If F is increasing in each variable and
I.s.c., the problem

|Q|:”gfch F(A1(€2), -, Ac(€2))

has a solution.

Examples :
> F(A, oy M) = 5A1 + Aods
> F(A1, ., Ak) = Ak
» not admissible F(A1,..,Ak) = A1 — A2
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Idea of the proof

» (Q,)n minimizing sequence
» Q, — [ in an appropriate sense : -convergence
> Xj(Q2n,) — Aj(1) the spectrum follows the geometry
{ —Au+pu= Muin D
ue HYD)NL%(D,p)
» monononicity implies that y is a true domain

The solution depends on D, and is a priori not smooth (even not
open) !
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Global minimizers?

» replace D = R/ : key point for optimality conditions

A A P
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Global minimization in RN

Concentration-compactness principle for functions P.L. Lions : 3
possibilities

» compacntess :

IO 0. O

by translation one can concentrate the mass
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» dichotomy :

"two distancing pieces”

A A P
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» vanishing :

nowhere mass concentration
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Theorem B. 1998
Denote Rq := (—A)~1: L2(RN) — H}(Q) C L2(RN).
Let {Q,}n (quasi) open, |Q,| = c.

» compactness : Jy, € RV, 3 t.q.

Rap e — Rus in L(L2(RY))

A A P
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Theorem B. 1998
Denote Rq := (—A)~1: L2(RN) — H}(Q) C L2(RN).
Let {Q,}n (quasi) open, |Q,| = c.

» compactness : Jy, € RV, 3 t.q.

Rap e — Rus in L(L2(RY))

» dichotomy : 3Q}, 02, t.q.
d(Qi,Qi) — 400
QU2 CQ,,
liminf Qi >0
IRa,, — Rar — Razllc(rzny) = 0
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Application to A3

B. Henrot 1998
min A3(92
g, ol
» if compactness, we construct p and by monotonicity =
existence of a solution
» if dichotomy, we replace the minimizing sequence by Qi U Qi !
The optimum consists on three balls...
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Mazzoleni and Pratelli JMPA 2013

Different approach for existence in RV.

Theorem (Independent on the optimization problem)

For every smooth open set there exists a bounded open set of the
same measure, with controlled diameter and lower or equal first
k-eigenvalues.

Consequence : the existence result of Buttazzo-Dal Maso is global
in RV 1 Existence of one bounded minimizer.

A A P
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Free boundary approach

Alt and Caffarelli 1981 : the capacity problem
K given

min{/ |Vul?dx + |{u > 0}| : u € Hi(box),u=1on K}.
The free boundary 9{u > 0} = the shape

> exists

> is smooth

> satisfies density estimates
Tool : local perturbations in balls.

Energy and )\; : Pierre-Briancon-Hayouni-Lamboley-Landais
1996-2008
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Free boundary approach : shape subsolutions

For f = 1, the torsion energy

E(Q)= min 1/|Vu|2dx—/udx.

ueHL(Q) 2

A A P
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Free boundary approach : shape subsolutions

For f =1, the torsion energy

E(Q)= min /|Vu|2dx—/udx

ueHi() 2
Definition
The set € is a shape subsolution for the energy problem 3 ¢ > 0
such that
VQCQ E(Q)+clQ < E(Q) + c[]. (1)
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Free boundary approach : shape subsolutions

For f =1, the torsion energy

E(Q)= min %/|Vu|2dx—/udx=—torsmn(ﬂ).

ueH}(Q) 2
Definition
The set Q is a shape subsolution for the energy problem 3 ¢ > 0
such that

vQ C Q torsion(Q) — torsion() > c(|Q] — |Q2)). (2)

A A P
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Free boundary approach : shape subsolutions

Theorem (B. ARMA 2012)

If Q is a subsolution then § is bounded and has finite perimeter.

» Only inner perturbations alowed !
> If/ udx is small enough, then u =0 on B,(x) = inner
Bor(x)
density, boundedness and control of the diameter.

&€
» Control on / |Vu|dx = finite perimeter.
0
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Free boundary approach : shape subsolutions

Theorem
For every k € N, m > 0, there exists ¢ > 0 such that every solution
of

min A\, (Q

A,

is a subsolution of the energy problem E(Q2) + c|Q|.

A A P
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Free boundary approach : shape subsolutions

Theorem
For every k € N, m > 0, there exists ¢ > 0 such that every solution
of

min A\, (Q

A,

is a subsolution of the energy problem E(Q2) + c|Q|.

— existence of minimizers for A\ + boundedness, finite
perimeter, inner density and control of the diameter of every mini
minimizer

A A P
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Free boundary approach : shape subsolutions

Theorem
For every k € N, m > 0, there exists ¢ > 0 such that every solution
of

min A\, (Q

A,

is a subsolution of the energy problem E(S2) + c|Q|.

— existence of minimizers for A\ + boundedness, finite
perimeter, inner density and control of the diameter of every mini
minimizer

The variation of the torsion controls the variation of the
eigenvalue, with a constant depending on the larger domain :

c(19] = 1€2]) < M(Q) — Ae(Q) < Ca(torsion(Q) — torsion(2)).

Dorin Bucur: Sub and supersolutions in shape optimization, 25



Shape supersolutions : regularity of minimizers
Supersolution= optimal for outer geometric perturbations!

Theorem (Alt-Caffarelli, ... Pierre)

Let f € L(Q) and the function u € H}(Q) which satisfies the
following conditions :

(a) —Au=f in [HXQ);
(b) there are constants ry < 1 and Cp, such that for every x € RY,
every 0 < r < ry and every ¢ € H}(B,(x)) we have

[(Au+F,9)| < Col| Veoll2| B (3)
Then u is Lipschitz continuous on RY, with controlled constant.

If A\x were simple = the result applies!
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O
Shape supersolutions : openness, regularity of minimizers

Conjecture : for every minimizer of A\, the k-th eigenvalue is
multiple and equals Ax_1.

Numerical evidence by Oudet 2004, Antunes-Freitas 2012,
Kao-Osting 2012.

A A P
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Shape supersolutions : openness, regularity of minimizers

Conjecture : for every minimizer of A\, the k-th eigenvalue is
multiple and equals Ax_1.

Numerical evidence by Oudet 2004, Antunes-Freitas 2012,
Kao-Osting 2012.

Numerical observation by Kao and Osting : assume Q7 is optimal
for Ai. There exists € > 0 such that €} is also optimal for

(1 — 6))\/((9) + &?)\kfl(Q).
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Shape supersolutions : openness, regularity of minimizers

Conjecture : for every minimizer of A\, the k-th eigenvalue is
multiple and equals Ax_1.

Numerical evidence by Oudet 2004, Antunes-Freitas 2012,
Kao-Osting 2012.

Numerical observation by Kao and Osting : assume Q7 is optimal

for Ai. There exists € > 0 such that €} is also optimal for

(]. — E)Ak(Q) + 6)\/(71(9).

Ideas :
» work with supersolutions of (1 — &) Ax(Q2) + eXx_1(Q)

» if Q is supersolution for Ay then it is also supersolution (with
different constant) for Ax_1

A A P
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Theorem (B., Mazzoleni, Pratelli, Velichkov 2013)
For every bounded shape supersolution Q* of the problem

min {/\k(Q) L QCRY, Q| = c},
there exists a Lipschitz k-th eigenfunction.

Example : under the constraint [Q2| = m, any minimizer Q of
)\1(9) + ...+ )\k(Q)

is an open set and all eigenfunctions up to k are Lipschitz.

A A P
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Multiphase shape optimization (B. Velichkov 2013)

N N
min{z )\kf(Q,') + C‘ U Q,l QN Qj = @, Q; C D}
= i=1

» general existence of quasi-open sets B. Buttazzo, Henrot 1998
» each cell is a sub solution : finite perimeter, density estimates

» no triple junction points : multiphase monotonicity formula
Caffarelli, Jerison and Kenig

3
1 Vil qu,\z
1 (v [, e 2")“ (”Z/ a2

i=1
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Numerical results (Bogosel 2013)

3 cells

A A P
Dorin Bucur: Sub and supersolutions in shape optimization, 32



Numerical results (Bogosel 2013)

3 cells
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Numerical results (Bogosel 2013)

3 cells
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Thank you for your attention !
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