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Introduction

The wave equation with potential

Let Q be a smooth bounded domain of R", n > 1, and T > 0. We
consider the wave equation with potential

Pw — Aw + pw = g, in Qx(0,T),
w =0, on 902 x (0, T), (1)
w(0) = wy, Ow(0) =wyq, in Q.

Here, w denotes the amplitude of the waves, p is a potential supposed
to be in L°(Q), g is a source term for instance in L2(Q x (0, T)) and
(wo, wy) are the initial data lying in H3(Q) x L2(Q).
D'Alembertian operator:

O0=0?-A.
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Introduction

The inverse problem

Given the source term g and the initial data (wg, wy), can we determine
the unknown potential p(x), Vx € Q, from the additional knowledge of

the flux
w=0,w, onlgyx(0,T),

where g is a part of 0Q 7

won Iy

Uniqueness 7 Stability ? Numerical resolution ?
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Introduction

Classical uniqueness and stability result

Theorem (Baudouin-Puel)

@ Geometric condition:
Ixo € Q such that Tg D {x € 9Q, (x — x) - v(x) > 0},

v
o

r
X0 0
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Introduction

Classical uniqueness and stability result

Theorem (Baudouin-Puel)

@ Geometric condition:

Ix0 € Q such that To D {x € 99, (x — x0) - ¥(x) > 0},

@ Time condition: T > sup,.q|x — Xo

7

""""""
. *e

X0

______

6/30



Introduction

Classical uniqueness and stability result

Theorem (Baudouin-Puel)

@ Geometric condition:

Ix0 € Q such that Ty D {x € 09, (x — x0) - ¥(x) > 0},

’

@ Time condition: T > sup,cq X — Xo

@ Regularity assumption: w € H((0, T); L=(Q)),

7/30



Introduction

Classical uniqueness and stability result

Theorem (Baudouin-Puel)

@ Geometric condition:

Ix0 € Q such that Ty D {x € 09, (x — x0) - ¥(x) > 0},

’

@ Time condition: T > sup,cq X — Xo

@ Regularity assumption: w € H((0, T); L=(Q)),

@ Positivity condition: Ja > 0 such that |wp| > o in Q.

7/30



Introduction

Classical uniqueness and stability result

Theorem (Baudouin-Puel)

@ Geometric condition:

Ix0 € Q such that Ty D {x € 09, (x — x0) - ¥(x) > 0},

@ Time condition: T > sup,cq X — Xo

@ Regularity assumption: w € H((0, T); L=(Q)),

@ Positivity condition: Ja > 0 such that |wp| > o in Q.

Then for m > 0, there exists a positive constant M = M(, T, xo, m)
such that for all p and q in L33 (2) = {p € L>=(Q), ||p||r(q) < m}:

e —allz@) < M|0: (9,w(p] — Ouwld]) |l2(rex (0, 7))

where w(p] and w|q] denote the corresponding solutions of (1).
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Introduction

Classical resolution method

A classical method for solving this inverse problem consists in minimizing

J(q) = |10: (O wlq] — p) H%Z(FOX(O,T))a

where 1 = 9, w[p] is the observation.
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A classical method for solving this inverse problem consists in minimizing

J(q) = |10: (O wlq] — p) H%Z(FOX(O,T))a

where = 9, w[p] is the observation. Unfortunately, J is not convex and
may have several local minima. Classical minimization algorithms are not
guaranteed to converge toward the global minimum of J.

100

8/30



Introduction

Classical resolution method

A classical method for solving this inverse problem consists in minimizing

J(q) = |10: (O wlq] — p) ||%2(F0X(O7T))a

where = 9, w[p] is the observation. Unfortunately, J is not convex and
may have several local minima. Classical minimization algorithms are not
guaranteed to converge toward the global minimum of J.

100

We propose a new algorithm to solve the inverse problem and prove its
global convergence. It is based on Carleman estimates.
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A Carleman estimate

Carleman weight function for waves
We define, for (x,t) € Q x (0, T),
B 1) =[x —x0f = B+ Go, and  (x, 1) = M),

where 8 >0, A > 0 and Cy > 0 is chosen such that ¢¥» > 1in Q x (0, T).

0.8
0.6
0.4

Temps t Espace x

.2 0.
0.0 0.0

Function ¢ for x =0, B =1and (=0

P(t) <¢(0), Vee(0,T).
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A Carleman estimate

An estimate with pointwise term in time 0

Theorem

Assume the geometric and time conditions. Suppose § € (0,1) and

BT > sup|x — xo.
xeQ
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A Carleman estimate

An estimate with pointwise term in time 0

Theorem

Assume the geometric and time conditions. Suppose § € (0,1) and

BT > sup|x — xol.
xeQ

Then with m > 0, there exists a constant M > 0 such that for all s and \
large enough, for all g € L°(Q) and for all z € L?(0, T; Hy(Q)) satisfying
Oz+qze 2(2x(0,T)), d,z€ L?(Tox (0, T)) and z(0) =0 in Q :

51/2/ e?¢(9)]9,2(0)[? dx
Q

initial energy

T T
< M/ /ezs“’|Dz+qz|2dxdt+Ms/ / €% |0,z ddt.
0 Q 0 o

source observations
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Our algorithm

Iterative loop
Initialization: ¢° = 0.

[teration: Given g*,
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Our algorithm

Iterative loop
Initialization: ¢° = 0.
[teration: Given g*,
1 - Compute w[q*] the solution of
Pw — Aw + gkw = g, in Qx (0, T),
w =0, on 9Q x (0, T),
W(O) = Wo, atW(O) = wi, in Qv

and set /X = 0, (9, w[q"] — d,w[p]) on g x (0, T).
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Our algorithm

Iterative loop
Initialization: ¢° = 0.
[teration: Given g*,
1 - Compute w[q*] the solution of
Pw — Aw + gkw = g, in Qx (0, T),
w =0, on 9Q x (0, T),
W(O) = Wo, a1.“W(0) = wi, in Qv

and set /X = 0, (9, w[q"] — d,w[p]) on g x (0, T).

2 - Introduce the functional

/ / 25”|Dz+q z[? dxdt+s/ / €%°%10,z— ;Lk\z d~ydt,
o

on the space T = {z € L?(0, T; H}(R)), z(0) = 0,0z + gkz €
L2(2 % (0,T)),0,z € L3(Ty x (0, T))}.
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Our algorithm

Iterative loop

Theorem

Assume the geometric and time conditions. Then, for all s > 0 and
k € N, the functional J(’,‘ is continuous, strictly convex and coercive on
T* endowed with a suitable weighted norm.
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Our algorithm

Iterative loop

Theorem

Assume the geometric and time conditions. Then, for all s > 0 and
k € N, the functional J(’,‘ is continuous, strictly convex and coercive on
T* endowed with a suitable weighted norm.

3 - Let Z¥ be the unique minimizer of the functional Jé‘, and then set

9, Z(0
o, 0Z40)
wo

gt =gq

where wy is the initial condition of (1).
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Our algorithm

Iterative loop

Theorem

Assume the geometric and time conditions. Then, for all s > 0 and
k € N, the functional J(’,‘ is continuous, strictly convex and coercive on
T* endowed with a suitable weighted norm.

3 - Let Z¥ be the unique minimizer of the functional Jé‘, and then set

. 9:Z(0

o _ e, 020
wo

where wy is the initial condition of (1).

4 - Finally, set

k+1 _ ~k+1 _ q, If |q| S m,
=T ). e T = { Sy, 102
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Our algorithm

Convergence result

Theorem

Assume the geometric and time conditions, the regularity
assumption and the positivity condition. Let p € LS°(Q). There exists
a constant M > 0 such that for all s large enough and for all k € N,

. k .
/ eZsp(O)(qk - ,D)2 dx < ( M ) / 625;;(0)'02 dx.
Ja “\Vs/ Ja

In particular, if s is large enough, q* converges toward p when k goes to
infinity.
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Our algorithm

Proof of the convergence result

The algorithm is based on the fact that z¥ = 8, (w[q*] — w[p]) solves

02zK — AzZK 4 gkzk = gk, in Q x (0, T),
zk =0, on 99 x (0, T),
zZK(0) =0, 8:z%(0) = zf, in Q,

where
g“=(p-dVowlpl, z=(p—q")m.
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Our algorithm

Proof of the convergence result

The algorithm is based on the fact that z¥ = 8, (w[q*] — w[p]) solves

02z — NzZK 4 gkzk = gk, in Qx(0,T),
zk =0, on 99 x (0, T),
zZK(0) =0, 8:z%(0) = zf, in Q,
where
g"=(p—q)owlpl, 2z =(p—qg")wo.

Moreover, by definition,
pk =08,z% on Ty x (0, T),

and we notice that z¥ is the unique minimizer of the functional:

T T
Jgk(z):/o /Qe2s“"\Dz+qszgk|2 dxdtJrs/O /r e*?|0, z— " |? dvdt,
0
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Our algorithm

Proof of the convergence result

Let us write the Euler Lagrange equations satisfied by:
- ZK minimizer of J§:

;
VIK(ZK, 2) = / / e*?(0Z% 4 ¢*Z*)(Oz + ¢*z) dxdt
0 Q

T
—|—s/ / e*%(9,Z — 1¥)0,z dydt = 0,
0 )
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Our algorithm

Proof of the convergence result

Let us write the Euler Lagrange equations satisfied by:
- ZK minimizer of J§:

-
VIK(ZK, 2) = / / e*?(0Z% 4 ¢*Z*)(Oz + ¢*z) dxdt
0o Ja
T
—|—s/ / e*%(9,Z — 1¥)0,z dydt = 0,
0 )
- and z¥ minimizer of Jgk:
T
VJéfk(zk, z) = /0 /Qe25*0(Dzk + gk z¥ — g")(Oz + ¢*z) dxdt
T
+s/ / e*%(0,z* — *)d,z dydt = 0,
0o Jro

for all z € Tk,
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Our algorithm

Proof of the convergence result

Applying these equations to z = ZK —z¥ and subtracting the two identities,
we obtain:

T T
/ / e*?|0z 4 q“z|* dxdt + s/ / e*%10, z|* dvydt
0o Ja 0 Jio

-
= / / e?gk(0z + ¢*z) dxdt.
o Ja
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Our algorithm

Proof of the convergence result

Applying these equations to z = ZK —z¥ and subtracting the two identities,
we obtain:

T T
/ / e*?|0z 4 q“z|* dxdt + s/ / e*%10, z|* dvydt
0o Ja 0 Jio
T
= / / e?gk(0z + ¢*z) dxdt.
o Ja

This implies (2ab < 2% + b?) that

17 T o
7/ /e2w|Dz—§—qkz|2 dxdt+5/ / e*%10, z|* dvdt
2)o Ja 0 Jho

1 T
< 7/ /e25“’|gk|2 dxdt.
2Jo Ja
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Our algorithm

Proof of the convergence result

The left hand side precisely is the right hand side of the Carleman estimate.
Hence, we deduce:

A T
51/2/ e>%9)9,2(0)[2 dx < M/ /e25@|gk\2 dxdt,
Ja 0o Ja

where

9:2(0) = 9,Z%(0) — 9,2%(0).
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Our algorithm

Proof of the convergence result

The left hand side precisely is the right hand side of the Carleman estimate.
Hence, we deduce:

A T
51/2/ e>%9)9,2(0)[2 dx < M/ /e25@|gk\2 dxdt,
Ja 0o Ja

9:2(0) = 9,Z%(0) — 9,2%(0).

where

Moreover

0:Z5(0) = (§*** — g*)wp, by definition of g~k*+1,
atz ( ) k (p q )W07
g" = (p— q")0:wlpl.
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Our algorithm

Proof of the convergence result

Therefore, since p(t) < ¢(0) for all t € (0, T) we have:
51/2/ e2sgp(0)‘wo‘2(ak+1 _ p)2 dx
Q

< MOl 0,11 () / &540)(g* — p)? dx.

20/30



Our algorithm

Proof of the convergence result

Therefore, since p(t) < ¢(0) for all t € (0, T) we have:
51/2/ e2s<p(0)‘W0‘2(Elk+1 _ p)2 dx
Q

< MOl 0,11 () / 250 (g* — p)? dx.

Using the positivity condition on wy and the fact that
g"TY = p| = | Tm(@8F") = Tw(p)| < |3 — p|

because T, is Lipschitz and T,,(p) = p, we immediately deduce

k
/ e2sgo(0)(qk+1 _ p)z dx < < M) +1/ e2ssa(0)(q0 _ p)z dx.
Q ~\s o
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Numerical issues

Discretization of the problem

-Q=[0,1, x%=-01To={x=1},3=099, T=15A=01s=1

r
X0 0 l0
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X0 0 1O

- finite differences in space h = 0.02, explicit Euler scheme in time 7 = 0.01
-g=0, wy =0, w(x) = sin(xm)

- additional noise on the observation data:

= (14 aNormal(0,0.5)) x, «>0.
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Numerical issues

Discretization of the problem

“Q=[0,1, x=-0.1To={x=1},8=099, T=15X=01s=1

Mo

X0 0 1

- finite differences in space h = 0.02, explicit Euler scheme in time 7 = 0.01
-g=0, wy =0, wy(x) = sin(xm)

- additional noise on the observation data:
= (14 aNormal(0,0.5)) x, «>0.

- minimization of J by a conjugate gradient

22/30



Numerical issues

Discrete Carleman estimate

Baudouin-Ervedoza
A regularization term must be add to make the Carleman estimates uniform

with respect to the discretization parameter h.
T T )
Jg.n(2n) :/O /0 e>?|0pzy + qkzh|2dt+s/0 ¢t |97 24(¢,1) — p*|” dt

T 1
+ s/ / e*?|hdy Opzn|? dt.
0o JO

This term is needed due to spurious waves created by the discretization
process (Ervedoza-Zuazua).
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Numerical issues
Examples in 1D

p(x) = sin(27x)

without regularization with regularization
W/fw 10
B oot
o *‘thF»FV‘¥g¥###+ Loq

noise a = 0%

24/30



Numerical issues
Examples in 1D
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Numerical issues
Examples in 1D
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Numerical issues
Examples in 1D

p(x) = sin(l — 1/X)
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Numerical issues
Example in 2D

p in 2D-view p in 3D-view
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Numerical issues
Example in 2D

p in 2D-view p in 3D-view
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Conclusion
Drawbacks of the method

@ We have to derive in time the observation flux: 9:(0, w[p])

observation at x =1 time derivative

= we regularize the signal by convolutions with a gaussian.
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Conclusion
Drawbacks of the method

@ We have to derive in time the observation flux: 9:(0, w[p])

observation at x =1 time derivative

= we regularize the signal by convolutions with a gaussian.

@ For A =1 and s = 3, max(exp(2sy))/ min(exp(2sp)) = 10119 |
—> we tried to work with the conjugate variable Z = e*¥z,
= we are trying to change the weights (coming soon...hopefully).
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Conclusion

Prospects

@ Recovery of the wave propagation speed c(x)
2w —V - (c?>Vw) = g, in Qx(0,T),
w =0, on 902 x (0, T),
w(0) = wy, Ow(0)=wy, in Q.

Application to medical imaging or radar.

* k k
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Proofs

A global Carleman estimate for the wave equation

Theorem

Assume the geometric and time conditions. Define the weight
functions ¢ with 8 € (0,1) being such that

BT > sup|x — xo.
xeQ
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Proofs

A global Carleman estimate for the wave equation

Theorem

Assume the geometric and time conditions. Define the weight
functions ¢ with 8 € (0,1) being such that

BT > sup|x — xo.
xeQ

Then there exist a constant M > 0 such that for all s and \ large enough:
T . T .
5/ / e**? (|0:z|* + |Vz|?) dxdt + s / / e**?|z|? dxdt
J-1Ja J-TJa

T T
< M/ / e?*%|0z|? dxdt + Ms/ / €% |9,z dvdt,
Jo1Ja -7

for all z € L2((—T, T); H}(Q)) satisfying
Oz=022—-Azc 2(Qx (~T,T)) and 8,z € L2(0Q x (—T, T)).

30/30



Proofs
Sketch of the proof of the global Carleman estimate

@ Define, for s > 0, the conjugate variable w = e*¥x z, where x is an
cut-off function in time.
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Proofs

Sketch of the proof of the global Carleman estimate

@ Define, for s > 0, the conjugate variable w = e*¥x z, where x is an
cut-off function in time.

@ Introduce the conjugate operator:

Pw = e?[(e *?w) = &?w — Aw + s*((9:0)* — |Vp|*)w
— 5(02¢p — Ap)w + 5*((0ep)? — V|2 )w — 250, wdysp + 25V w - V.
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Sketch of the proof of the global Carleman estimate

@ Define, for s > 0, the conjugate variable w = e*¥x z, where x is an
cut-off function in time.

@ Introduce the conjugate operator:
Pw = e*?[(e **w) = 2w — Aw + s*((0rp)? — |Ve|?)w
— 5(02¢p — Ap)w + 5*((0ep)? — V|2 )w — 250, wdysp + 25V w - V.

T
@ Using integrations by part, develop the term / / |PW|2 dxdt.
-T7Ja
@ Show that the terms in |w|?, [Vw|? and |0;w|? can be bounded by
below when s is large enough.

@ Finally, come back to the initial variable z and absorb the residual
terms thanks to the weights s.
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Proofs

Proof of the estimate with pointwise term in time 0

@ Since z(0) =0 in Q, we can extend the function z by z(t) = z(—t)
for t € (—T,0) and apply the Carleman estimate to this extended
function z. Of course, since each term is odd or even, the integrals
on (—T, T) simply are twice the integrals on (0, T).
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@ Since z(0) =0 in Q, we can extend the function z by z(t) = z(—t)
for t € (—T,0) and apply the Carleman estimate to this extended
function z. Of course, since each term is odd or even, the integrals
on (—T, T) simply are twice the integrals on (0, T).

@ The Carleman estimate for the operator [J + p with p € L, (Q) is
a direct consequence noticing that in Q x (0, T),

02 < 2/0z + pzP + 2][plf gy |2 < 210z + pzl? + 2|22,

Then choosing s large enough, one can absorb the term

T
2Mm2/ /ezs“"|z|2 dxdt,
o Ja

by the left hand side.
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to do the following computations

0 0
/ / Pyw Oyw dxdt :/ /(8fw — Aw + s*w(|0:p)* — |V|?) 0w dxdt
-TJa -TJo

1 0
> 7/ |8tw(0)|2dx—M52/ /\w|2dxdt,
2 Jg _tJa

implying in particular, by Cauchy-Schwarz, that

T T
51/2/ |8tw(0)|2dx§/ /|P1W\2dxdt+s/ /\atwpdxdt
Q -TJQ -TJa

T
+ M55/2/ / |w|? dxdt.
—TJQ 30/30
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We can use the Carleman estimate on w and, bounding each term from
above and from below, we get:
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Proof of the estimate with pointwise term in time 0

We can use the Carleman estimate on w and, bounding each term from
above and from below, we get:

T T
51/2/ |8tw(0)|2dx+5/ /(|8tw\2+|VW|2)dxdt+s3/ /|W|2dxdt
Q -TJQ —-TJQ

T T T
+/ /|P1w|2dxdt < M/ /|Pw|2dxdt+l\/ls/ / |8, w|* dvydt.
-TJQ -TJQ -TJh

Coming back to the initial variable z, we obtain

51/2/ e>¢9)9,2(0)[2 dx

Q
T T
< /\/I/ / e**?|0z|? dxdt + l\/ls/ / e®% (0, z|* drdt.
-TJa -7Jr,

30/30



	Introduction
	The wave equation with potential
	The inverse problem
	Classical uniqueness and stability result
	Classical resolution method

	A Carleman estimate
	Carleman weight function for waves
	An estimate with pointwise term in time 0

	Our algorithm
	Iterative loop
	Convergence result
	Proof of the convergence result

	Numerical issues
	Discretization of the problem
	Discrete Carleman estimate
	Examples in 1D
	Example in 2D

	Conclusion
	Drawbacks of the method
	Prospects
	A global Carleman estimate for the wave equation
	Sketch of the proof of the global Carleman estimate
	Proof of the estimate with pointwise term in time 0




