LAMA Université de Savoie

Sub and supersolutions in shape optimization

Dorin Bucur

Benasque, August 28, 2013

Collaborators

- G. Buttazzo (Pisa)
- A. Henrot (Nancy)
- D. Mazzoleni (Erlangen)
- A. Pratelli (Erlangen)
- B. Velichkov (Pisa-Chambéry)

Generic problem

$$\min_{|\Omega|=m} F(\lambda_1(\Omega), ..., \lambda_k(\Omega)),$$

or (to be simple)

$$\min_{\Omega|=m}\lambda_k(\Omega),$$

 $\Omega \subseteq \mathbb{R}^N$ open, $|\Omega|$ the Lebesgue measure,

$$\lambda_1(\Omega) \leq \lambda_2(\Omega) \leq ... \leq \lambda_k(\Omega)$$

the first k eigenvalues of the Laplacian with Dirichlet b.c. Questions :

- existence of a solution : Ω
- properties of Ω coming from optimality : regularity, symmetry, convexity,...is it the ball?
- numerical computations

Examples

$$\begin{cases} -\Delta u = \lambda u \text{ in } \Omega \\ u = 0 \ \partial \Omega \end{cases}$$
$$0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_k \le \to +\infty$$

Variational definition :

$$\lambda_{1}(\Omega) = \min_{u \in H_{0}^{1}(\Omega), u \neq 0} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$
$$\lambda_{k}(\Omega) = \min_{S_{k} \in H_{0}^{1}(\Omega)} \max_{u \in S_{k}} \frac{\int_{\Omega} |\nabla u|^{2} dx}{\int_{\Omega} |u|^{2} dx}$$

Rayleigh 1877

Faber-Krahn 1920 : the solution of

 $\min_{|\Omega|=m}\lambda_1(\Omega)$

is the ball.

Proof : Schwarz rearrangement of $u \in H_0^1(\Omega)$, $u \ge 0$ on a ball.

Other eigenvalues

- $\min_{|\Omega|=m} \lambda_2(\Omega)$: two balls of volume $\frac{m}{2}$, Faber-Krahn 1923
- min $\frac{\lambda_1(\Omega)}{\lambda_2(\Omega)}$: ball, Ashbaugh-Benguria 1993
- $\min_{|\Omega|=m} \lambda_3(\Omega)$: conjecture : ball in 2D
- min_{|Ω|=m} λ₄(Ω) : conjecture : two balls of different measures in 2D
- $\min_{|\Omega|=m} \lambda_{13}(\Omega)$: is not a union of balls, Wolf and Keller 1992
- $\min_{|\Omega|=m} \lambda_5(\Omega)$: is not a union of balls, Oudet 2002

Oudet 2004, Antunes-Freitas 2012 : λ_5 to λ_{15}

Existence of a solution

Theorem Buttazzo-Dal Maso 1991 Let D be bounded and open. If F is increasing in each variable and l.s.c., the problem

$$\min_{|\Omega|=c,\Omega\subset D}F(\lambda_1(\Omega),...,\lambda_k(\Omega))$$

has a solution.

Examples :

$$\blacktriangleright F(\lambda_1,..,\lambda_k) = 5\lambda_1 + \lambda_2\lambda_5$$

$$\blacktriangleright F(\lambda_1,..,\lambda_k) = \lambda_k$$

• not admissible
$$F(\lambda_1,..,\lambda_k) = \lambda_1 - \lambda_2$$

Idea of the proof

- $(\Omega_n)_n$ minimizing sequence
- ▶ $\Omega_{n_k} \longrightarrow \mu$ in an appropriate sense : γ -convergence
- $\lambda_j(\Omega_{n_k}) \longrightarrow \lambda_j(\mu)$ the spectrum follows the geometry

$$\begin{cases} -\Delta u + \mu u = \lambda u \text{ in } D \\ u \in H^1_0(D) \cap L^2(D,\mu) \end{cases}$$

• monononicity implies that μ is a true domain

The solution depends on D, and is a priori not smooth (even not open)!

Global minimizers?

• replace $D = \mathbb{R}^N$: key point for optimality conditions

Global minimization in \mathbb{R}^N

Concentration-compactness principle for functions P.L. Lions : 3 possibilities

compachtess :

by translation one can concentrate the mass

dichotomy :

"two distancing pieces"

nowhere mass concentration

Theorem B. 1998 Denote $R_{\Omega} := (-\Delta)^{-1} : L^2(\mathbb{R}^N) \to H^1_0(\Omega) \subset L^2(\mathbb{R}^N).$ Let $\{\Omega_n\}_n$ (quasi) open, $|\Omega_n| = c$.

• compactness :
$$\exists y_k \in \mathbb{R}^N$$
, $\exists \mu$ t.q.

$$R_{\Omega_{n_k}+y_k} \longrightarrow R_{\mu}, \text{ in } \mathcal{L}(L^2(\mathbb{R}^N))$$

• dichotomy : $\exists \Omega_k^1, \Omega_k^2$, t.q.

$$egin{aligned} &d(\Omega^1_k,\Omega^2_k) o+\infty\ &\Omega^1_k\cup\Omega^2_k\subseteq\Omega_{n_k}\ &\lim\inf_{n o\infty}|\Omega^i_k|>0\ &\|R_{\Omega_{n_k}}-R_{\Omega^1_k}-R_{\Omega^2_k}\|_{\mathcal{L}(L^2(\mathbb{R}^N))} o0 \end{aligned}$$

Theorem B. 1998 Denote $R_{\Omega} := (-\Delta)^{-1} : L^2(\mathbb{R}^N) \to H^1_0(\Omega) \subset L^2(\mathbb{R}^N)$. Let $\{\Omega_n\}_n$ (quasi) open, $|\Omega_n| = c$.

• compactness :
$$\exists y_k \in \mathbb{R}^N$$
, $\exists \mu$ t.q.

$$R_{\Omega_{n_k}+y_k} \longrightarrow R_{\mu}, \text{ in } \mathcal{L}(L^2(\mathbb{R}^N))$$

• dichotomy :
$$\exists \Omega_k^1, \Omega_k^2$$
, t.q.

$$egin{aligned} &d(\Omega^1_k,\Omega^2_k) o +\infty\ &\Omega^1_k\cup\Omega^2_k\subseteq\Omega_{n_k}\ &\lim\inf_{n o\infty}|\Omega^i_k|>0\ &\|R_{\Omega_{n_k}}-R_{\Omega^1_k}-R_{\Omega^2_k}\|_{\mathcal{L}(L^2(\mathbb{R}^N))} o 0 \end{aligned}$$

Application to λ_3

B. Henrot 1998

 $\min_{|\Omega|=m}\lambda_3(\Omega)$

- if compactness, we construct μ and by monotonicity \Longrightarrow existence of a solution
- ▶ if dichotomy, we replace the minimizing sequence by $\Omega_k^1 \cup \Omega_k^2$! The optimum consists on three balls...

Mazzoleni and Pratelli JMPA 2013

Different approach for existence in \mathbb{R}^N .

Theorem (Independent on the optimization problem) For every smooth open set there exists a bounded open set of the same measure, with controlled diameter and lower or equal first *k*-eigenvalues.

Consequence : the existence result of Buttazzo-Dal Maso is global in \mathbb{R}^N ! Existence of one bounded minimizer.

Dorin Bucur: Sub and supersolutions in shape optimization,

Free boundary approach

Alt and Caffarelli 1981 : the capacity problem ${\it K}$ given

$$\min\{\int |\nabla u|^2 dx + |\{u > 0\}| : u \in H^1_0(box), u = 1 \text{ on } K\}.$$

The free boundary $\partial \{u > 0\} =$ the shape

exists

- is smooth
- satisfies density estimates

Tool : local perturbations in balls.

Energy and λ_1 : Pierre-Briançon-Hayouni-Lamboley-Landais 1996-2008

For $f \equiv 1$, the torsion energy

$$E(\Omega) = \min_{u \in H_0^1(\Omega)} \frac{1}{2} \int |\nabla u|^2 dx - \int u dx.$$

Definition

The set Ω is a shape subsolution for the energy problem $\exists c > 0$ such that

$$orall ilde{\Omega} \subseteq \Omega \quad E(\Omega) + c|\Omega| \le E(ilde{\Omega}) + c| ilde{\Omega}|.$$
 (1)

For $f \equiv 1$, the torsion energy

$$E(\Omega) = \min_{u \in H_0^1(\Omega)} \frac{1}{2} \int |\nabla u|^2 dx - \int u dx.$$

Definition

The set Ω is a shape subsolution for the energy problem $\exists c > 0$ such that

$$orall ilde{\Omega} \subseteq \Omega \quad E(\Omega) + c |\Omega| \leq E(ilde{\Omega}) + c | ilde{\Omega}|.$$

For $f \equiv 1$, the torsion energy

$$E(\Omega) = \min_{u \in H_0^1(\Omega)} \frac{1}{2} \int |\nabla u|^2 dx - \int u dx = -\frac{\operatorname{torsion}(\Omega)}{2}.$$

Definition

The set Ω is a shape subsolution for the energy problem $\exists \ c>0$ such that

 $orall ilde{\Omega} \subseteq \Omega \quad torsion(\Omega) - torsion(ilde{\Omega}) \geq c(|\Omega| - | ilde{\Omega}|).$ (2)

Theorem (B. ARMA 2012)

If Ω is a subsolution then Ω is bounded and has finite perimeter.

Only inner perturbations alowed !

If ∫_{B2r(x)} udx is small enough, then u ≡ 0 on B_r(x) ⇒ inner density, boundedness and control of the diameter.
 Control on ∫₀^ε |∇u|dx ⇒ finite perimeter.

Theorem

For every $k \in \mathbb{N}$, m > 0, there exists c > 0 such that every solution of

 $\min_{|\Omega|=m}\lambda_k(\Omega)$

is a subsolution of the energy problem $E(\Omega) + c|\Omega|$.

 \implies existence of minimizers for λ_k + boundedness, finite perimeter, inner density and control of the diameter of every mini minimizer

The variation of the torsion controls the variation of the eigenvalue, with a constant depending on the larger domain :

 $c(|\Omega| - | ilde{\Omega}|) \leq \lambda_k(ilde{\Omega}) - \lambda_k(\Omega) \leq C_\Omega(\mathit{torsion}(\Omega) - \mathit{torsion}(ilde{\Omega})).$

Theorem

For every $k \in \mathbb{N}$, m > 0, there exists c > 0 such that every solution of

 $\min_{|\Omega|=m}\lambda_k(\Omega)$

is a subsolution of the energy problem $E(\Omega) + c|\Omega|$.

 \Longrightarrow existence of minimizers for λ_k + boundedness, finite perimeter, inner density and control of the diameter of every minimizer

The variation of the torsion controls the variation of the eigenvalue, with a constant depending on the larger domain :

 $c(|\Omega| - | ilde{\Omega}|) \leq \lambda_k(ilde{\Omega}) - \lambda_k(\Omega) \leq C_\Omega(\mathit{torsion}(\Omega) - \mathit{torsion}(ilde{\Omega})).$

Theorem

For every $k \in \mathbb{N}$, m > 0, there exists c > 0 such that every solution of

 $\min_{|\Omega|=m}\lambda_k(\Omega)$

is a subsolution of the energy problem $E(\Omega) + c|\Omega|$.

 \Longrightarrow existence of minimizers for λ_k + boundedness, finite perimeter, inner density and control of the diameter of every minimizer

The variation of the torsion controls the variation of the eigenvalue, with a constant depending on the larger domain :

 $c(|\Omega| - |\tilde{\Omega}|) \leq \lambda_k(\tilde{\Omega}) - \lambda_k(\Omega) \leq C_{\Omega}(torsion(\Omega) - torsion(\tilde{\Omega})).$

Shape supersolutions : regularity of minimizers

Supersolution= optimal for outer geometric perturbations !

Theorem (Alt-Caffarelli, ... Pierre) Let $f \in L^{\infty}(\Omega)$ and the function $u \in \tilde{H}_0^1(\Omega)$ which satisfies the following conditions :

(a)
$$-\Delta u = f$$
 in $[\tilde{H}_0^1(\Omega)]'$;

(b) there are constants $r_0 \leq 1$ and C_b such that for every $x \in \mathbb{R}^d$, every $0 < r \leq r_0$ and every $\varphi \in H_0^1(B_r(x))$ we have

$$|\langle \Delta u + f, \varphi \rangle| \le C_b \|\nabla \varphi\|_{L^2} |B_r|^{1/2}.$$
 (3)

Then u is Lipschitz continuous on \mathbb{R}^d , with controlled constant.

If λ_k were simple \implies the result applies !

Shape supersolutions : openness, regularity of minimizers

Conjecture : for every minimizer of λ_k , the k-th eigenvalue is multiple and equals λ_{k-1} . Numerical evidence by Oudet 2004, Antunes-Freitas 2012, Kao-Osting 2012.

Numerical observation by Kao and Osting : assume Ω_k^* is optimal for λ_k . There exists $\varepsilon > 0$ such that Ω_k^* is also optimal for

$$(1-\varepsilon)\lambda_k(\Omega)+\varepsilon\lambda_{k-1}(\Omega).$$

Ideas :

- work with supersolutions of $(1 \varepsilon)\lambda_k(\Omega) + \varepsilon\lambda_{k-1}(\Omega)$
- If Ω is supersolution for λ_k then it is also supersolution (with different constant) for λ_{k−1}

Shape supersolutions : openness, regularity of minimizers

Conjecture : for every minimizer of λ_k , the k-th eigenvalue is multiple and equals λ_{k-1} . Numerical evidence by Oudet 2004, Antunes-Freitas 2012, Kao-Osting 2012.

Numerical observation by Kao and Osting : assume Ω_k^* is optimal for λ_k . There exists $\varepsilon > 0$ such that Ω_k^* is also optimal for

$$(1-\varepsilon)\lambda_k(\Omega)+\varepsilon\lambda_{k-1}(\Omega).$$

Ideas :

- work with supersolutions of $(1 \varepsilon)\lambda_k(\Omega) + \varepsilon\lambda_{k-1}(\Omega)$
- if Ω is supersolution for λ_k then it is also supersolution (with different constant) for λ_{k-1}

Shape supersolutions : openness, regularity of minimizers

Conjecture : for every minimizer of λ_k , the k-th eigenvalue is multiple and equals λ_{k-1} . Numerical evidence by Oudet 2004, Antunes-Freitas 2012, Kao-Osting 2012.

Numerical observation by Kao and Osting : assume Ω_k^* is optimal for λ_k . There exists $\varepsilon > 0$ such that Ω_k^* is also optimal for

$$(1-\varepsilon)\lambda_k(\Omega)+\varepsilon\lambda_{k-1}(\Omega).$$

Ideas :

- work with supersolutions of $(1 \varepsilon)\lambda_k(\Omega) + \varepsilon\lambda_{k-1}(\Omega)$
- if Ω is supersolution for λ_k then it is also supersolution (with different constant) for λ_{k-1}

Theorem (B., Mazzoleni, Pratelli, Velichkov 2013) For every bounded shape supersolution Ω^* of the problem

$$\min\left\{\lambda_k(\Omega): \ \Omega \subset \mathbb{R}^d, \ |\Omega| = c
ight\},$$

there exists a Lipschitz k-th eigenfunction.

Example : under the constraint $|\Omega| = m$, any minimizer Ω of

$$\lambda_1(\Omega) + \ldots + \lambda_k(\Omega)$$

is an open set and all eigenfunctions up to k are Lipschitz.

Multiphase shape optimization (B. Velichkov 2013)

$$\min\{\sum_{i=1}^N \lambda_{k_i}(\Omega_i) + c | \bigcup_{i=1}^N \Omega_i | : \Omega_i \cap \Omega_j = \emptyset, \ \Omega_i \subseteq D\}$$

- general existence of quasi-open sets B. Buttazzo, Henrot 1998
- each cell is a sub solution : finite perimeter, density estimates
- no triple junction points : multiphase monotonicity formula Caffarelli, Jerison and Kenig

$$\prod_{i=1}^{3} \left(\frac{1}{r^{2+\epsilon}} \int_{B_r} \frac{|\nabla u_i|^2}{|x|^{d-2}} \, dx \right) \leq C_d \left(1 + \sum_{i=1}^{3} \int_{B_1} \frac{|\nabla u_i|^2}{|x|^{d-2}} \, dx \right).$$

Numerical results (Bogosel 2013)

Numerical results (Bogosel 2013)

Numerical results (Bogosel 2013)

Thank you for your attention !