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The problem

We consider the problem

m(s) ::inf{/Dgo(Vu) . u € H3(D), /Duzs} ,

where D C R? is a bounded simply connected domain, s a reaI
parameter and

e(y) ::{ 5(1+lyl2) vl >1
ly| ly| <1

Does m(s) admit a solution u such that

[Vu| € {0}U]1,400[ a.e. in D ?

We call special solution such a minimizer for m(s).
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How it looks 7

Q(u) :={Vu=0} the plateau of u

MNu):=0Qu)nD the free boundary of u
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Outline

1. Mechanical motivation: optimal design of thin torsion rods

> GB, Fragala, Seppecher, Arch. Rat. Mech. Anal. (2011).

> GB, Fragala, Lucardesi, Seppecher, SIAM J. Math. Anal.
(2012).

. Optimality conditions, existence of a plateau and uniqueness.

2
3. Free boundary formulation and Cheeger sets
4. Existence results for special solutions

5

. Further properties of special solutions and open problems
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1. Optimal design of thin torsion rods

Minimize the compliance of an elastic material submitted to

torsion, to be placed in a asymptotically thin design region with a
prescribed volume fraction.

@ shape optimization for the compliance [ Allaire, Bonnetier,
Cherkaev, Conca, Francfort, Gibiansky, Kohn, Strang, Jouve,
Vogelius]

@ dimension reduction analysis [ Acerbi, Braides, Buttazzo,
Ciarlet, Fonseca, Le Dret, Mora, Muller, Murat, Raoult,
5/36 Percivale, Sili, Tomarelli, Trabucho,Viano]



Compliance

The compliance of a linear elastic material placed in a subset

Q C R3 submitted to an external load F € H1(R3; R3), is the
opposite of the energy at equilibrium. It is the non negative shape
functional:

C(@) = sup { {F. u)zs —/

jle(u))dx : ue COO(R3;R3)} :
Q

For any given parameter k > 0 (Lagrange multiplier), the optimal
design problem reads

inf{C(Q) L QCQ, +k\Q|}

o Since j is a quadratic: C(Q) = 3(F,d), with T optimal
displacement.
o j(z) = 5(tx(2))* + nlz|?
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Assumption on the load

— F is horizontal
— F has a Lebesgue negligible support
— (F,uy = (X,e(u)), ¥ e€Ll?(Q;R¥3) with¥X33=0

Sym

Examples: Q=D x [, I =(0,1)

o F = (81— 00)(xs)(—00(x'), 01u(x'),0) (v € H(D))
o F=p(s)rap(xXYH'LOD  (p € L3(1))

Properties:
o (Fuy=0  VueBN(Q)={ej(u) =0¥(i)) #(3.3)}

o (F,v)=(mg,c) VveTW(Q)={(cls)(—x,x1), v3)} .
mg = [[x1 F2 — x2F1]] average momentum
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The asymptotic analysis 6 — 0

e Small parameter problem:
Qs=0Dx1 , FX,x3)=01F(61X, x3)

¢°(k) = inf {cé(A)+k|;}

ACQ’

with  CO(A) =  sup  {(FPw)— / j(e(w))}
A

weHI(QJ;R3)
0 — 0 infinitesimal cross-section ~
k = Lagrange multiplier D
(

k — 400  for vanishing filling ratio) u
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e Reducing on fixed design Q=D x| (AC Q° ~ w C Q)

CO(w) := sup {6_1<F, U)ps — /j(e‘s(u)) dx @ u€ Hl(Q;R3)} .

w

e(u) = [5_26aﬁ(u) 5_1%3(“)] ‘

6flea3(u) 633(u)

In the limit as § — 0T, displacements tend to belong to Bernouilli
Navier BN(Q),
but the load acts only on twist fields in TW(Q).
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e Limit of qbi
60— 0
+ relaxation
W' C @~ 0 el>®(Q;[0,1])

P(k) = inf {C”’”(G)+k/@0 0 e L®(Q;[0, 1])}

J

where
0 = local filling ratio of elastic material

Cm(@) = sup {<mF,C>R—I€/Q‘C/(X3)(—X2,X1)+VX/V3’2 QdX}

c,v3

Writing o(k) = iren‘sup. .. = supinf... we eliminate 6 and are
c,v

cv 0

obtain (after dualizing with respect to pair (c,v)):
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e Dual problem on Q:

% = inf {/Q ©(q) : diveg=0, /;(X1Q2—X2C71) =2 MF(X3)}

L2(Q;R?)

e Localization on each section

@ The dual form can be solved for g(-, x3) section by section

e The function q(-, x3) is divergence free on all R? and if
R?\ D is connected

Ju e HY(D) : q(-,x3) = (—0au, O1u)

q optimal <= q(-,x3) = (—02u,01u) where u optimal for m(s)
(with s = Mg(x3)) J




Link with special solutions?

In fact, it holds (up to negligible subset)

{0<|Vu| <1} c {0<b0<1} C {0<|Vul<1}

Special solutions for m(s) <= Classical solution for ¢(k)

(no homogenization)
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2. Existence, optimality conditions and uniqueness

m(s) ;:inf{/;go(vu) . ue H\(D), /I;u:s} ,

Proposition

m(s
The map s — m(s) is convex even and  lim (s) =1p >0

|s]—o0 52
where (Saint-Venant torsional rigidity)

TD:zlinf{/ |Vul®> : ue HYD), /uzl} ,
2 D D

For every s € R, the minimum m(s) is achieved. Moreover

If m(s) admits a special solution, then there is no other solution. J
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Dual problem

The Fenchel conjugate of m reads

m*(\) = aeLgn(iDn;W) {/Dgo*(a) : —dive = )\} ,

* 1 2 2
where () = £ (1€~ 1)’
Proposition (optimality conditions)

Let s,A € R, u € H}(D), and o € L?(D;R?). There holds the
following equivalence

u solution to m(s) / u=s
. . * e D
(i) o solution to m*(\) < (i) " dive —
A€ om(s).

o € 0p(Vu) a.e. in D.

Remark: at every s # 0, m(s) is differentiable and m’(s) > 0.
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Argument for uniqueness

Take A € dm(s) and a particular solution & for m*(\). Let
Qs = {lo] > 1}

Then any solution u for m(s) satisfies Vu =3 on D\ Q.
( Oy satisfies Op(&) = £ if |€] > 1, and dp(0) = B(0,1).)
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Existence of a plateau
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Proposition

For every s > 0, any solution u to m(s) is Lipschitz continuous and

the maximal set {u = maxu} has positive measure

Proof: Let A\ € 9m(s). Then, for every v € H}(D):
/ / u < / (Vv) /
Take t > 0 and v = min{u, t}. As ¢(z) > |z|, we get

/ Vu < )\/ y
u>t u>t

By coarea formula and isoperimetric inequality, the non increasing
a(s) = [{u > s}| satisfies

/tioc\/Eds <C/0Caz(s)ds ; C_Z\)\f'

Thus 3t* : a(t) =0for t > t* and a(t) > & for t < t*



Free boundary problem

In view of previous optimality conditions, looking for a special
solution amounts to find

e a function u € H}(D) with

u = const. in a subset Q C D
|Vu| > 1 in D\ Q

@ a vector field o € L?(D; R?) with

—dive = A in D
oc=Vu inD\Q (= —Au=Xin D\ Q)
lolleo <1 in Q

( Oy satisfies 0p(&) = £ if |£] > 1, and dp(0) = B(0,1).)

17/36



18/36

This leads to a free boundary value problem: find a subset
Q = Q(u) C D such that

—Au=\, |Vu|>1 in D\ Q(u)
[Vul =1 on 0Q(u)
u constant on each connected component of  Q(u)

BUT needs more in order to construct o and specify constant A
= geometrical condition on set Q(u)



3- Free boundary problem and Cheeger sets

Let £ be a bounded domain of R?. The Cheeger constant of E is
defined as

A
he = inf m: inf /|Vv|
ACE |A| veBW(E) JE
Jev=1

Per(A)<+oo

A minimizer for hg is called a Cheeger set of E. It exists (sub-levels
of any vpt), but in general is not unique. However
If E is convex, then: 3! Cheeger set Cg and vopr = 1¢,.

21 JeoX _

)

N
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Cheeger constant
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Proposition

The subdifferential of m at the origin is 9m(0) = [—hp, hp] .

) _

s—>OJr

Remark: the behaviour of m(s) near s = 0 is related with the limit

k — +00 in the original torsion problem.
Proof:

m' (0) = lim ——=

.1
= lim = inf (va
s—0T S veH}(D)
Jpv=1

inf / |Vv|
veH} (D)

fD"l

where in last line we switch symbols inf and |



Calibrable sets
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Let £ C R? be a set with finite perimeter. We say that E is
calibrable if there exists o € L2(E; R?) (calibration) such that

lollee <1 , —divoe=hg , [o-vg]=-1 H'—a.e. ondE

Proposition
Let E C R? be a bounded domain with finite perimeter. Then

E calibrable <= E is Cheeger set of itself
The proof follows from divergence Theorem and the fact that:

he =max{A € R : Jo € [2(E;R?), ||lo]|ec <1, —divo = A} .

Remark: If E is convex, then E calibrable <= ||Hyg||co < %

)




Revisited free boundary problem

Looking for special solutions amounts to find a “plateau” Q € D
(smooth enough) so that

e Q is calibrable

o There exits a solution u € H}(D) to the overdetermined

problem
—Au=hqg , |Vu>1 in D\ Q
|[Vu| =1 on 00

u constant on each connected part of 99
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Vanishing volume fraction

kﬂr}:oo(fp = mf{Chm /du : MEM+(Q)}
= min /|a\ div,eo =0, /(X1d02—X2d01)=’)’(X3)}

cEM(Q;R?)

Then v optimal <= v = (—0yu,01u), with u optimal for

min{/]Du| . u€e BV(R?), u:OinR2\D,/u:1} = hp
D

Thus if D is convex, the optimal stress concentrates on 9Cp:

Material concentrates on the boundary of the Cheeger set of D J
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Some numerical computations
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4. Existence results for special solutions

Proposition (radial case)

Let D be the ball B(0,R). For every s € R there exists a special
solution u for m(s). J

Proof: If s > 0, let u be defined as follows:

where r € (0, R) is the unique solution of s = 7-(R* — r*).

Here Q(u) = {|x| < r}. The dual solution o = —7 satisifies
lo] <1 on Q(u). O
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Is the disk the unique domain 7

Recall: existence of a special solution is equivalent to existence of
optimal shape.

@ The answer is yes (among C! domains) for a similar variational
problem, corresponding to maximizing the torsional rigidity of
rods with a given cross-section D by mixing two linearly elastic
materials in fixed proportions. [Murat, Tartar|

@ But.... the answer is no (even among analytic domains) for our
problem!

Reason why: Our integrand ¢(z) is not differentiable at z =0
(it would be C! if the void is replaced by a weak material)
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Special solutions for D not a ball

Theorem

There exists a domain D (different from a ball) and a parameter
s € R\ {0} such that m(s) admits a special solution u.

Moreover D and the plateau Q(u) is convex with analytic boundary.

Sketch of proof: We need to construct a bounded analytic
domain D such that there exist
e a function u € H}(D) with

Vu=0 inaconvexset QCD

IVu|>1 inD\Q (1)
u=s, for some s € R\ {0},
D
e afield o0 € L2(D;R?) with
lo| <1 in Q,
oc=Vu inD\Q, (2)

—dive = A in D, for some A € R.
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Steps of the proof
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e Stepl

We consider Q bounded, convex, with analytic boundary, and such
that ||Haqll < |092]/]€].

(known fact) = € is Cheeger set of itself, i.e. it is calibrable.

Let o1 € L2(Q; R?) be a calibra-
tion for Q, then

llo1lleo < 1 in Q
—dive; = hg 1n
[01-vg] = -1 H! —a.e. on 0Q
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e Step2

Cauchy— Kowalevskaya
—

00 analytic 3 v analytic solution of

—Av = hg in N
v=1, —v, =1 ondQ
in a neighbourhood N of 9Q.

Moreover there exists a curve v C A analytic that is the boundary
of some domain D D Q, such that

—Av = hg in D\ Q
Vv| >1 in D\ Q
v=1, v, ==1 on 0Q
v=1—-¢ on 9D

for some 0 < ¢ < 1.



e Step3

The functions

€ in Q o in Q
“(X)::{v—u—s) inD\Q ° "(X)::{vlv in D\ Q

satisfy the conditions (1) and (2), moreover € is convex and D, Q
have analytic boundary. O
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5. Further properties of special solutions
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Property 1: If the value function m(s) is affine on some
[cr, 3], then no special solution exists for a« < s < 3.

Property 2: If m(s) is stricly convex on [a, (3], then there
exists a unique solution for a < s < (.

Property 3: Let s be positive and sufficiently small. Then
any solution u to problem m(s) satisfies

spt(u) NaD # 0

Property 4: Let D be convex and assume that v is a special
solution with smooth connected Q(u) such that Q(u) CC D.
Then Q(u) is convex.

(proof uses P-functions and Hopf's Lemma)



o Property 5: Assume that D is not Cheeger set of itself, and
let s. \, 0. Then problem m(s.) cannot admit for every ¢ a
special solution v, with Q(u.) CC D.

e Property 6: Assume that v is a special solution with smooth
Q(u). Then each connected component of D \ Q(u) meets the
boundary 9D. (Q(u) in dark )
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Open problems

@ Regularity of the free boundary
[Caffarelli, Petrosyan, Salazar, Shahgholian]

o Non-existence of special solutions 7 e.g. in case of the square
Kawohl, Stara, Wittum and more recently C. Galusinski, E.
Oudet

7 "\

N

A possible plateau for a special solution on the square.
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Some numerics by C. Galusinski (IMATH-Toulon)

DB: N01000sl0
Cycle:0

green: zones with homogenization , blue: zones u = cte
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Conjectures

@ There exits a special solution if D is a convex C? subset such
D
that ||Hop |l < 5 = ho.

e For a larger class of domains (including convex domains),
there exists s* such that:
a special solution exists for m(s) for all s > s*
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