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Abstract: This chapter focuses on acoustic, electromagnetic, elastic and piezo-electric wave
propagation through heterogenous layers. The motivation is provided by the demand for a
better understanding of meta-materials and their possible construction. We stress the analo-
gies between the mathematical treatment of phononic, photonic and elastic meta-materials.
Moreover, we treat the cloaking problem in more detail from an analytical and simulation
oriented point of view. The novelty in the approach presented here is with the interlinked
homogenization- and optimization procedure.

INTRODUCTION
The terminology ’metamaterials’ refers to ’beyond
conventional material properties’ and consequently
those ’materials’ typically are not found in nature.
It comes as no surprise that research in this area,
once the first examples became publicly known, has
undergone an exponential growth. Metamaterials
are most often man-made, are engineered materi-
als with a wide range of applications. Starting in
the area of micro-waves where one aims at cloak-
ing objects from electromagnetic waves in the in-
visible frequency range, the ideas rather quickly in-
flicted researcher from optics for a variety of rea-
sons. Superlenses allowing nanoscale imaging and
nanophotolithography, couple light to the nanoscale
yielding a family of negative-index-material(NIM)-
based devices for nanophotonics, such as nanoscale
antennae, resonators, lasers, switchers, waveguides
and finally cloaking are just the most prominent fas-
cinating fields. Nano-structured materials are char-
acterized by ’ultra-fine microstructure’. There are at
least two reasons why downscaling the size of a mi-
crostructure can drastically influence its properties.
’First, as grain size gets smaller, the proportion of
atoms at grain boundaries or on surfaces increases
rapidly. The other reason is related to the fact that
many physical phenomena (such as dislocation gen-
eration, ferromagnetism, or quantum confinement
effects) are governed by a characteristic length. As
the physical scale of the material falls below this
length, properties change radically’(see [44]).
Metamaterial properties, therefore, emerge under
the controlled influence of microstructures. Inclu-
sions on the nano-scale together with their material
properties and their shape are to be designed in or-
der to fulfill certain desired material properties, such

as ’negative Poisson’ ratio in elastic material foams,
negative ’mass’ and ’negative refraction indices’ for
the forming of band-gaps in acoustic and optical de-
vices, respectively.
Thus given acoustic, elasto-dynamic, piezo-electric
or electromagnetic wave propagation in a non-
homogeneous medium and given a certain merit
function describing the desired material-property or
dynamic performance of the body involved, one
wants to find e.g. the location, size, shape and
material properties of small inclusions such that
the merit function is increased towards an opti-
mal material or performance. This, at the the first
glance, sounds like the formulation of an ancient
dream of man-kind. However, proper mathemati-
cal modelling, thorough mathematical analysis to-
gether with a model-based optimization and sim-
ulation can, when accompanied by experts in op-
tics and engineering, lead to such metamaterial-
concepts and finally to products.
Designing optimal microstructures can be seen from
two aspects. Firstly, inclusions, their size, positions
and properties are considered on a finite, say, nano-
scale and are subject to shape, topology and material
optimization. Secondly, such potential microstruc-
tures are seen from the macroscopic scale in form of
some effective or averaged material. This brings in
the notion and the theory of homogenization of mi-
crostructures. The interplay between homogeniza-
tion and optimization becomes, thus, most promi-
nent.
Besides the optimal design approach to metama-
terial, in particular in the context of negative re-
fraction indices, permittivities, permeabilities, there
is another fascinating branch of research that con-
centrates on ’Transformation Optics’, a notion pro-



moted by Pendry et.al. [27, 45] in optics and Green-
leaf et.al. [16] in the more mathematically inclined
literature. We refrain from attempting any recol-
lection of major contribution to this field and refer
to these survey articles ([27, 45, 16]) and the refer-
ences therein. In order to be more specific and be-
cause in this contribution we will not dwell on this
approach on any research level, we give a brief ac-
count of the underlying idea.

Cloaking problem and metamaterials: transfor-
mation method
In order to keep matters as simple as possible, we
consider the following classical problem

(

— ·s—u = 0, in W,

u = f , on ∂W.
(1)

We have the Dirichlet-to-Neumann map (DtN)

L
s

( f ) := n ·s—u|
∂W. (2)

Calderón’s problem is then to reconstruct s from
L

s

! For smooth and isotropic s this is possi-
ble. Thus, in that case the Cauchy data ( f ,L

s

( f ))
uniquely determine s . Therefore, no cloaking is
possible with smooth variations of the material! In
the heterogeneous an-isotropic case, we may con-
sider a diffeomorphism F : W ! W with F |

∂W = I
and then make a change of variables y = F(x) s.t.
u = v �F�1. The so-called push forward is defined
as

(F⇤s) jk(y) :=
1

detDFjk
S jk(x)|x=F�1(y)

S jk(x) :=
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∂F j

∂xp (x)
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(3)

We notice that

L
s

= LF⇤s

, (4)

where DFjk denotes the Jacobi-matrix of F (DF =
—FT ). The idea behind is that the coefficients s

can be interpreted as a Riemann metric. Transfor-
mations into curvilinear coordinates are classic in
mechanics, see e.g. Gurtin[17]. Thus, transforma-
tions into curvilinear coordinates correspond one-
to-one with transformation between different mate-
rials. The construction of a transformation that al-
lows for cloaking is as follows.
Denote x̂ := x

|x| , ŷ := y
|y| and define the mapping F :

R3 \{0}! R3 \{Ba(0)}

x = F(y) :=

8

>

<

>

:

x = x(y) = f (y) := g(|y|)ŷ,
for 0 < |y| b,

x = x(y) := y, for |y| > b,

(5)

where Br(x0) := {x2R3 : |x�x0| r} and such that
g satisfies: for a,b with 0 < a < b, g 2 C2([0,b]),
g(0) = a, g(b) = b and g0(r) > 0, 8r 2 [0,b] This
transformation maps the punctuated three-space into
a spherical ring with inner radius a and outer ra-
dius b, such that the exterior of the ball Bb(0) is
left unchanged. We consider the ball K := Ba(0)
as the cloaked object, the layer {x : a < |x|  b}
as the cloaking layer and the union as the spheri-
cal cloak. The shape of the cloak can be arbitrary,
however. Examples for spherical cloaks are g(r) :=
b�a

b r +a (linear) or g(r) :=
⇥

1� a
b + p(r�b)

⇤

r +
a (quadratic)
We consider a similar construction as above, but
now for many cloaked objects located at point ci, i =
1, . . . ,N:

x = F(y) :=

8

>

<

>

:

f (y) := ci +gi(|y� ci|)(ŷ� ci),
for y 2 Bbi(ci), i = 1, . . . ,N

y, for y 2 R3
0 \{[N

i=1Bbi(ci) =: W̃},
(6)

where the cloaked objects are now

Ki := {x 2 R3 : |x� ci| ai}, i = 1, . . .N (7)

K =[N
i=1Ki is the entire cloaked object. The cloaked

subregions are supposed to be separated:

mindist (Bbi(ci),Bb j(c j)) > 0, 8i 6= j, i, j = 1, . . . ,N
(8)

The domains of interest are now: W0 := R3 \
{c1, . . . ,cN}, W := R3 \K. F(·) is only piecewise
smooth with singularities across ∂K.

DF(y)kl =
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<

>

>
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✓
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·
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(9)

We have the determinant D(y) = detDF(y)

D(y) =

8

>

>

<

>

>

:

g0j(|y� c j|)
⇣

g j(|y�c j |)
|y�c j |

⌘2
,

y 2 Bb j(c j), j = 1, . . . ,N
1,y 2 W̃

(10)

It is obvious that s⇤ = F⇤s is degenerate along the
boundary ∂K. Thus, in order to properly pose a self-
adjoint extension of the corresponding Laplace(-
Beltrami-)operator, we need to work in weighted
spaces.



The idea above is extended to the phononic and
the photonic situation. In particular treating the
Maxwell system in its time-harmonic form the
transformed system reads as

—⇥E = jkµ(x)H, —⇥H =�jke(x)H +Je
(11)

where e,µ are given by:

e =
1

D(y)
DT Fe0DF, µ =

1
D(y)

DFT
µ0DF (12)

The material matrices e,µ are again degenerate at
∂K!
In order to obtain finite energy solutions to the
Maxwell system, one needs to work in weighted
spaces. For cloaking, one requires energy conser-
vation. Introduce weighted scalar products

(E1,E2)W,E :=
Z

W

E1 · eĒ2dx, (H1,H2)W,H

=
Z

W

H1 ·µH̄2dx
(13)

and require local energy conservation. To this end
define the local energy for an open bounded sub-
domain O⇢W

Z

W

E · eĒdx+
Z

W

H ·µH̄dx < •. (14)

A solution satisfies the Maxwell system in the dis-
tributional sense and has finite local energy. One
obtains two boundary (over-determined i.g.) condi-
tions on ∂K

E⇥n = 0, H⇥n = 0, on ∂K+,

(—⇥E) ·n = 0, (—⇥H) ·n = 0, on ∂K�,
(15)

This procedure of defining cloaking transformations
is rather general and applies also to elliptic systems,
2-d and 3-d elasticity, elasto-dynamics and the time-
dependent Maxwell equations. Thus, formally, from
a purely mathematical point of view, the problem of
cloaking can be regarded as analytically solved. The
fundamental question however remains: How can
the transformed material tensors be realized ?
Indeed, this problem is widely open. There is an ap-
proach to approximate the cloaking transforms by
less singular mappings in particular by inflating a
ball rather than a point to a ring-shaped domain. But
still, the material could not be realized so far and
further analysis is in order. On the positive side it is

evident that even from the point of view of transfor-
mation optics the appearance of singular behaviour
at the boundary of the region to be cloaked indicates
that microstructures may genuinely occur. Indeed,
a second approach [16] is based on a truncation of
e,µ to such tensors, say eR,µR that are uniformly
(in x) bounded above and below. When R! 1 they
tend to e,µ , respectively. It is shown in [16] that
it is possible to match these tensors eR,µR by peri-
odic microstructured material in the cloak in the ho-
mogenization limit. The result shows that utopian
’metamaterial’ constructed by an approximation to
exact cloaking can be ’realized’ via homogenization
of periodic microstructures within the cloaking re-
gion. This is a very encouraging result that needs to
be further exploited.

Metamaterials via homogenization

In this contribution we want to discuss the theme
of object cloaking by ’homogenized metamaterials’.
We are aiming at designing coating layers contain-
ing microstructure which are ’wrapped’ around an
object. The coated object may be subject to acoustic
or electromagnetic incoming waves. We want to sur-
vey and present new results applying the method of
homogenization and at the same time thin-domain
approximation to such nano-structured layers. We
investigate the resulting effective transmission con-
dition and represent the cloaking problem as an op-
timization problem or a problem of exact controlla-
bility, the controls being shape, topology and ma-
terial parameters for the inclusions constituting the
microstructure.
In the context of mathematical modeling, there are
many connections and analogies between acoustics
and optics. Below we summarize some recent in-
vestigations on homogenization of periodically het-
erogeneous structures exposed to inciding acoustic,
or electromagnetic waves. Namely the following is-
sues are discussed:

• Phononic metamaterials which may exhibit
negative effective mass for certain frequency
ranges (the so called band-gaps).

• Homogenized ’acoustic sieve’ problem; there
the periodic perforation of a rigid layer (the ob-
stacle) influences the acoustic impedance of the
discontinuity interface.

• In analogy to the ’phononic’ metamaterials,
the ’photonic’ ones may provide frequency-
dependent magnetic permeability which may
become even negative for some frequencies.



• As a central theme of this contribution is re-
lated to the cloaking problem, we discus the
optical transmission on thin heterogeneous sur-
face. The homogenization of such structure
leads to a model resembling the homogenized
acoustic sieve problem.

In all of the above cases combinations of ’classical’
materials and geometrical arrangement of the het-
erogeneities gives rise to ’new’ materials – meta-
materials – characterized by their effective proper-
ties which makes their behaviour qualitatively dif-
ferent from any of the individual components. Es-
pecially the geometrical influence of materials’ mi-
crostructures is challenging and inspires the meta-
material optimal design. We consider the cloak-
ing problem formulated as the optimization prob-
lem parametrized by the homogenized metamaterial
structure, i.e. by geometry of the heterogeneities
distributed in the cloaking layer.
The optimization problem will also be considered in
the context finite diameter material inclusion, thus
without homogenization. For the interlacing of op-
timization and optimization and optimal control see
Kogut and Leugering [20, 21, 22, 23]

Topology optimization for the cloaking problem

Instead of transformation techniques and the method
of optimizing micro-structures before or after ho-
mogenization one may look directly into material
optimization of coated objects. Indeed, given a re-
gion to be cloaked by a layer with material inclu-
sions or ’holes’, one may want to use topology op-
timization and shape optimization in order to find
such optimal ’micro-structures’. More precisely, the
concept of material interpolation (SIMP) [5] can be
used in order to detect material densities of a given
class of materials around the object. Moreover,
the concept of topological derivatives or topologi-
cal sensitivities can be used to check as to whether
at a given point in the cloaking region an inclusion
should be considered. Once the location is detected
a subsequent shape sensitivity analysis followed by
shape variation will then assign the optimal shape
of that inclusion. Variations of this theme will be
discussed in this contribution.

HOMOGENIZATION FOR MOD-
ELING OF METAMATERIALS IN
ACOUSTIC AND ELECTROMAG-
NETIC WAVE PROPAGATION
Homogenization of periodically heterogeneous
structures is a well accepted mathematical tool

which enables one to reduce significantly the com-
plexity of modeling such structures. The complexity
is due to “detailed geometry” associated with de-
scription of piecewise defined material coefficients
(properties), which at the end may lead to an in-
tractable numerical problem featured by millions of
unknowns and huge data to be treated. “Averaging”
of the material properties, based on the asymptotic
analysis and the representative volume element (the
representative periodic cell) leads to the “homoge-
nized medium” described by the effective material
parameters, so that the whole structure can be de-
scribed with a few data.
In this section we demonstrate how the homogeniza-
tion approach (see e.g. [1, 13, 14, 15, 41] for general
references) can be used to approximate dispersion
properties in strongly heterogeneous media. In the
case of phononic and photonic materials, the disper-
sion (and thereby the possible occurrence of band
gaps) is retained even in the homogenized medium,
due to special scaling of material properties of one
of the material components.

PHONONIC MATERIALS – ELASTIC
AND PIEZOELECTRIC WAVES
We now consider an elastic medium formed by pe-
riodic structures involving very soft substructures.
Thus, the material properties, being attributed to
material constituents vary periodically with the lo-
cal position. Throughout the text all the quantities
varying with this microstructural periodicity are la-
beled with superscript e , where e is the characteris-
tic scale of the microstructure. Typically e can be
considered as the ratio between the microstructure
size and the incident wave length.

Periodic strongly heterogeneous material

The material properties are associated to the peri-
odic geometrical decomposition which is now in-
troduced. We consider an open bounded domain
W⇢ R3 and the reference (unit) cell Y =]0,1[3 with
an embedded inclusion Y2 ⇢ Y , whereby the matrix
part is Y1 =Y \Y2. Let us note, that Y may be defined
as a parallelepiped, the particular choice of the unit
cube is just for ease of explanation. Using the refer-
ence cell we generate the decomposition of W as the
union of all inclusions (which should not penetrate
∂W), having the size ⇡ e ,

We

2 =
[

k2Ke

e(Y2 + k) ,

where Ke = {k 2 Z| e(k +Y2)⇢W} ,
(16)



whereas the perforated matrix is We

1 = W\We

2. Also
we introduce the interface Ge = We

1 \We

2, so that
W = We

1 [We

2 [Ge .
Properties of a three dimensional body made of the
elastic material are described by the elasticity ten-
sor ce

i jkl , where i, j,k = 1,2, . . . ,3. As usually we
assume both major and minor symmetries of ce

i jkl
(ce

i jkl = ce

jikl = ce

kli j).
We assume that inclusions are occupied by a “very
soft material” in the sense that the coefficients of the
elasticity tensor in the inclusions are significantly
smaller than those of the matrix compartment, how-
ever the material density is comparable in both the
compartments. Such structures exhibit remarkable
band gaps. Here, as an important feature of the mod-
eling based on asymptotic analysis, the e

2 scaling
of elasticity coefficients in the inclusions appears.
This strong heterogeneity in elasticity coefficients
is related to the geometrical scale of the underlying
microstructure (possibly another composite material
involving “soft” and “hard” materials). The follow-
ing ansatz is considered:

r

e(x) =
⇢

r

1 in We

1,
r

2 in We

2,

ce

i jkl(x) =
⇢

c1
i jkl in We

1,
e

2c2
i jkl in We

2.

(17)

Extension for piezoelectric materials.
Properties of a three dimensional body made of the
piezoelectric material are described by three ten-
sors: the elasticity tensor ce

i jkl , the dielectric tensor
di j and the piezoelectric coupling tensor ge

ki j, where
i, j,k = 1,2, . . . ,3. The following additional symme-
tries hold: de

i j = de

ji and ge

ki j = ge

k ji.
In analogy with the purely elastic case, the scaling
of material coefficients by e

2 is considered in We

2,
except of the density:

r

e(x) =
⇢

r

1 in We

1,
r

2 in We

2,

ce

i jkl(x) =
⇢

c1
i jkl in We

1,
e

2c2
i jkl in We

2,

ge

ki j(x) =
⇢

g1
ki j in We

1,
e

2g2
ki j in We

2,

de

i j(x) =
⇢

d1
i j in We

1,
e

2d2
i j in We

2.

(18)

Modeling the stationary waves

We consider stationary wave propagation in the
medium introduced above. Although the problem

can be treated for a general case of boundary con-
ditions, for simplicity we restrict the model to the
description of clamped structures loaded by volume
forces. Assuming a harmonic single-frequency vol-
ume forces,

F(x, t) = f(x)eiwt , (19)

where f = ( fi), i = 1,2,3 is its local amplitude and
w is the frequency. We consider a dispersive dis-
placement field with the local magnitude ue

Ue(x,w, t) = ue(x,w)eiwt . (20)

This allows us to study the steady periodic re-
sponse of the medium, as characterized by displace-
ment field ue which satisfies the following boundary
value problem:

�w

2
r

e ue �divs

e = r

e f in W,

ue = 0 on ∂W,
(21)

where the stress tensor s

e = (se

i j) is expressed in
terms of the linearized strain tensor ee = (ee

i j) by the
Hooke’s law s

e

i j = ce

i jklekl(ue). Problem (21) can be
formulated in a weak form as follows: Find ue 2
H1

0(W) such that

�w

2
Z

W
r

e ue · v+
Z

W
ce

i jklekl(ue)ei j(v) =

=
Z

W
f · v for all v 2H1

0(W) ,
(22)

where H1
0(W) is the standard Sobolev space of vec-

torial functions with square integrable generalized
derivatives and with vanishing trace on ∂W, as re-
quired by (21)2. The weak problem formulation
(22) is convenient for the asymptotic analysis us-
ing the two-scale convergence [1], or the unfolding
method of homogenization [13].
Extension for piezoelectric materials. In addi-
tion, a synchronous harmonic excitation by volume
charges with a single frequency w can be considered
q̃(x, t) = q(x)eiwt , where q is the magnitude of the
distributed volume charge. Accordingly, we should
expect a dispersive piezoelectric field with magni-
tudes (ue ,je)

ũe(x,w, t) = ue(x,w)eiwt ,

j̃

e(x,w, t) = j

e(x,w)eiwt .

Then the periodic response of the medium is charac-
terized by field (ue ,je) which satisfies the follow-



ing boundary value problem:

�w

2
r

e ue �divs

e = r

e f in W,

�divDe = q in W,

ue = 0 on ∂W,

j

e = 0 on ∂W,

(23)

where the stress tensor s

e = (se

i j) and the electric
displacement De are defined by constitutive laws

s

e

i j = ce

i jklekl(ue)�ge

ki j∂kj

e ,

De

k = ge

ki jekl(ue)+de

kl∂lj
e .

(24)

The problem (23) can be weakly formulated as fol-
lows: Find (ue ,je) 2H1

0(W)⇥H1
0 (W) such that

�w

2
Z

W
r

e ue · v+
Z

W
ce

i jklekl(ue)ei j(v)�

�
Z

W
ge

ki jei j(v)∂kj

e =
Z

W
f · v ,

Z

W
ge

ki jei j(ue)∂ky +
Z

W
dkl∂lj

e

∂ky =
Z

W
qy ,

(25)

for all (v,y) 2H1
0(W)⇥H1

0 (W).

The homogenized model

Due to the strong heterogeneity in the elastic
(and other piezoelectric) coefficients, the homoge-
nized model exhibits dispersive behaviour; this phe-
nomenon cannot be observed when standard two-
scale homogenization procedure is applied to a
medium without scale-dependent material parame-
ters, as pointed out e.g. in [3]. In [4] the unfold-
ing operator method of homogenization [13] was
applied with the strong heterogeneity assumption
(17), (18) We shall now record the resulting homog-
enized equations, as derived in [4], which describe
the structure behaviour at the “macroscopic”scale.
They involve the homogenized coefficients which
depend on the characteristic responses at the “mi-
croscopic” scale.
Below it can be seen that the “frequency–
dependent” mass coefficients are determined just by
material properties of the inclusion and by the mate-
rial density r

1 in the matrix, whereas the elasticity
(and other piezoelectric) coefficients are related ex-
clusively to the matrix material occupying the per-
forated domain.
For brevity in what follows we employ the following

notations:

aY2 (u, v) =
Z

Y2
c2

i jkle
y
kl(u)ey

i j(v),

dY2 (f , y) =
Z

Y2
d2

kl∂
y
l f ∂

y
k y,

gY2 (u, y) =
Z

Y2
g2

ki je
y
i j(u)∂

y
k y,

rY2 (u, v) =
Z

Y2
r

2u · v,

(26)

whereby analogous notations are used when the in-
tegrations apply over Y1.
Elastic medium. Frequency–dependent homoge-
nized mass involved in the macroscopic momentum
equation are expressed in terms of eigenelements
(l r,jr) 2 R⇥H1

0(Y2), r = 1,2, . . . of the elastic
spectral problem which is imposed in inclusion Y2
with j

r = 0 on ∂Y2:
Z

Y2
c2

i jkle
y
kl(j

r)ey
i j(v) = l

r
Z

Y2
r

2
j

r · v 8v 2H1
0(Y2) ,

Z

Y2
r

2
j

r ·js = drs .

(27)

To simplify the notation we introduce the eigenmo-
mentum mr = (mr

i ),

mr =
Z

Y2
r

2
j

r. (28)

The effective mass of the homogenized medium is
represented by mass tensor M⇤ = (M⇤

i j), which is
evaluated as

M⇤
i j(w

2) =
1
|Y |

Z

Y
rdi j�

1
|Y | Â

r�1

w

2

w

2�l

r mr
i m

r
j ;

(29)

The elasticity coefficients are computed just using
the same formula as for the perforated matrix do-
main, thus being independent of the inclusions ma-
terial:

C⇤i jkl =
1
|Y |

Z

Y1
c1

pqrse
y
rs(w

kl +Pkl)epq(wi j +Pi j) ,

(30)

where Pkl = (Pkl
i ) = (yldik) and wkl 2 H1

#(Y1) are
the corrector functions satisfying
Z

Y1
c1

pqrse
y
rs(w

kl +Pkl)ey
pq(v) = 0 8v 2H1

#(Y1) .

(31)



Fig. (1): Weak band gaps (white) and strong band
gaps (yellow) computed for an elastic composite
with L-shaped inclusions, the green bands are prop-
agation zones.

Fig. (2): The first eigenmode of the L-shaped
clamped elastic inclusion.

Above H1
#(Y1) is the restriction of H1(Y1) to the Y-

periodic functions (periodicity w.r.t. the homolo-
gous points on the opposite edges of ∂Y ).
The global (homogenized) equation of the homog-
enized medium, here presented in its differential
form, describes the macroscopic displacement field
u:

w

2M⇤
i j(w)u j +

∂

∂x j
C⇤i jklekl(u) =�M⇤

i j(w) f j ,

(32)

Heterogeneous structures with finite scale of hetero-
geneities exhibit the frequency band gaps for certain
frequency bands. In the homogenized medium, the
wave propagation depends on the positivity of mass
tensor M⇤(w); this effect is explained below.
Piezoelectric medium. In the piezoelectric medium,
the spectral problem analogous to (27) com-
prises the additional constraint arising from elec-
tric charge conservation (23)2: find eigenelements
[l r;(jr, pr)], where j

r 2 H1
0(Y2) and pr 2 H1

0 (Y2),
r = 1,2, . . . , such that

aY2 (jr, v)�gY2 (v, pr) = l

r
rY2 (jr, v)

8v 2H1
0(Y2),

gY2 (jr, y)+dY2 (pr, y) = 0 8y 2 H1
0 (Y2),

(33)

with the orthonormality condition imposed on
eigenfunctions j

r:

aY2 (jr, j

s)+dY2 (pr, ps) = l

r
rY2 (jr, j

s) != l

r
drs.

(34)

Moreover, if q 6⌘ 0 in (23)2, then the following prob-
lem must be solved: find p̃ 2H1

0 (Y2), the unique so-
lution satisfying

dY2 (p̃, y) =
Z

Y2
y 8y 2 H1

0 (Y2) . (35)

The homogenized mass M⇤
i j(w) is evaluated using

the same formula (29), as in the elastic case. Further
new coefficients Q⇤

i (w) are introduced using the so-
lution of (35)

Q⇤
i (w) =� 1

|Y | Â
r�1

w

2

w

2�l

r mr
i gY2(j

r, p̃), (36)

describing influence of the volume charge on the
mechanical loading.
The piezoelectric coefficients of the homogenized
medium are defined in terms of the corrector basis
functions satisfying the microscopic auxiliary prob-
lems:

1. Find (c

i j,p i j) 2 H1
#(Y1) ⇥ H1

# (Y1), i, j =
1, . . . ,3 such that (the notation corresponds to
that introduced in (26))

⇢

aY1

�

c

i j +Pi j, v
�

�gY1

�

v, p

i j� = 0 ,
gY1

�

c

i j +Pi j, y

�

+dY1

�

p

i j, y

�

= 0 ,

8v 2H1
#(Y1),8y 2 H1

# (Y1) ,
(37)

where Pi j = (Pi j
k ) = (y jdik);

2. Find (c

k,pk)2H1
#(Y1)⇥H1

# (Y1), i, j = 1, . . . ,3
such that

⇢

aY1

�

c

k, v
�

�gY1

�

v, p

k +Pk� = 0 ,
gY1

�

c

k, y

�

+dY1

�

p

k +Pk, y

�

= 0 ,

8v 2H1
#(Y1),8y 2 H1

# (Y1) ,
(38)

where Pk = yk.



Using the corrector basis functions just defined the
homogenized coefficients are expressed, as follows:

C⇤i jkl =
1
|Y |aY1

⇣

c

kl +Pkl , c

i j +Pi j
⌘

+

+
1
|Y |dY1

⇣

p

kl , p

i j
⌘

,

D⇤
ki =

1
|Y |

h

dY1

⇣

p

k +Pk, p

i +Pi
⌘

+aY1

⇣

c

k, c

i
⌘i

,

G⇤
ki j =

1
|Y |

h

gY1

⇣

c

i j +Pi j, Pk
⌘

+dY1

⇣

p

i j, Pk
⌘i

.

(39)

The global equation describes the macroscopic field
of displacements u and of electric potential j

w

2M⇤
i j(w)u j +

∂

∂x j

�

C⇤i jklekl(u)�G⇤
ki j∂kj

�

=

=�M⇤
i j(w)�Q⇤

i (w)q ,

∂

∂xk

�

G⇤
ki jei j(u)+D⇤

kl∂lj
�

= q .

(40)

Further related work on the sensitivity analysis can
be found in [32, 34].

Band gap prediction

As the main advantage of the homogenized mod-
els (32) and (40), by analyzing the dependence
w ! M⇤(w) one can determine distribution of the
band gaps; it was proved in [4] that there exist
frequency intervals Gk, k = 1,2, . . . such that for
w 2 Gk ⇢]l k,l k+1[ at least one eigenvalue of ten-
sor M⇤

i j(w) is negative. Those intervals where all
eigenvalues of M⇤

i j are negative are called strong, or
full band gaps. In the latter case the negative sign
of the mass changes the hyperbolic type of the wave
equation to the elliptic one, therefore any waves can-
not propagate. In the “weak” bad gap situation only
waves with certain polarization can propagate, as
explained below.
The band gaps can be classified w.r.t. the polariza-
tion of waves which cannot propagate; the polariza-
tion is determined in terms of the eigenvectors of
M⇤

i j(w). Given a frequency w , there are three cases
to be distinguished according to the signs of eigen-
values g

r(w), r = 1,2,3 (in 3D), which determines
the “positivity, or negativity” of the mass:

1. propagation zone – All eigenvalues of M⇤
i j(w)

are positive: then homogenized model (32), or
(40) admits wave propagation without any re-
striction of the wave polarization;

2. strong band gap – All eigenvalues of M⇤
i j(w)

are negative: then homogenized model (32), or
(40) does not admit any wave propagation;

3. weak band gap – Tensor M⇤
i j(w) is indefinite,

i.e. there is at least one negative and one pos-
itive eigenvalue: then propagation is possible
only for waves polarized in a manifold deter-
mined by eigenvectors associated with posi-
tive eigenvalues. In this case the notion of
wave propagation has a local character, since
the “desired wave polarization” may depend on
the local position in W.

In Fig. (1) we introduce a graphical illustration of
the band gaps analyzed for an elastic material with
L-shaped inclusions (its eigenmode fig. (2)). When-
ever inclusions (considered in 2D) are symmetric
w.r.t. more than 1 axis of symmetry, only strong
band gaps exist, see Fig. (3). This may not be the
case for piezoelectric materials; in Fig. (4) we il-
lustrate dispersion curves and the weak band gaps
obtained for a homogenized piezoelectric compos-
ite with circular inclusions.
Usually the band gaps are identified from the dis-
persion diagrams. For the homogenized model the
dispersion of guided plane waves is analyzed in the
standard way, using the following ansatz:

u(x, t) = ūe�j(wt�x jk j) ,

j(x, t) = j̄ e�j(wt�x jk j) ,
(41)

where ū is the displacement polarization vector (the
wave amplitude), j̄ is the electric potential ampli-
tude, k j = n j{, |n|= 1, i.e. n is the incidence direc-
tion, and { is the wave number. The dispersion anal-
ysis consists in computing nonlinear dependencies
ū = ū(w) and { = {(w). For this one substitutes
(41) into the homogenized model (40); on introduc-
ing projections of the homogenized tensors into the
direction of the wave propagation,

Gik = C⇤i jkln jnl , gi = G⇤
ki jn jnk , z = D⇤

klnlnk , (42)

and substituting in (40), we obtain

�w

2M⇤
i j(w

2)ū j +{2 (Gikūk� gij̄) = 0 ,

{2 (gkūk +z j̄) = 0 .
(43)

In (43) we can eliminate j̄ (assuming {2 6= 0), thus
the dispersion analysis reduces to the “standard elas-
tic case” where the acoustic tensor is modified, thus

�w

2M⇤
i j(w

2)ū j +{2 Hikūk = 0 ,

where Hik = Gik + gigk/z

(44)

is analyzed as follows



Fig. (3): Dispersion curves for guided waves in
composites with circular inclusions: elastic mate-
rial, only strong band gaps. Different angles of wave
incidence displayed by different colours.

• for all w 2 [wa,wb] and w 62 {l

r}r compute
eigenelements (hb ,wb ):

w

2M⇤
i j(w

2)wb

j = h

b Hikwb

k , b = 1,2,3 ;
(45)

• if h

b > 0, then {b =
p

h

b ,

• else w falls in an acoustic gap, wave number is
not defined.

In heterogeneous media in general the polarizations
of the two waves (outside the band gaps) are not
mutually orthogonal, which follows easily from the
fact that {wb}

b

are M⇤(w2)–orthogonal. More-
over, in the presence of the piezoelectric coupling,
which introduces another source of anisotropy, the
standard orthogonality is lost even for heteroge-
neous materials with “symmetric inclusions” (cir-
cle,hexagon, etc.), in contrast with elastic structures
where these designs preserve the standard orthogo-
nality.
More details on the band gap properties and their
relationship to the dispersion of guided waves were
discussed in [35, 30, 10]. The sensitivity analysis
for the optimization problem was discussed in [31,
32, 34, 33].

ACOUSTIC TRANSMISSION ON
PERFORATED INTERFACES
In this section we present an example which il-
lustrates, how homogenization can be employed to
describe acoustic transmission between two halfs-
paces separated by an interface that establishes a mi-

Fig. (4): Dispersion curves for piezoelectric mate-
rial.

crostructure. The detailed analysis was presented in
[38].
We consider the acoustic medium occupying do-
main WG which is subdivided by perforated plane
G0 in two disjoint subdomains W+ and W�, so that
WG = W+ [W� [G0, see Fig. (7). Denoting by p
the acoustic pressure field in W+[W�, in a case of
no convection flow, the acoustic waves in WG are
described by the following equations (w is the fre-
quency of the incident wave),

c2—2 p+w

2 p = 0 in W� [W+ ,

+ boundary conditions on ∂WG ,
(46)

supplemented by the transmission conditions on in-
terface G0 — these present the key issue of this sec-
tion. The boundary conditions on G0 will be spec-
ified later on. Let p+ and p� be the traces of p on
∂W+\G0 and on ∂W� \G0, respectively.
The standard treatment of the acoustic transmission
on a sieve-like perforation G0 results in the relation-
ship between jump p+� p� and normal derivatives
∂ p+

∂n+ =� ∂ p�
∂n� ,

∂ p+

∂n+ =�j
wr

Z
(p+� p�),

∂ p�

∂n�
=�j

wr

Z
(p�� p+) ,

(47)

where n+ and n� are the outward unit normals to W+

and W�, respectively, w is the frequency, r is the
density and Z is the transmission impedance. This
quantity incorporates many physical aspects of the
transmission, namely the geometry – the design of
the perforation. In [38] a homogenized transmission
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conditions were proposed which describe the acous-
tic impedance of the interface characterized by a pe-
riodically perforated obstacle embedded in a layer
of thickness d . In Figure (5) we illustrate such a
layer W

d

embedded in WG = W+
d

[W+
d

[W
d

[G±
d

.

Periodic perforation and acoustic problem in the
transmission layer

Let G0 ⇢ R2 be an open bounded subdomain of the
plane spanned by coordinates x

a

, a = 1,2 and con-
taining the origin. Further let G+

d

and G�
d

be equidis-
tant to G0 with the distance d/2 = dist(G0,G+

d

) =
dist(G0,G�

d

). We introduce layer W
d

= G0⇥]�
d/2,d/2[⇢ R3, an open domain representing the
transmission layer bounded by ∂W

d

which is split
as follows, see Fig. (6)

∂W
d

= G+
d

[G�
d

[∂W•
d

,

G±
d

= G0 ±
d

2
~e3 ,

∂W•
d

= ∂G0⇥]�d/2,d/2[ ,

(48)

where d > 0 is the layer thickness and ~e3 = (0,0,1),
see Fig. (6). The acoustic medium occupies domain
We

d

= W
d

\ Se

d

, where Se

d

is the solid rigid obstacle
which in a simple layout has a form of the period-
ically perforated sheet with the thickness sd , s < 1
and with e characterizing the scale of the periodic
perforation; thus, Se

d

is obtained by the usual pe-
riodic lattice extension of the solid unit structure.
For passing to the limit e ! 0 we consider a pro-
portional scaling between the period length and the
thickness, so that d = he , where h > 0 is fixed.
Acoustic problem in the layer. We assume a
monochromatic wave propagation in layer Wd . The
total acoustic pressure, ped satisfies the Helmholtz

Γδ
+

Γδ
−

Γ0

δ
ε

S

δ
ε

Ω δ/2

xα

x3

δ

ε

s

s<1

Fig. (6): Layer W
d

embedding the rigid obstacles
periodically distributed. Obstacles should not ap-
proach the fictitious boundaries G±

d

, thus s << 1.

equation in We

d

and Neumann condition on ∂W
d

c2—2 ped +w

2 ped = 0 in We

d

,

c2 ∂ ped

∂nd

=�jwged± on G±
d

,

∂ ped

∂nd

= 0 on ∂Se

d

[∂W•
d

,

(49)

where c = w/k is the speed of sound propagation
and by nd we denote the normal vector outward to
W

d

.

Homogenized transmission conditions

The asymptotic analysis of system (49) results in an
equation which describes an acoustic wave propa-
gating in the layer as a response to the incident wave
acoustic momentum ge±. The following assumption
is important.
Let us introduce shifted fluxes ĝe± 2 L2(G0) such
that ĝe±(x̄) = ge±(x±) where x± 2 G± are homolo-
gous points associated to x̄ 2 G0, i.e. x̄ = (x̄

a

,0) and
x±� x̄ = (0,0,±1/2). We assume

ĝe± * g0± weakly in L2(G0) , (50)

1
e

�

ĝe+ + ĝe��* 0 weakly in L2(G0) , (51)

consequently g0 ⌘ g0+ = �g0�. This equality
means continuity of the normal momentum, which
is consistent with the consequence of (47).
The homogenized coefficients governing the acous-
tic transmission are introduced below using so
called corrector functions defined in the reference
periodic cell Y =]0,1[2⇥]� 1/2,+1/2[⇢ R3. The
acoustic medium occupies the domain Y ⇤ = Y \ S,
where S⇢ Y is the solid (rigid) obstacle. For clarity
we use notation Iy =]0,1[2 and Iz =]� 1/2,+1/2[.
The upper and lower boundaries are translations of
(Iy,0); we define I+

y = {y 2 ∂Y : z = 1/2} and
I�y = {y2 ∂Y : z =�1/2}. By H1

#(1,2)(Y ) we denote
the space of H1(Y ) functions which are “1-periodic”



in coordinates y
a

, a = 1,2; in this paper such func-
tions will be called “transversely Y-periodic”.
In [38] the homogenization of problem (49) was
considered in detail. As the result, the homoge-
nized transmission conditions were obtained, being
expressed in terms of the interface mean acoustic
pressure p0 2 H1(G0), and the fictitious acoustic
transverse velocity g0 2 L2(G0); these quantities sat-
isfy the following PDE system in weak form:
Z

G0
A

ab

∂

x
b

p0
∂

x
a

q� f ⇤w2
Z

G0
p0q+ jw

Z

G0
B

a

∂

x
a

qg0 = 0 ,

�jw
Z

G0
D

b

∂

x
b

p0
y +w

2
Z

G0
Fg0

y =

�jw
1
e0

Z

G0
(p+� p�)y ,

(52)

for all q 2H1(G0) and y 2 L2(G0), where f ⇤ = |Y ⇤|
|Y |

is the porosity related to the layer thickness. We
remark that while (52)1 is the direct consequence of
(49) for e ! 0, additional constraint (52)2 arises due
to coupling the “outer acoustic problem” imposed
in WG \ W

d

with the one imposed in the layer. A
quite analogous treatment is employed in the elec-
tromagnetic transmission problem described in Sec-
tion . Equations (52) involve the homogenized co-
efficients A

ab

,B
a

,D
a

and F expressed in terms of
the local corrector functions p

b and x .
The homogenized coefficients, A,B,F are deter-
mined by the solution of the local corrector prob-
lems. To simplify the notation, we introduce

—̂q = (∂ y
a

q,h�1
∂zq),

a⇤Y (p, x ) =
Z

Y ⇤
—̂p · —̂x

=
Z

Y ⇤

✓

∂

y
a

p∂

y
a

x +
1
h2 ∂zp∂zx

◆

,

g

±(x ) =
Z

I+y
x �

Z

I�y
x .

(53)

The two following local corrector problems are de-
fined: Find p

b ,x 2 H1
#(1,2)(Y )/R such that

a⇤Y
⇣

p

b + y
b

, f

⌘

= 0 , 8f 2 H1
#(1,2)(Y ), b = 1,2 ,

a⇤Y (x , f) =� |Y |
hc2 g

±(f) , 8f 2 H1
#(1,2)(Y ) ,

(54)

see Fig. (9) where function x is displayed for three
different microstructures. The homogenized coeffi-
cients are expressed in terms of p

a and x , as fol-
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Fig. (7): The domain and boundary decomposition
of the global acoustic problem considered. This lay-
out is inspired by [8]

lows:

A
ab

=
c2

|Y |a
⇤
Y

⇣

p

b + yb , p

a + ya

⌘

,

h�1D
a

= B
a

=
c2

|Y |a
⇤
Y (x , y

a

) ,

F =
1
|Iy|

g

±(x ) .

(55)

Structure of the global problem

The coupled system (52) described above constitute
the transmission condition in a global problem con-
sidered. As an example, we shall present a model of
an acoustic duct with perforated (rigid) plate.
Let us consider the domain of WG, as in (46), where
the outer boundary ∂WG = Gin [Gout [Gw consists
of the planar surfaces Gin, Gout and the channel walls
Gw, see Fig. (7). On Gin we assume an incident wave
of the form p̃(x, t) = p̄e�jknl ·xl ejwt , where (nl) is the
outward normal vector of W, on Gout we impose the
radiation condition of the Sommerfeld type, so that

jw p+ c
∂ p
∂n

= 2jw p̄ on Gin ,

jw p+ c
∂ p
∂n

= 0 on Gout ,

∂ p
∂n

= 0 on Gw .

(56)

The interface condition has the following form, see
illustration in Fig. (8),

(

c2 ∂ p
∂n+ = jwg0

c2 ∂ p
∂n� =�jwg0

on G0 , (57)

where ∂ p
∂n± = n± ·—p are the normal derivatives on

G0 w.r.t. normals outward to W+ and W�, respec-
tively. Thus, transmission conditions on the inter-
face G0 involve the transversal acoustic momentum
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Fig. (8): Illustration of the transmission condition
obtained by the homogenization of the perforated
interface. Normal derivatives of the acoustic pres-
sure are continuous, being proportional to g0.
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Fig. (9): Distribution of x in Y ⇤.

g0 satisfying

�∂

a

(A
ab

∂

b

p0)+w

2 f ⇤p0�∂

a

(B
a

g0) = 0 on G0 ,

�jhwB
b

+w

2Fg0 =�jw
1
e0

(p+� p�) on G0 ,

A
ab

∂

b

p0 = 0 on ∂G0 ,
(58)

where ∂G0 is the edge of the obstacle G0 and f ⇤ =
|Y ⇤|/|Y | is the layer porosity (depending on param-
eter h). This is the differential form of integral iden-
tities (52) that were developed in [38] using asymp-
totic analysis.

Numerical illustration

In Table 1 we introduce homogenized transmission
parameters A,B,F for 2D microstructures #1,#2 and
#3 displayed in Fig. (9); whenever the microstruc-
ture is symmetric w.r.t. the vertical axis of Y , coef-
ficient B vanishes and, as the consequence, the sur-
face wave is decoupled from the transversal momen-
tum.
We shall now illustrate that the global macroscopic
response is very sensitive to the specific geometry of
the perforation. The following numerical example
shows the global response of a waveguide contain-
ing the homogenized transmission layer. The geom-
etry of the waveguide is depicted in Figs. (7). The

Mic. A[(m/s)2] B[m] F [s2]
#1 1.155 ·105 0 1.391 ·10�5

#2 1.704 ·105 �0.251 1.324 ·10�5

#3 2.186 ·105 �0.897 4.265 ·10�5

Table 1: Comparison of homogenized transmission
parameters for different microstructures.

global response can be characterized by the trans-
mission loss T L = 20 log

�

|p̄|Gin |/|p|Gout |
�

, where p̄
is the incident plane wave, see (56). The transmis-
sion losses for the waveguide with perforations #1,
#2 and #3 are shown in Fig. (10). On the horizontal
axis there is the wave number k (k = w/c) multi-
plied by length L of the “expansion chamber” (see
Fig. (7)). The resulting acoustic pressures in the
waveguide are displayed in Fig. (11). The numerical
results were obtained for acoustic speed c = 343m/s
and scale parameter e0 = 0.035, which e.g. for the
microstructure type #1 means that the thickness of
the perforated plate is 7mm. According to this study
the perforation design seems to have quite important
influence on the global behaviour of the acoustic
pressure field, as viewed by the transmission losses.
This is a motivation for an optimal perforation prob-
lem, see [29, 24].
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Fig. (10): Transmission losses for different perfora-
tion types.

ELECTROMAGNETIC WAVES IN
PHOTONIC CRYSTALS
In analogy with the photonic crystals (materials)
treated in Section , homogenization was employed
to describe dispersion of optical waves in strongly
heterogeneous periodic materials, cf.



Mic. #1; k ·L = 5

Mic. #2; k ·L = 5

Mic. #3; k ·L = 5

Mic. #3; k ·L = 1

Fig. (11): Modulus of the acoustic pressure in W for
k ·L = 5 (1 in the last picture). For this 2D compu-
tation a finite element mesh comprising 820 quadri-
lateral elements was used.

Helmholtz equation for harmonic waves

Here we recall the possible description of electro-
magnetic fields in heterogeneous materials using the
Hertz potential (cf. [2]).
Maxwell equation for harmonic waves. We as-
sume monochromatic wave of frequency w and am-
plitudes H and E standing for magnetic and elec-
tric Fields, respectively, which satisfy the Maxwell
equations:

—⇥H = (�jwe +s)E+Je ,

—⇥E = jwµH ,

— · (eE) = r ,

— · (µH) = 0 ,

(59)

where Je is the current associated with external
sources of electromagnetism, r is the volume elec-
tric charge density, e is the electric permittivity (a
real number), µ is the magnetic permeability (a real
number) and s is conductivity which is zero in vac-
uum (a real number).
Let us assume for a while, that the material is homo-
geneous, i.e. (e,µ,s) are constants. Then either E,
or H can be eliminated from system (59), so that the

Helmholtz equations hold

—2E+k

2E = e

�1—r� jwµJe , — ·E = r/e ,

—2H +k

2H =�—⇥Je , — ·H = 0 ,
(60)

where k is the wave number characterized by the
material:

k

2 = w

2
µb = w

2
µ(e + js/w) . (61)

The vectorial Helmholtz equations (60) present
three independent scalar “componentwise” equa-
tions, however they are coupled by the divergence
conditions, which makes the analysis more difficult.
To simplify construction of the solutions to (60), the
vector potentials are introduced. Two standard cases
can be treated:

1. Electric Hertz potential. Let us consider the
special case Je = 0, thereby r = 0. Then by
(60)1 it follows that — · E = 0. The electric
Hertz potential E = —⇥AE then satisfies (60)1,
which yields

—2AE +k

2AE = —f , (62)

where —f is any scalar differentiable function.

2. Magnetic Hertz potential of the magnetic
field. Let H = —⇥AH , where AH is the Hertz
potential. Then (59)2 yields

—2AH +k

2AH =�Je +—y , (63)

where y is any scalar differentiable function.

Transmission conditions. Let G be the interface
separating two subdomains W1 and W2 where in
each the material parameters are constant. From the
integral form of the Maxwell equations the follow-
ing transmission conditions can be derived, see e.g.
[2],

[n⇥E]G = 0 , [n⇥H]G = 0 , (64)

where [•]G is the jump of • on G and n is normal
vector to G.
Two-dimensional model for a heterogeneous
medium. Let us consider AE = v~e3, so that~e3 is the
normal of the plane transversal to the fibres aligned
with ~e3 and characterizing the heterogeneities, and
v = v(x1,x2) is the scalar potential of the transversal
electric H-mode (TE-H-mode). Now (62) reduces
to the scalar Helmholtz equation

—2v+k

2v = ∂3f . (65)



In what follows we may put —f = 0, thus ∂3f = 0,
(cf. [2]). Further we consider two materials occupy-
ing two disjoint domains W1 and W2, separated by
interface G, so that W = W1 [G[W2. For this spe-
cial case we rewrite (64)1, noting that n ·~e3 = 0 and
also~e3 · (—n) = 0:

[n⇥E]G = [n⇥—⇥AE ]G
= [—(n ·AE)� (—n) ·AE �∂nAE ]G
=�~e3[∂nv]G ,

(66)

where ∂n is the normal derivative. Then we employ
(59)2 in (64)2:

[n⇥H]G =
1

jw
[
1
µ

n⇥—⇥E]G

=
�1
jw

[
1
µ

n⇥—2AE ]G

=~e3
�1
jw

[
k

2

µ

v]G = 0 ,

(67)

where (64) was employed. Thus, for the time-
harmonic response featured by the frequency w and
the TE-mode, the Maxwell equations yields the fol-
lowing system

—2v+k

2v = 0 in Wk, k = 1,2 ,

some b.c. on ∂W ,

transmission cond.: [∂nv]G = 0 on G ,

[
k

2

µ

v]G = 0 on G ,

(68)

where ∂n denotes the co-normal derivative, i.e. ∂n =
n ·—. The complex wave number k is defined lo-
cally by the material parameters; we consider them
piecewise constant in W, in particular

(µ,e,s)(x) =
⇢

(µ1,e1,s1) x 2W1
(µ2,e2,s2) x 2W2

, (69)

where (µk,ek,sk), k = 1,2 are constants.
Meanwhile the boundary conditions on ∂W are not
specified; importantly, when a part of ∂W is attached
to a perfect conductor, then ∂nv = 0 on this part.
It is worth noting that solutions to (68) have contin-
uous co-normal derivative on G, but the traces of v
on G are discontinuous. In the next section we mod-
ify the formulation represented by (68) to get rid of
these discontinuities.
By virtue of the piecewise constant material proper-
ties (69) piecewise-defined rescaling of v restricted

to Wk can be introduced. We shall see that there ex-
ists a continuous field u such that

v =
µk

k

2
k

u =
1

ekw

2 + jskw

u =
1

w

2
bk

u in Wk (70)

where bk = ek + jsk/w and v satisfies (68). Sub-
stitution (70) is well defined provided w > 0 and
ek 6= 0. Now we are allowed to apply this substitu-
tion in (68) to obtain the following modified system

— ·
✓

1
bk

—u
◆

+w

2
µku = ∂3g in Wk, k = 1,2 ,

some b.c. on ∂W ,

transmission cond.: [
1
b

∂nu]G = 0 on G ,

[u]G = 0 on G ,
(71)

where in (71)3 b = bk on G\∂Wk. Obviously, con-
tinuity on G follows by (71)3 and (71)4 preserves
continuity of the co-gradients.

Remark 1. Notation: Alternatively we can rewrite
(71) using the relative permittivity and permeability.
Let e0,µ0 be the permittivity and permeability of the
vacuum, then µk = µ

r
k µ0, ek = e

r
k e0 and bk = b

r
k e0,

where b

r
k (w) = e

r
k + jsk/(we0). On introducing the

wave number k0 = w

p
e0µ0, (71)1 can be rewritten

(assuming g = 0)

— ·
✓

1
b

r
k

—u
◆

+k

2
0 µ

r
k u = 0 in Wk, k = 1,2 .

(72)

For magnetically inactive materials µ

r
k ⇡ 1, there-

fore alternatively

— ·
✓

1
(nr

k)2 —u
◆

+w

2
µ0u = 0 in Wk, k = 1,2 ,

(73)

where nr
k =

p

b

r
k /e0 is the refraction index.

4

Remark 2. Alternatively one can consider the so
called transversal magnetic E-mode (TM-E-mode),
on introducing AH = w~e3, in analogy with the TE-
H-mode. This applies in particular for Je = je~e3,
thus

—2w+k

2w =� je +∂3y .

The transmission conditions on G are

[∂nw]G = 0, [µw]G = 0 ,



so that for µ constant in whole domain the solution
w is smooth and continuous on G; typically this is
satisfied by a class of optical materials where µ = µ0
.

4

Photonic crystals

Photonic crystals and magnetically active materi-
als became a quite interesting field of material sci-
ence due to vast applications in optical technolo-
gies (waveguides, optical fibres, special lens...).
There is a rich literature facing this subject, see e.g.
[9][28][45].
In this section we aim to demonstrate the modelling
analogy between acoustic waves in phononic mate-
rials and the electromagnetic waves in the photonic
ones. Therefore, we shall focus on the homogeni-
sation approach which consists in replacing a com-
posite with a large number of periodic microstruc-
tures by a limit homogeneous material. Such a treat-
ment is relevant for the modelling of the periodic
structures presented by photonic crystals. As Bou-
chitté and Felbacq proposed [9] in the case of pe-
riodic photonic crystals made of “strongly hetero-
geneous composites” ( i.e., with permittivity co-
efficients strongly different in the inclusions and
in the matrix), the limit homogenized permeability
is negative for certain wavelengths, thus yielding
the existence of band gaps. More precisely, they
showed that when the ratio between permeability of
the inclusions and permeability of the background
is of the order of the square of the size of the mi-
crostructures, then the band-gaps phenomenon ap-
pears. Historically this observation motivated the
homogenization approach applied to elastic waves,
as reported above.
Periodic structure with large contrasts in permit-
tivity. Let us consider a periodic structure, as gen-
erated in (16), characterized by permeability µ

e(x)
and complex permittivity b

e(x) given as piecewise
constant functions

µ

e(x) =

8

<

:

µ

1 in We

1,
µ

2 in We

2,
µ

0 in R2 \W,

b

e(x) =

8

<

:

b

1 in We

1,
e

2
b

2 in We

2,
b

0 in R2 \W

(74)

and assume that for e < e0 no inclusion intersects
∂W. Further we may assume that the heterogeneous
medium occupying domain W is subject to an inci-
dent wave imposed in R2 \W with the Sommerfeld
radiation condition applied on the scattered field in

the infinity, see [9]. Note that at any interface sep-
arating the inhomogeneities the standard interface
condition of the type (71)3 applies.
In [9] it was proved mathematically that the artificial
magnetism can be obtained by homogenization (i.e.
by asymptotic analysis) of the following problem

— ·
✓

1
b

e

—ue

◆

+w

2
µ

e ue = 0 in R2,

1
b

0 ∂rusce � jwµ

0usce = O(1/
p

k

0r)

when r !+• ,

(75)

where uinc is the incident wave and usce = ue �uinc

is the scattered field. We shall here recall the model
of homogenized material (metamaterial which will
allow us to see the analogies between the homog-
enization of the phononic crystals (acoustic waves)
and the photonic ones (electromagnetic waves).
Homogenized coefficients. In analogy with the con-
struction of mass tensor M⇤

i j in (29) using eigensolu-
tions of (27), the effective permeability is expressed
in terms of eigensolutions of the problem: find cou-
ples (l k,wk) 2 R⇥H1

0 (Y2), k = 1,2, . . .
Z

Y2
—wk ·—f = l

k
Z

Y2
wk

f , 8f 2 H1
0 (Y2),

Z

Y2
wkwl = dkl .

(76)

Now the effective permeability is computed as fol-
lows:

µ

⇤(w) =
µ

1|Y1|+ µ

2|Y2|
|Y | +

+ µ

2 1
|Y | Â

k2I+

w

2

l

k/(b 2
µ

2)�w

2

✓

Z

Y2
wk
◆2

,

where I+ = {k|
�

�

�

�

Z

Y2
wk
�

�

�

�

> 0} .

(77)

The effective permittivity becomes a 2⇥2 symmetric
tensor:

A⇤i j =
1

b

1 ⇠
Z

Y1
—y(h i + yi) ·—y(h j + y j) , (78)

where h

i = H1
# (Y1), being Y-periodic, satisfies the

following identities:

⇠
Z

Y1
—y(h i + yi) ·—yy = 0 8y 2 H1

# (Y1) , i = 1,2 , .

(79)

Homogenized photonic materials. The limit analy-
sis of the heterogeneous medium leads to the model



of homogenized medium which is characterized by
effective (homogenized) material parameters. One
can show that ue(x) in (75) two-scale converges (cf.
the unfolding method of homogenization [13]) to
u(x) + c2(y)û(x,y), where c2 is the characteristic
function of Y2 and û(x,y) are the non-vanishing os-
cillations in the inclusions. u is the “macroscopic”
solution satisfying

—x ·A⇤ ·—xu+w

2
µ

⇤(w)u = 0 , in W ,

1
b

0 —2u+w

2
µ

0u = 0 , in R2 \W ,

n ·A⇤ ·—xu��n · 1
b

0 —u+ = 0 on ∂W ,

u+�u� = 0 on ∂W ,

usc ⌘ u�uinc satisfies (75) ,
(80)

where n is a normal vector on ∂W and u�,u+ are
the interior and exterior values on ∂W, respectively.
Thus the solution is continuous on ∂W.
Photonic band gaps. The homogenized medium
represented by µ

⇤(w) and A⇤i j is the magnetic ac-
tive metamaterial with possibly negative permeabil-
ity µ

⇤(w) < 0 for some w . This effect features oc-
currence of band gaps, in analogy with the phononic
material described above in the text, where the
acoustic band gaps are indicated by negative effec-
tive mass M⇤(w).

ELECTROMAGNETIC WAVE
TRANSMISSION ON HETEROGE-
NEOUS LAYERS AND CLOAKING
In analogy with the acoustic transmission problem
reported in Section , we discus the electromag-
netic wave transmission through periodically
heterogeneous layer.
We consider a strip W

d

⇢ R3 with the thickness
d > 0 generated by a planar surface G0 and bounded
by G+

d

and G�
d

, see Fig. (12); the same notation is
used as that introduced in Section . In general, the
strip may contain perfect conducting material; we
denote by Se

d

⇢We

d

union of all such conductor (e.g.
realized by fibrous graining) which also constitute
the periodic pattern in the strip; length of the period
in x

a

, a = 1 is e , see Remark 3; the pattern is de-
fined by the 2D section spanning coordinates x1,x3,
so that interfaces of the graining between different
materials have the form of general infinite cylinders.
he dielectric material with finite conductivity occu-
pies domain We

d

= W
d

\Se

d

. The problem of the TE-
mode radiation will be imposed in the perforated do-
main We

d

.

Γ
δ
+

Γ
δ
− ε

δ
Γ
0

Fig. (12): Illustration of a section through the ficti-
tious layer in which the heterogeneous structure is
embedded. The black parts represent perfect con-
ductors, in the “void” part the material coefficients
are the same as those outside the layer; The colour
(grey) regions are occupied by different materials.

Remark 3. Here we consider the TE-H-mode, i.e.
the two-dimensional restriction of the electromag-
netic wave propagation (65), which is characterized
by scalar function v = v(x1,x3), thus ∂2v ⌘ 0. Such
a situation is relevant whenever the heterogeneous
structure is generated in 3D independently of co-
ordinate x2 (e.g. by fibrous graining aligned with
x2-axis). For generality we shall keep 3D descrip-
tion w.r.t. coordinates (x1,x2,x3) = (x

a

,x3), where
a = 1,2 refers to the in-plane position in G0 only.
However, due to the TE-H-mode restriction, only
gradients w.r.t. x1 and x3 coordinates do not vanish,
therefore in the sequel one may consider a = 1.

In the “ad hoc 2D” treatment, G0 is just a line,
whereas W

d

is a two-dimensional domain spanned
by coordinates x1,x3.

4
From similar studies of elliptic problems in thin lay-
ers having a periodic microstructure it is well known
that different limit models are obtained when com-
muting e ! 0 (the period of heterogeneities) and
d ! 0 (the thickness). Here we consider fixed pro-
portion d = he , h > 0.

Non-homogenized layer – problem formulation

We can define the boundary value problem for the
rescaled potential, see (71), and consider the Neu-



mann conditions on G±
d

:

— ·
 

1
b

2
ed

—ued

!

+ µw

2ued = 0 in We

d

,

1
b0

∂

±
n ued = jwg±d on G±

d

,

where g±d = ±g0(x
a

)+ eg1±(x
a

,x/e) ,

so that ⇠
Z

I+y [I�y
g±d ⇡ d ,

∂nued = 0 on ∂Se

d

,

ued ,∂nued periodic on opposite
sides of ∂W•

d

,
(81)

where g1± is the fluctuation part. The perfect con-
ductor in Se

d

results in the zero Neumann condition
on the associated perforation boundary. It is worth
recalling that b

ed

is piecewise constant in We

d

and
e-periodic in x1 (for fibrous structure relevant to the
TE-mode analysis b

ed

(x1,x3) is independent of x2).
In any case we assume that material on G±

d

is ho-
mogeneous, thus b

ed

= b0 is a constant (whatever
possibly a complex number). Due to (71)3,4 the so-
lution ued is smooth and the transmission conditions
are satisfied automatically.

Induction law constraint

For stating the boundary conditions on G±
d

, as ex-
plained below, the induction low is needed to define
a suitable scaling of the Neumann fluxes.
Let S 2 R2 be a planar surface spanned by co-
ordinates x1,x3, bounded by ∂S , and let us con-
sider decomposition S =

S

k Sk using a finite num-
ber of mutually non-overlapping subdomains Sk,
k = 1,2, . . . ; in each Sk the medium is assumed
to be homogeneous. For zero external current, i.e.
Je = 0, and using the electric Hertz potential AE the
Maxwell equations (59)1,2 yield H = (s � jwe)AE

and —⇥E = jwµ(s � jwe)AE in each Sk. Fur-
ther let tk be the tangent unit vector associated with
closed oriented curve ∂Sk and let Ek be the trace
on Sk of E defined in Sk. On integrating in Sk and
then using the summation over all subdomains, one
obtains subsequently (µk,ek,s k are local material
constants valid in Sk):

[

k

Z

∂Sk

tk ·EkdG =
[

k
µ

k(jws

k +w

2
e

k)
Z

Sk

AE ,

Z

∂S
t ·EdG =

Z

S
µ(jws +w

2
e)AE .

(82)
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Fig. (13): Illustration of the integral form of the in-
duction law.

Above the equivalence between the l.h.s. expres-
sions follows from the general transmission condi-
tion (66) which in 2D situation of the TE-H-mode
yields [t · E]G = 0. Let k 6= l and consider the in-
tegral over Gkl = ∂Sk \ ∂Sl which appears in the
l.h.s. of (82)1: due to the opposite curve orientation,
tk =�tl on Gkl , the following holds:

Z

∂Sk\Gkl

tk ·EkdG+
Z

∂Sl\Gkl

tl ·EldG =

=
Z

Gkl

[t ·E]Gkl dG = 0 ,
(83)

which yields the equivalence between the l.h.s. in
(82)1 and (82)2.
In the 2D situation, due to the TE-mode assumption,
(82) yields the following constraint

Z

∂S
(�t1∂3v+ t3∂1v)dG =�

Z

S
k

2v , (84)

where (t1,0, t3) is the tangent of ∂S and v~e2 is the
electric Hertz potential for the TE-mode. Note that
(84) holds also on “perforated” domains S ⇤ ⇢ S
when the perforation represents perfect conductors;
this is the simple consequence of the homogeneous
Neumann conditions on the part of ∂S ⇤ attached to
the conductors (the “holes”).
We now consider W

d

� S = W
dL = (x+] �

L/2,L/2[ )⇥]�d/2,d/2[ where x 2 G0 is such that
(x+]�L/2,L/2[ )⇢ G0. Boundary of W

dL is as fol-
lows, see Fig. (13):

∂W
dL = G+

dL[G�
dL[X�

d

[X+
d

,

G±
dL ⇢ G±

d

,

X±
d

= (x±L/2)⇥]�d/2,d/2[ .
(85)

Using substitution (70) in (84) we obtain

1
b0

Z

G±
dL

∂

±
n u+

Z

X±
d

1
b

ed

∂

±
n u =�µw

2
Z

We⇤
dL

u , (86)



where We⇤
dL = W

dL\We⇤
d

and where ± sign matches
the integration over G±

dL or X±
d

. It is important to
note, that |We⇤

dL| and |X±
d

| are proportional to d ; this
observation was respected in the definition of g±

d

in
(81).

The homogenized transmission condition

The homogenized transmission condition is defined
in terms of the homogenized coefficients which in-
volve the corrector functions in the integral form.
In what follows we explain, how the transmission
condition can be evaluated, for its detailed deriva-
tion we refer to [37]. Here we shall just summa-
rize the main steps of the homogenization procedure
which is quite analogous to the result obtained for
the acoustic problem reported above.
An important ingredient of the analysis is the di-
lation procedure, the affine mapping transforming
domain W

d

on W = G0⇥]� 1/2,1/2[ which, thus,
is independent of d = he . The material structure
in the layer is periodic being generated by repre-
sentative cell Y in analogy with the acoustic prob-
lem discussed in Section where the role of the fluid
is now played by the dielectric material situated in
Y ⇤, whereas the obstacles now represent the super-
conducting material.
Based on the a priori estimate of the solution to
(81), one obtains the convergence result (in the
sense of the two-scale convergence). There exist
u0 2 L2(G0) and u1 2 L2(G0)⇥H#(1,2)(Y ) such that
(denoting ue the solution of (81) on the dilated do-
main W) the following two-scale limits hold:

ue

2! u0

∂

a

ue

2! ∂

x
a

u0 +∂

y
a

u1 , a = 1,2
1
e

∂zue

2! ∂zu1

(87)

Below we introduce the corrector basis functions
which enable to express the “microscopic” func-
tion u1 in terms of the “macroscopic” quantities
∂

a

u0 and g0; these are involved in the homogenized
Helmholtz equation arising from (81)1.
Coupling the interface layer response with outer
fields. In the limit situation the domain W

d

degener-
ates into the “mid-surface” (plane) G0. Let the layer
W

d

is embedded in W0 where the scattered field can
be observed,

W0 = W+
d

[W
d

[W�
d

, W±
d

\W
d

= /0 , (88)

where also W+
d

and W�
d

are disjoint. In order to be
able to couple the exterior problem in W0 \W

d

with

that in the homogenized layer represented by G, it
is necessary to derive the relationship between the
limit traces u+ and u� of the bulk field in W±

d

on
G± for d ! 0 on one hand and the corresponding
limit traces on G±

d

on the other hand. Let fued be
the smooth extension over all perforations due to the
perfect conductors. The traces from W±

d

satisfy
Z

Wd

f∂3
fued =

Z

G+
d

f ud |G+
d

dG�
Z

G�
d

f ud |G�
d

dG

d ,e!0�!
Z

G0
f(u+�u�)dG ,

(89)

for any f 2 L2(W0) constrained by ∂3f = 0. We
shall now consider a finite thickness d0 > 0 of the
layer. The l.h.s. in (89) can also be written as
d0
R

W f∂3
gue0d0 (we recall the use of smooth exten-

sion gue0d0 to entire W
d0 ) . We consider the following

approximation for e < e0 :

d0

Z

W
f∂3

gue0d0 ⇡ e0

Z

W

1
e

f

∂

eue

∂ z

=e!0�! e0

Z

G0
f ⇠
Z

Y

 

∂

eu1

∂ z

!

= e0

Z

G0
f

1
|Iy|



Z

I+y
u1 dGy�

Z

I�y
u1 dGy

�

,

(90)

for all f 2 L2(G0), see (87)3, hence using (89)
Z

G0
f(u+�u�)dG = e0

Z

G0
f

1
|Iy|



Z

I+y
u1 dGy�

Z

I�y
u1 dGy

�

.

(91)

Continuity or a jump of potential normal derivative
on G0? In the limit situation, e ! 0, one can prove
using the induction law constrain (86) that

∂u+

∂n+ +
∂u�

∂n�
= [∂nu]G0 = 0 , (92)

where ∂u±
∂n± are traces from W± of the normal deriva-

tives on interface G0.
However, an alternative treatment is possible. We
may adapt the spirit of handling the potential jump
[u]G0 . For this we divide (86) by d and approximate
for a small d0 > 0, which yields

1
d0b0

Z

G±
L

±1
d

∂

∂ z
u+

Z

X±

±1
b

e

∂1u⇡�µw

2
Z

We⇤
L

u .

(93)

Above domains G±,X±,We⇤
L are obtained by the

thickness dilatation (cf. [15],[38])of G±
d

,X±
d

,We⇤
dL.
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Fig. (14): Reference cell Y .

Since for e ! 0 the second l.h.s. term vanishes, he
limit of (93) results in

1
d0b0



∂u+

∂n+ +
∂u�

∂n�

�

=
1

d0b0
[∂nu]G0 =�r

⇤
µw

2u0

for a.a. x 2 G0 ,
(94)

where r

⇤ = |Y ⇤|/|Y |.
Corrector basis functions. We employ notation in-
troduced in Section , however now the bilinear form
a⇤Y is modified:

a⇤Y (u, v) =
Z

Y ⇤

1
b̃

—̂u · —̂vdy , (95)

where b̃ (y) is defined piecewise constant in Y ⇤. Due
to linearity, we may define p

a ,x 2 H1
# (Y ) such that

u1 = p

a

∂

x
a

u0 + jwx g0 , (96)

and they satisfy the following auxiliary problems:

a⇤Y
⇣

p

b + y
b

, f

⌘

= 0 , 8f 2 H1
# (Y ) ,

a⇤Y (x , f) =
1
h

g

±(f) , 8f 2 H1
# (Y ) .

(97)

Macroscopic wave equation on G0. The macro-
scopic equation governs the surface wave propaga-
tion. The limit of the Helmholtz equation reads as

∂

a

A
ab

∂

b

u0 + jw∂

a

(B
a

g0)+

+µw

2
r

⇤u0 =
jw
h Â

s=+,�
⇠
Z

Is
y

g1s

(98)

in G, where the homogenized coefficients are

A
ab

=
1
|Y |a

⇤
Y

⇣

p

b + y
b

, p

a + y
a

⌘

,

B
a

=
1
|Y |a

⇤
Y (x , y

a

) .
(99)

As the consequence of Remark 3, in fact a,b = 1
and A,B are only scalar values. Also ∂2u0 = 0 due
to the TE-H-mode restriction.
Jump condition. Using decomposition (96), from
(90) for a.a. x 2 G0 we obtain

u+�u� = e0
1
|Iy|

g

±(u1)

= e0
1
|Iy|

�

g

±(pa)∂ x
a

u0 + jwg

±(x )g0�

= d0
�

�B
a

∂

x
a

u0 + jwFg0� ,
(100)

where (note |Y | = |Iz||Iy| and |Iz| = 1)

F =
1
|Y |a

⇤
Y (x , x ) =

1
h|Y |g±(x )

. (101)

Using auxiliary problems (97) one can verify that

a⇤Y (x , y
a

) =�a⇤Y (x , p

a) =�1
h

g

±(pa) ,

hence B
a

=
1
|Y |a

⇤
Y (x , y

a

) =� 1
h|Iy||Yz|

g

±(pa)

=� 1
h|Iy|

g

±(pa) ,

(102)

which was employed in (100).
Complete homogenized interface conditions. They
involve the in-plane limit electric Hertz potential u0

(see the transformation (70)), the transformed tan-
gential electric field components, g+ = g0 + e0g1+

and g� = �g0 + e0g1� related to faces G+ and G�,
respectively, where the fluctuating part is relevant
for a given layer thickness d0 = e0h > 0. There
is now discussion concerning the fluctuation parts
e0g1s, s = +,�.

1. Let us consider the perfect continuity of normal
derivatives according to (92). This is satisfied
(in the sense of weak limits in L2(G0)) for the
following two situations:

a) for “the true limit case”, e0 = 0, so that
(92) holds for any g1± (since ĝd± * ±g0

weakly in L2(G0)). In this case g1± is to
be defined in (98).

b) for the zero average in (98), i.e. assuming

G± ⌘ Â
s=+,�

⇠
Z

Is
y

g1s = 0 . (103)

In this case functions g1± are not present
in the limit model.



2. Let us now consider (94). Since the bound-
aries G±

d

are not related to any structural (mate-
rial) discontinuity, the normal derivatives must
be continuous. Thus, for e0 > 0, the exter-
nal field gradients represented by T

e

(g+) =
g0(x

a

)+ e0g1+(x
a

,y) are related to ∂

±
n u± by

∂

+
n |G+u+ = jwb

2
0 (g0 + e0 ⇠

Z

I+y
g1+) ,

∂

�
n |G�u� = jwb

2
0 (�g0 + e0 ⇠

Z

I�y
g1�) ,

(104)

These “external field boundary conditions” can
be substituted in (94), therefore

1
d0b

2
0



∂u+

∂n+ +
∂u�

∂n�

�

=

=
jw
d0

✓

g0 + e0 ⇠
Z

I+y
g1+�g0 + e0 ⇠

Z

I�y
g1�

◆

!=�r

⇤
µw

2u0 ,
(105)

hence the constraint

G± ⌘⇠
Z

I+y
g1++⇠

Z

I�y
g1� = jwr

⇤
µhu0 a.e. on G0 .

(106)

We shall consider either (103) holds, so that the
fluctuating parts are irrelevant in the limit situation,
or (106) holds, which is an additional constraint.
Therefore, the following problem is meaningful:
Let u+ and u� are given on faces G+ and G� of thin
heterogeneous interface (with the thickness d0 <<
1) which is represented by surface (line in 2D – the
relevant case) G0 in the homogenized form. De-
noting by U#(G0) the space of periodic functions
on G0, which is the consequence of periodic condi-
tions (81)5, we find u0 2U#(G0) and fluxes g0,G± 2
L2(G0) such that:

Z

G0
A

ab

∂

x
b

u0
∂

x
a

v0 + jw
Z

G0
B

a

g0
∂

x
a

v0�

�µw

2
Z

G0
r

⇤u0v0� jw
h

Z

G0
G±v0 = 0 8v0 2U#(G0) ,

Z

G0
q

�

�B
a

∂

x
a

u0 + jwFg0�=
1
d0

Z

G0
q(u+�u�)

8q 2 L2(G0) ,

G±� jwz0r

⇤
µhu0 = 0 a.e. on G0 ,

(107)

where z0 = 0,1 in (107)3, according to the case
(103) and (106), respectively.

Cloaking problem

The cloaking problem consists in finding model pa-
rameters related to some subdomain W� ⇢WG such
that an object Wc ⇢ W� is not visible outside W�,
i.e. the incident wave imposed in W+ = WG \W� is
not perturbed by a refracted field on Gs ⇢ ∂WG. The
medium parameters in WG are defined as piecewise
constant functions (pcw. const. func.):

domain: parameters description:
of the medium:

W+
d

,W+
b

+
0 ,µ

+
0 const.

W�
d

\Wc b

�
0 ,µ

�
0 const.

W� \Wc b

�
0 ,µ

�
0 const.

Wc b ,µ pcw. const. func.
We

d

b

ed ,µ

ed pcw. const. func.

We shall discus the following alternative definition
of the cloaking problem with heterogeneous trans-
mission layer:

1. the d -formulation – the layer is not homoge-
nized, WG = W�

d

[W
d

[W+
d

(disjoined subdo-
mains) and the observation manifold Gs ⇢ ∂WG

is located far away from W�
d

.

2. the homogenized formulation with the far-
field cloaking effect, i.e. the layer is repre-
sented by homogenized material distributed on
G0 = ∂W+ \ ∂W� and the manifold Gs is de-
fined as above.

3. the homogenized formulation with the
strong cloaking effect, in this case the cloak-
ing effect is examined on the “exterior surface”
of G+, thus no scattered field component is ob-
served in W+.

In general there is the scattered field in W+ given
as usc = u� uinc, i.e as the subtraction of the total
and the incident field. A physically reasonable mea-
sure of the cloaking effect is the extinction function
defined for a cylindric particle of unit length as:

Qext
∂W =

1
d

Re
⇢

Z

∂W

✓

n ·duincusc +
jg

kinc uscuinc
◆

dl
�

.

(108)

where kinc is the incidence wavenumber, d is the ef-
fective diameter of the cross-sectional area of the
particle projected onto a plane perpendicular to the



direction of propagation d and g = jk +
1

2R
, n is the

outer normal unit vector, R is the radius of ∂WG.
The extinction function will be derived and its struc-
ture explained in the next section.
Far field cloaking observation for non-
homogenized layer. The cloaking structure is
situated in domain W

d

which is locally periodic
in the sense we discussed above. The global
domain, WG, consists of three disjoint parts:
WG = W+

d

[W
d

[W�
d

, see Fig (15). The objects
to conceal are located in W�

d

, whereas on Gs
the cloaking effect is evaluated using extinction
function (108).
We assume that in W+

d

the material is homoge-
neous (material parameters labeled by subscript 0),
whereas in W

d

[W�
d

the material is heterogeneous
in general. However, to be consistent with the as-
sumption considered in the next paragraph, we re-
quire that µ = µ

±
0 , b = b

±
0 and s = s

±
0 on the re-

spective interfaces G±
d

. The state problem has the
following structure:

1
b

+
0

—2ud+ +w

2
µ0ud+ = 0 in W+

d

,

— ·
✓

1
b

—ud�
◆

+w

2
µud� = 0 in W�

d

,

— ·
✓

1
b

—ud

◆

+w

2
µud = 0 in W

d

,

standard transmission conditions:

∂n(ud+�ud ) = 0 on G+
d

,

∂n(ud��ud ) = 0 on G�
d

,

ud+�ud = 0 on G+
d

,

ud��ud = 0 on G�
d

,

boundary conditions:

∂nusc� gusc = 0on∂WG,

where

usc = ud+�uinc.
(109)

The cloaking effect can be achieved by minimiza-
tion of Qext

Gs
(uinc,usc).

The corresponding optimization problem can be
treated as a free material optimization problem as

follows.
8

>

>

<

>

>

:

min
b ,µ

QWs(u
inc,usc) s.t.

(ud+,ud�,ud ) satisfies (109)
(b ,µ) 2Uad ,

(110)

where Uad has to be specified. In particular, b ,µ are
fixed on the object to be cloaked (Wc) an can be cho-
sen out of a set of materials in W�

d

\Wc =: W�
d ,c. The

so-called free material optimization problem would
amount to require

Uad := {a 2 L•(W design;S3)|al  a au, tr aV}

for positive semi-definite matrices a0,au 2 S3. Ex-
istence of solutions and approximation properties
with respect to H-convergence have been shown in
a different context by Haslinger, Kocvara, Leuger-
ing, Stingl[18]. However, the realization of H-limits
is well known to be a nontrivial problem. See
however [18] for a numerical approximation anal-
ysis. The application of free material optimization
to the cloaking problem (110) is under way. An
alternative to treat the cloaking problem for (109)
is to parametrize the material properties as well
as the shapes of the inclusions and possible holes
in the layer W�

d ,c and view the problem as a non-
linear finite dimensional constrained optimization
problem in reduced form, in which the the prob-
lem (109) is solved for the given data and parameter
set. In particular on the level of a suitable finite-
element-discretization one can derive sensitivities of
the cost-function with respect to the parameters by
fairly standard means. Again, the numerical treat-
ment is under way.
Far field cloaking observation for homogenized
layer. We consider the domain WG = W+ [W� [
G0, where G0 = ∂W+ \ ∂W� can be curved as the
straightforward generalization of the transmission
layer model. Therefore, we shall introduce the
the local coordinate system (t,n)X for any X 2 G0
where t and n are, respectively, the coordinates in
the tangential and normal directions w.r.t. curve G0
at position X . As above, the objects to conceal are
located in W�, see Fig. (15). On the rest of ∂WG,
the radiation condition can be prescribed. The total
field in Gs ⇢ ∂WG is obtained by solving the follow-
ing problem (we assume that in W+ the medium is
homogeneous, possibly air):

1
b

+
0

—2u+ +w

2
µ0u+ = 0 in W+ ,

— ·
✓

1
b

—u�
◆

+w

2
µu� = 0 in W� ,

(111)
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Fig. (15): Illustration to the cloaking problem for-
mulation: for finite thickness layer W

d

, (109). Do-
main W� contains the object to be cloaked by sur-
face G0 containing the metamaterial. Cloaking ef-
fect is evaluated on Gs.

Ω
+

Γ0

τ
ν

Γs
area to be concealed

incident wave

object−
Ω

Fig. (16): Illustration to the cloaking problem for-
mulation: for the homogenized layer represented by
G0, (111)

transmission conditions – Neumann type:

�∂

n

u+ = ∂

+
n

u+ =�jwb

+
0 g0 on G0 ,

∂

n

u� = ∂

�
n

u� = jwb

�
0 g0 on G0 ,

(112)

wave transmission through the layer – jump control:

∂

t

�

A∂

t

u0 + jwBg0�+w

2
µr

⇤u0 = 0 on G0 ,

jwB∂

t

u0 +w

2Fg0 =� jw
d0

(u+�u�)

on G0 ,
(113)

boundary conditions:

∂nusc� gusc = 0on∂WG. (114)

Above in the wave transmission condition we em-
ployed (107) with G± = 0, i.e. z0 = 0.
As well as in the previous case, in this situation, the
cloaking effect can be achieved by minimization of
Qext

Gs
(uinc,usc). In other words, one is looking for the

solutions of the following problem

8

>

>

<

>

>

:

min
b ,µ

Qext
Gs (uinc,usc) s.t.

(ud+,ud�,ud ) satisfies (111)� (114)
(A,B,F,b ,µ) 2Uad ,

(115)

where the optimization is with respect to a class of
admissible functions A,B,F appearing in the trans-
mission condition and µ,b as before. In order to
understand in particular the transmission conditions
along G0 in (113) we focus on

∂

t

�

A∂

t

u0 + jwBg0�+w

2
µr

⇤u0 = 0 on G0 ,

jwB∂

t

u0 +w

2Fg0 =� jw
d0

(u+�u�)

on G0.
(116)

The first equation contains a Laplace-Beltrami-
Helmholtz equation on G0. Indeed, we define the
operator

TA : L2(G0)! L2(G0),

D(TA) := {u 2 H1
# (G0)|A∂

t

u 2 H1(G0)},
TAu :=�∂

t

A∂

t

u

(117)

The operator TA is self-adjoint and positive semi-
definite with discrete spectrum. The equation to
solve is now

�TAu+w

2
µr

⇤u =�jw∂

t

Bg0.
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Fig. (17): Illustration to the problem formulation
(121). Domain W� contains the object to be cloaked
by surface G0 containing the metamaterial.

We introduce the resolvent R(l ,TA) := (l I�TA)�1

of TA at a point l 2 r(TA). With this notation the
first equation in (116) can be solved for u0 as fol-
lows.

u0 =�jwR(w2
µr

⇤,TA)∂
t

Bg0, (118)

while the second equation in (116) turns into

B∂

t

R(w2
µr

⇤)∂
t

Bg0 +Fg0 =
1

jw
(u+�u�), on G0.

(119)
Equation (119) is an integral equation of the sec-
ond kind which admits a unique solution g0. If one
then inserts g0 into the Neumann conditions of (112)
one obtains a nonlocal transmission condition along
G0 which contains the functions A,B,F,µ as mate-
rial parameters to be used in the optimization. The
optimization problem (115) has not yet been fully
explored. This will be subject to a forthcoming pub-
lication.
Strong form of the cloaking problem. We keep the
domain WG = W+[W� [G0, the objects to conceal
are located in W�, as before. The incident wave is
imposed in W+. We impose the incident wave in
W+; let u

inc be the local amplitude of the plane wave,
then

jwb0g0 = ∂

�
n

u� = ∂

+
n

u+ =�k+
n

u
inc

, (120)

where u± is the trace of u on ∂W± \G0 and k
n

is
the projection of the wave vector to the unit out-
ward normal n . Above

R

I+y g1+ = 0 applies due to
the form of the incident wave. As the consequence,
R

I�y g1� = 0 results by G± ⌘ 0, see (106) and (107).
We consider the problem imposed in W�, being de-
fined in terms of triplet (u,u0,g0) which satisfies the

following coupled system: wave in cloaked region:

—
✓

1
b

—u
◆

+w

2
µu = 0in W�

∂

n

u = jwb

�
0 g0on G0,

(121)

wave transmission through the layer:

∂

t

�

A∂

t

u0 + jwBg0�+w

2
µr

⇤u0 = 0 on G0 ,

jwB∂

t

u0 +w

2Fg0 =� jw
d0

(u
inc �u)

on G0 .
(122)

In fact the cloaking condition (120) can be viewed
as an exact controllability constraint with variables
(A,B,F), the coefficients of the homogenized trans-
mission through the heterogeneous layer, as con-
trols. This exact controllability problem can be
solved for special scenarios. However, in general
we cannot expect exact controllability, and therefore
the controllability constraint has to be relaxed by an
appropriate optimization with penalty.
In general, the flux g0 obtained by solving (121),
(122) i.e. as the State Problem solution, is not con-
sistent with the incident wave assumed in W+; it fits
the assumption of “no reflection”, when

0 = k+
n

u
inc

+ jwb0g0 , a.e. on G0 ,

therefore, the cloaking effect can be approached by
the following minimization:

min
A,B,F

Y(g0,A,B,F) , (123)

where Y = kk+
n

u
inc + jwb0g0kG0 , s.t. g0 solves the

State Problem (121) with (122) for given u
inc .

Coefficients (A,B,F) can be handled by designing
the microstructure in cell Y .

Remark 4. In general, there is the jump on G0,
[u]G0 = u+� u� 6⌘ 0. u0 involved in (122) is an in-
ternal variable which is relevant only if B 6⌘ 0 on G0;
otherwise (122) reduces to

w

2Fg0 +
jw
d0

(uinc�u) = 0 on G0 .

In this case the problem (121), (122) reduces to a
Helmholtz-problem

8

<

:

— 1
b

—u+w

2
µu = 0 in W�

∂

n

u+au = au inc on G0



with local Robin-type boundary condition on G0.
The cloaking constraint then also reduces to just an-
other boundary condition on G0. This leads to an
overdetermined boundary value problem which may
or not may have a solution.

4

TOPOLOGY OPTIMIZATION FOR
THE CLOAKING PROBLEM
In this section we would like to demonstrate the
topology optimization method to design a cloaking
layer such that the given object will become less vis-
ible.
Let us consider a small object (i.e. a nanoparticle
composed from a given material). Our aim is to de-
sign a topology of a cloaking layer (composite of
the matrix medium and a medium with a low refrac-
tive index) in such a way that for an observer (sen-
sor) present behind the particle, the particle becomes
in some sense (specified by a cost function) invisi-
ble. Propagation of the electromagnetic waves in
the composite is described by the Helmholtz equa-
tion (as defined in the previous sections). The ge-
ometry of the problem is described by figure (18).
The state equation is considered in a circular domain
W = [3

i=1Wi with the boundary ∂W. We place a par-
ticle (characterized by a complex refractive index)
in the middle of the computational domain. Its body
is included in the set W1. The particle is coated by
a shell (W2). And the core-shell is in turn embedded
into a matrix medium (W3).

∂Ω

Ω1

Ω2

Ω3

Fig. (18): Description of geometry for the strong
form of cloaking problem

The refractive index is supposed to be constant in
subdomains W1,W3, but is changing across inter-

faces and may vary in W2. Since we will solve the
Helmholtz equation on a finite computational do-
main we have to define appropriate boundary con-
ditions. These conditions should prevent occurrence
of non-physical reflections from the artificial bound-
ary (i. e. the outer boundary should be transpar-
ent for the scattered field or the boundary condi-
tions should absorb the scattered wave, that’s why
in the following we will call them absorbing bound-
ary conditions). There are various ways in which
such conditions can be chosen, we have used a.b.c.
of first order for it’s simplicity, these conditions re-
tains sparsity of the finite element system matrix, on
the other hand, they do not prevent reflections for
all directions of incidence. The total rescaled elec-
tric Hertz potential u may be decomposed into the
incident and the scattered field

u = uinc +usc,uinc = e�jk incd·x, (124)

where d is the direction of propagation of the inci-
dent wave. Furthermore we observe

—uinc =�jk incduinc. (125)

The absorbing b.c. give the relation between the
scattered field and its derivative in the direction of
the outer normal on the boundary

∂nusc� gusc = 0on∂W, (126)

where g = jk +
1

2R
. The Helmholtz equation has

than the following form

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

— ·
✓

1
br

—u
◆

+k

2
0 µru = 0inW,



1
br

∂nu
�

G
= 0onG,

[u]G = 0onG,
∂nusc� gusc = 0on∂W,

(127)

where br = n2 is the complex relative permittivity
(square of the refractive index).

Remark 5. The total (or also scattered) po-
tential u(usc) depends generally on the frequency
w 2 L and on the direction of propagation d =
(cosa,sina),a 2 S, where L = {w1, . . . ,wn} is a
set of given frequencies, S = {a1, . . . ,am} is the set
of angles of incidence.

4
To obtain the weak form of Helmholtz equation
we multiply (127)1 by the test function v 2 H(W),



where H(W) is the standard Sobolev space

H(W) = W 1,2 =
⇢

v|v, ∂v
∂xi

2 L2(W), i = 1,2
�

.

(128)

We apply the Green’s theorem, further we use (124),
(127)4 and (125). Then the weak formulation may
be written as follows
⇢

Find usc 2 H(W) such that for all v 2 H(W) holds
a(usc,v) = f (v).

(129)

where a sesquilinear form a : H⇥H ! C is defined
as

a(usc,v) =�
Z

W

1
br

—usc—vdS +
Z

W
k

2
0 µruscvdS

+
Z

∂W

1
br

guscvdl

(130)

and the operator f (·) is the operator of the right hand
side f : H ! C

f (v) =
Z

W

1
br

—uinc—vdS�
Z

W
k

2
0 µruincvdS

+
Z

∂W

1
br

n ·djk incuincvdl 8v 2 H(W).

(131)

Cost functional

Our aim is to minimize the so-called extinction ef-
ficiency. That is a function that reflects energy loss
due to the inserted particle.
Energy flux at any point of space is represented by
the Poynting vector

S =
1
2

Re
�

E⇥H
 

. (132)

In the following we will define the energy that is
scattered, absorbed and extincted per unit length of
the cylinder L. We will ignore effects of the ends of
the cylinder. Now imagine a fictive cylinder around
the particle (in our concept it will be represented by
the boundary of the computational domain ∂W). We
define net rate W abs at which the electromagnetic en-
ergy crosses ∂W

W abs =�L
Z

∂W
S ·ndl. (133)

If W abs > 0 energy is absorbed in W, if W abs < 0
energy is created in W (not considered in the follow-
ing).

The absorbed energy rate W abs may be decomposed
into the incident energy rate (identically zero), ex-
tincted and scattered energy rates

W abs = W inc +W ext�W sc (134)

Extinction efficiency is then defined as

Qext =
1

GIinc W ext, (135)

where Iinc is incident irradiance - magnitude of the
Poynting vector of the incident wave

Iinc = |Sinc| = 1
2
|Re

n

Einc⇥Hinc
o

| (136)

and G = Ld is cross-sectional area of the particle
projected onto a plane perpendicular to the direc-
tion of propagation (d is the diameter of the shelled
particle).
In the following we will formulate the extinction ef-
ficiency in terms of the state variable usc. The mag-
netic end electric field intensities for a homogeneous
and non-absorbing medium (b = const > 0) may be
rewritten as follows

E =
1

w

2
b

—⇥ (ue3) =� 1
w

2
b

e3⇥—u, (137)

H = (s � jew)
1

w

2
b

ue3 =� j
w

ue3. (138)

Then the Poynting vector may be rewritten as fol-
lows (noting that e3 ·—u = 0)

S =� 1
2w

3
b

Re{j(e3⇥—u)⇥ue3} ,

=� 1
2w

3
b

Re{ju—u} .
(139)

The incident irradiance is then given by (using
(125))

Iinc =
1
2

�

�

�

Re
n

Einc⇥Hinc
o

�

�

�

=
kinc

2w

3
b

. (140)

Using (139) also extinction energy rate is obtained
as (using (127)4 and again (125))

W ext =
L

2w

3
b

Z

∂W
Re

n

jusc—uinc + juinc—usc
o

·ndl,

=
L

2w

3
b

Z

∂W
Re

n

n ·dkincuincusc + jguscuinc
o

dl.

(141)

Using (135) the final formula for the extinction effi-
ciency is obtained as

Qext =
1
d

Re
⇢

Z

∂W

✓

n ·duincusc +
jg

kinc uscuinc
◆

dl
�

.

(142)



Min-max problem

The aim of the optimization is to minimize values of
the cost functional for a selected interval of frequen-
cies. It can be achieved by the worst scenario ap-
proach: we shall minimize the cost functional value
for the worst case frequency.
We would like to find an optimal distribution of two
isotropic materials characterized with refractive in-
dices n0,n1. This leads to the discrete optimization,
which is generally a very difficult problem. One
possibility to handle this problem is to introduce re-
laxation of the material (the SIMP method, [5]). We
define pseudo density function r(x) 2Uad

n(r(x),w) = n0(w)+(n1(w)�n0(w))r(x)p,

p > 1,

Uad =
⇢

1
|W2|

Z

W2
r(x)dS r

⇤,

0 r(x) 1,x 2W2

�

,

(143)

where Uad is the admissible set, r

⇤ is the maximal
fraction of the material with refractive index n1 that
may be included in the design layer. The worst sce-
nario approach may be formulated as follows

min
r2Uad

max
w2[w1,wn],a2[a1,am]

Y(usc
w,a), (144)

where Y is the cost functional depending on the
state variable.
For the finite element analysis we have to define the
discrete form of the previous problem. Let E be a
set of indices of finite elements in the design subdo-
main W2. Then the refractive index for every finite
element in E is defined as follows

ne(w) = n0(w)+(n1(w)�n0(w))r p
e , p > 1,

r̂(x) = Â
e2E

rece(x), r̂ 2gUad

gUad =
⇢

card(E) Â
e2E

re  r

⇤,

0 re  18e 2 E
�

,

(145)

where ce is a characteristic function of the finite el-
ement e in W2, card(E) is the amount of finite ele-
ments in the design layer. The problem (144) is then
in then reformulated as follows

min
r̂2gUad

max
w2L,a2S

Y(usc
w,a). (146)

The Method of Moving Asymptotes (MMA) is used
to solve the preceding problem. One additional re-
formulation of (146) is necessary

min
r̂2gUad

c (147)

subject to:

hi, j  0, i = 1, . . . ,n, j = 1, . . . ,m,
g  0,

0 re  1, 8e 2 E,
(148)

where

hi, j = Y(usc
wi,a j

),wi 2 L,a j 2 S
for i = 1, . . . ,n, j = 1, . . . ,m,

g =
1

card(E) Âe2E re�r

⇤.
(149)

The MMA method requires knowledge of the gradi-
ent of the cost functional which is obtained via the
sensitivity analysis. Sensitivity analysis of similar
problems is provided in a detailed way in [40] or
[32].
The main task is the solution of the adjoint equa-
tions (that are in fact optimality conditions of the
Lagrangian L of our problem), the equations are
formally defined as follows
⇢

Find w 2 H(W) such that for all v 2 H(W) holds
(dRey(usc)� jdImy(usc)) · v+a(v,w) = 0.

(150)

Then the final sensitivity of the cost functional for
a given frequency w and an angle of incidence a is
formulated as

dy = dL (r,usc,w) = d

r

(a(usc,w)� f (w))
= d

r

(a(u,w)) ,

=
Z

WD
�2ne(re)�3 p(n1�n0)r p�1

e —u—wdS.

(151)

Implementation and results

The discretization of the state equations was done by
the classical approach of the finite element method
(for details we recommend the well known book
Zienkiewicz et.al. [47]). The state equation is
solved by the finite element method using isopara-
metric, bilinear, hexahedral finite elements ( an in-
troduction is given by Jianming Jin in [19]).



In all following examples the extinction efficiency
was minimized (Y = Qext), although the scattering
efficiency would be also a good alternative, since

Qext = Qabs +Qsc (152)

and we observed the decrease of the extinction was
mainly due to lower scattering than absorption.
On figure (19) we may observe a particle with higher
refractive index (2.1) that is surrounded by the layer
with refractive index given by the pseudo density
r = 0.3. Dark blue color in the shell corresponds to
the matrix material (n = 1.31), by the red color low
refractive index material is represented (n = 0.95,
that is more or less air). We see that the design
evolves to two oval inclusions ((24)), which main-
tains more than 60 % decrease in extinction.

Fig. (19): Initial design - iteration 0.

Fig. (20): Design - iteration 6.

The extinction efficiency curves for particular iter-
ations are displayed on figure (25). The pink inter-
rupted curve corresponds to the bare particle.
The inclusions in the final design (24) have no clear
interface with respect to the matrix medium. The
production of such shell is out of reach of nowa-
days technology. Our suggestion is to use the opti-
mal topology design as an initial guess for the shape

Fig. (21): Design - iteration 9.

Fig. (22): Design - iteration 12.

Fig. (23): Design - iteration 14.

optimization method. On Figures. (26), (27) the
contour lines and initial shape of 3 layers with piece-
wise constant refractive index are defined. The ge-
ometry of such structure could be parametrized and
optimized in a similar way as was published in [39],
[40].
Finally the optimal design for two, three and four
angles of incidence is displayed on figures (28), (29)
and (30). Of course the decrease of extinction is not
so huge as in the previous simulation, but we still
get improvement approximately 20-40 %. The com-
plicated structures that develop give us hint back to



Fig. (24): Design - iteration 18.
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Fig. (25): Cost functional values for particular iter-
ations

Fig. (26): Contour lines..

the previous section (Fig. (15)). We believe that
the optimally designed micro-structure would re-
duce the extinction even more significantly than has
been shown on Fig. (25).

CONCLUSION
As we have amply demonstrated, meta-materials
in the acoustic, electromagnetic, elastic and piezo-
electric context can be approached by quite anal-
ogous mathematical methods. Therefore, a unify-

Fig. (27): Contour layers.

Fig. (28): Optimal design for 2 directions,
S = {�1/4p,1/4p}.

Fig. (29): Optimal design for 3 directions,
S = {�1/4p,0,1/4p}.

ing theory of meta-materials for wave propagation
is within reach. It turns out that micro- or nano-
structured layers play an important role in obtaining
meta-properties, like cloaking and band-gap phe-
nomena. Similarly, micro-structures appear in aux-
etic elastic materials, like metallic or ceramic foams.
In order to achieve results that lead to a an actual
mechanical, acoustic or electromagnetical device,
further research has to be conducted. In particular,
post-processing and interpretation tools have to be



Fig. (30): Optimal design for 4 directions,
S = {�1/2p,�1/3p,1/3p,1/2p}.

developed in order to transfer the numerical results
into practice.
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