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Introduction

Notations
Q smooth bounded domain of R3 and w open subset of Q.

T >0,

Q:=1[0,T] xQ,
Y =1[0,T] xQ,
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Introduction

Notations

Q smooth bounded domain of R3 and w open subset of Q.

T >0,
Q:=1[0,T] xQ,
Y :=1[0,T] xQ,

Vi={ye H; (Q)3|V.y = 0},
H:={ye L2(Q)3|V.y = 0,y.npn = 0}.

v € L2(Q) (control).
i-th component of f: f'.
j-th derivative of g: g; (j = 1,2,3,t).
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Introduction

The controlled Navier-Stokes system

ye—Ay+(y-V)y+Vp  =(0,0,vl,) in Q,
V.y =0in Q,

¥(0,°) =y%in Q,

y =0onX.s

(NS-1Cont)
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Introduction

The controlled Navier-Stokes system

ye — Ay +(y-V)y +Vp =(0,0,vl,) in Q,
vy —0in Q,

y(0,°) —y%inQ, (NS-1Cont)
y =0onX.s

We act only on the third equation (indirect control).
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Introduction

Non-exhaustive state of the art

» Local exact controllability of Navier-Stokes system and
linearized Navier-Stokes systems with a control on each
equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel 04,
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» Local exact controllability of Navier-Stokes system and
linearized Navier-Stokes systems with a control having a
vanishing component (with a geometric condition on the
control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel’06,

» Null-controllability of Stokes system with a control having a
vanishing component (without source term):
Coron-Guerrero'09,
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Introduction

Non-exhaustive state of the art

» Local exact controllability of Navier-Stokes system and
linearized Navier-Stokes systems with a control on each
equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel’ 04,

» Local exact controllability of Navier-Stokes system and
linearized Navier-Stokes systems with a control having a
vanishing component (with a geometric condition on the
control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel’06,

» Null-controllability of Stokes system with a control having a
vanishing component (without source term):
Coron-Guerrero'09,

» Null-controllability of Stokes system and local null
controllability of Navier-Stokes system with a control having a
vanishing component: Carreno-Guerrero’12.
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Introduction

Main theorem

Theorem

For every T > 0 and for every r > 0, there exists n > 0 such that,
for every y° € V verifying HyOHHl(Q)3 < 1, there exist a control

v € L?(Q) and a solution (y, p) of (NS-1Cont) such that

y(Tv) - 07
Ivlli2(qy < r,

¥ 122 (0,7, H2(2)3)nLo (0, T, HL(2)3) < T-
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The linearized system

Linearizing around 0

Stokes System:
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The linearized system

Linearizing around 0

Stokes System:

Yt _Ay—l_vp = (0707 Vlw) in Q7
V.y=0 in Q,
.y(07) =)0 in Qa
y=0 on [0, T] x 09.

(Stokes)
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The linearized system

Linearizing around 0

Stokes System:

Ye — Ay—l_vp = (070)‘/10.1) in Q7

V.y=0 in Q,
¥(0,-) = yo in Q, (Stokes)
y=0 on [0, T] x 0Q.

Exists geometries for which System (Stokes) is not even
approximatively controllable (Lions-Zuazua’96 and
Diaz-Fursikov'97).

= Return method
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The linearized system

Return method (J.M. Coron)
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The linearized system

Return method (J.M. Coron)

z(t)
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The particular trajectory

Construction of the particular trajectory (1)

Assume 0 € w.
ri= \/m C1 cylinder r < and |x3| < r1, and Ca cylinder
r<r/2and |x3] < /2 (rn small enough such that C;,Cr CC w).
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The particular trajectory

Construction of the particular trajectory (1)

Assume 0 € w.
ri= \/m C1 cylinder r < and |x3| < r1, and Ca cylinder
r<r/2and |x3] < /2 (rn small enough such that C;,Cr CC w).

t)b(rz)C/(X3)X1
t)b(r2)C,(X3)X2
(r?) + r?b'(r?))c(x3)

ga
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The particular trajectory

Construction of the particular trajectory (1)

Assume 0 € w.
ri= \/m C1 cylinder r < and |x3| < r1, and Ca cylinder
r<r/2and |x3] < /2 (rn small enough such that C;,Cr CC w).

ea(t)b(r?)c'(x3)x
y(t,x) = =a(t)b(r ?)c a)x
—2ea(t)(b(r?) + r2b(r?))c(xs)

y written in this general form is such that V.y = 0 and there exists
a pressure p and a control v such that

— Ay +(y-V)y+Vp=(0,0,v).
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The particular trajectory

Construction of the particular trajectory (2)

v > 0 numerical constant.

—v

Supp(a) C [T/4,T] and a(t) = e(™-v° in [T /2, T],
Supp(b) C (—o0, r?) and b(w) = w, Yw € (—oo, r? /4],
Supp(c) C (—r,n) and c(x3) = xZ in [—r1 /2,1 /2].
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The particular trajectory

Construction of the particular trajectory (2)

v > 0 numerical constant.

—v

Supp(a) C [T/4,T] and a(t) = e(™-v° in [T /2, T],
Supp(b) C (—o0, r?) and b(w) = w, Yw € (—oo, r? /4],
Supp(c) C (—r,n) and c(x3) = xZ in [—r1 /2,1 /2].

y simple form on Cy (polynomial in space).
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The particular trajectory

Figure representing the different open subsets introduced

(control domain)

B ¢; (support of 7)
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The particular trajectory

The linear control system

Vi=BDy + (VY + (- V)P 4 =0in Q,
Vi= AP+ VY +(y- V)PP +p  =0inQ,
B=AY¥+ G-V VP4 =i, in @,
V.y =0in Q,
y =0on X,
y(0,-) =y%in Q.

(NS-Lin-1Cont)
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The particular trajectory

The linear control system

Vi=BDy + (VY + (- V)P 4 =0in Q,
Vi= AP+ VY +(y- V)PP +p  =0inQ,
B=AY¥+ G-V VP4 =i, in @,
V.y =0in Q,
y =0on X,
y(0,-) =y%in Q.

(NS-Lin-1Cont)
Goal: prove a result of null-controllability for this system (with a
source term) in suitable weighted Sobolev spaces and application of
a local inverse mapping theorem to go back to the nonlinear system.
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The particular trajectory

The linear control system

yé—Ayl+(Y~V)y;+(y-V)Yl+p1
e =Dy + (- Vy +(y - V)i~ +p2
P =8y +(7-V)y  + (v V)y® + p3
V-y

y

y(07')

=0in Q,
=0in Q,
=vl, in Q,
=0in Q,
=0on X,
=y%in Q.
(NS-Lin-1Cont)

Goal: prove a result of null-controllability for this system (with a
source term) in suitable weighted Sobolev spaces and application of
a local inverse mapping theorem to go back to the nonlinear system.

We focus on the linearized problem.
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Some notations and general ideas

Differential operators

Ideas of this section: Gromov (partial differential relations, 1986).
To simplify, C*° setting. Qy open subset of R".

Definition

M C®(Qp)¥ — C®(Qo)* is called linear partial differential
operator of order m if, for all &« = (a1, v, ..., an) € N with

loo| == 1 + a1 + ... + ap < m, there exists

Aq € C®(Qo; L(RK; R?)) such that

(M)(&) = D Aa(§)0%@(€), V¢ € Qo, Vi € C(Qo)*.

|a|<m

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Some notations and general ideas

Algebraic solvability of differential systems
L:C®(Q)™ — C®(Q)%,B: C®(Qp)k — C®(Qo)* linear
partial differential operators. We consider equation

Ly = Bf, (Gen-Dif-Syst)

where the unknown is y.
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Some notations and general ideas

Algebraic solvability of differential systems
L2 C®(Q0)™ — C¥(Q0)*, B : C(Qo)* — C®(Qp)* linear

partial differential operators. We consider equation

Ly = Bf, (Gen-Dif-Syst)
where the unknown is y.
Definition
Equation (Gen-Dif-Syst) is algebraically solvable if there exists a
linear partial differential operator M : C*®(Qo)* — C>®(Qq)® such

that, for every f € C®°(Qo)*, Mf is a solution of (Gen-Dif-Syst),
i.e. such that

LoM=B. (LcompM=B)

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Some notations and general ideas

Formal adjoint

For every linear partial differential operator
M C®(Q)k — C®(Qo)!, M = > laj<m Aa0®, associate
(formal) adjoint

M* 2 C¥(Q) = C=(Qo)
defined by
M=y (~1)10%(Aw), Vi € C(Q)"

|a|l<m

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Algebraic resolution
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Some notations and general ideas

Formal adjoint

For every linear partial differential operator

M C®(Q)k — C®(Qo)!, M = > laj<m Aa0®, associate

(formal) adjoint
M C®(Qo) — C(Qo)*

defined by

M= (—1)lMo%(AYY), Vi € C(Qo)'-

|a|l<m

M** = M and, if M : C®(Q)F = C®(Qp)’ and
N C®(Qp)" — C>®(Qp)™ are two linear partial differential
operators, then (N o M)* = M* o N'*.
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Algebraic resolution
ooe

Some notations and general ideas

Formal adjoint

For every linear partial differential operator

M C®(Q)k — C®(Qo)!, M = > laj<m Aa0®, associate

(formal) adjoint
M* 2 C®(Qo)! = C(Qo)*

defined by

M= (—1)lMo%(AYY), Vi € C(Qo)'-

|a|l<m

M** = M and, if M : C®(Q)F = C®(Qp)’ and

N C®(Qo)" — C>(Qp)™ are two linear partial differential

operators, then (N o M)* = M* o N'*.

Hence, (LcompM=B) is equivalent to

M* o LF =B

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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A simple example

A simple case (1)

f e CGg°(R). find xq,x2 in Cg°(R) verifying

/ " / "
aixy — axxi1 + asxy + bixo — boxo' + b3xo" = f.
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Algebraic resolution
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A simple example

A simple case (1)

f e CGg°(R). find xq,x2 in Cg°(R) verifying
aixy — 32X1/ + 83X{/ + b1xo — b2X2/ + b3X2// =f.
Under the form L(xi, x2) = Bf with B = ld¢ceo(gr) and

L= (a1 — a0 + a0 b1 — bo0O; + b38tt) .

Pierre Lissy Laboratoire Jacques- is Lions, Université Pierre et Marie Curie
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Algebraic resolution
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A simple example

A simple case (1)

f e CGg°(R). find xq,x2 in Cg°(R) verifying
aix1 — axx1’ + a3xy + bixo — baxo' + b3xo” = f.
Under the form L(xi, x2) = Bf with B = ld¢ceo(gr) and
L= (a1 — a0 + a0 b1 — bo0O; + bgatt) .

Find M such that £Lo M = Id < find N such that AV o L* = Id.
This implies necessarily that L*x =0= No L*x = x = 0.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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A simple example

A simple case (2)

We compute

bl + bzat + b38tt

Let us solve L*x = 0. (System now analytically overdetermined).

[ — <31 + a0 + a3att> ‘

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Algebraic resolution

[e] lele]e}

A simple example
A simple case (2)
We compute

bl + bzat + b38tt

Let us solve L*x = 0. (System now analytically overdetermined).
We have to solve

[ — <31 + ax0: + a3att> ‘

arx + agx/ + a3x” =0
bix + ng’ + b3X” =0

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Algebraic resolution
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A simple example

A simple case (2)

We compute
rx— (o + a20¢ + 3304
bl + bzat + b38tt ’

Let us solve L*x = 0. (System now analytically overdetermined).
We have to solve

arx + agx/ + a3x” =0
bix + ng’ + b3X” =0

We differentiate.

Pierre Lissy Laboratoire Jacques- is Lions, Université Pierre et Marie Curie
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Algebraic resolution

[e] lele]e}

A simple example

A simple case (2)

We compute
rx— (o + a20¢ + 3304
bl + bzat + b38tt ’

Let us solve L*x = 0. (System now analytically overdetermined).
We have to solve

arx + agx/ + a3x” =0
bix + ng’ + b3X” =0

We differentiate.

{ a1x' + axx" +a3x” =0

Pierre Lissy Laboratoire Jacques- is Lions, Université Pierre et Marie Curie
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Algebraic resolution
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A simple example

A simple case (2)

We compute

rx— (o + a20¢ + 3304
bl + bzat + b38tt ’

Let us solve L*x = 0. (System now analytically overdetermined).
We have to solve

arx + agx/ + a3x” =0
bix + ng’ + b3X” =0
We differentiate.

a1x' + axx" +a3x” =0
blxl + b2X” + b3X/” =0

Pierre Lissy Laboratoire Jacques-

is Lions, Université Pierre et Marie Curie
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A simple example

A simple case (3)

If we see this equations as a purely algebraic equation, we obtain a
system with 4 equations and 4 “unknowns” (at the beginning : 2
equations and 3 “unknowns”), that we write under the form
C(x,x",x",x"") = 0 with

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3 ith a scalar control



Algebraic resolution

[e]e] le]e}

A simple example

A simple case (3)

If we see this equations as a purely algebraic equation, we obtain a
system with 4 equations and 4 “unknowns” (at the beginning : 2
equations and 3 “unknowns”), that we write under the form
C(x,x",x",x"") = 0 with

dp d2 as 0

C— by by b3 O
0 dy d2 a3
0 by by b3

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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A simple example

A simple case (4)

We see that under some conditions on the coefficients, necessarily
x = 0. Moreover, one can see C~% (which acts on x,x’, x", x"") as
a linear partial differential operator A/ acting only on x.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Algebraic resolution
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A simple example

A simple case (4)

We see that under some conditions on the coefficients, necessarily
x = 0. Moreover, one can see C~% (which acts on x,x’, x", x"") as
a linear partial differential operator A/ acting only on x.

Equality C™1C = Idga can be written in differential form
N o L*x = x so that M = N* gives Lo M = Id.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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A simple example

Generalization
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Algebraic resolution
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A simple example

Generalization

» Ly = Bf underdetermined = adjoint overdetermined.
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Algebraic resolution

[e]e]ele] }

A simple example

Generalization

» Ly = Bf underdetermined = adjoint overdetermined.

» We consider £*z = B*g overdetermined. Differentiation of the
equations: £*z = 0 that we differentiate to obtain the same
number of equations as “unknowns”. We deduce by inverting
the system that B*z = 0 and moreover we obtain the operator
M* we want.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Algebraic resolution

[e]e]ele] }

A simple example

Generalization

» Ly = Bf underdetermined = adjoint overdetermined.

» We consider £*z = B*g overdetermined. Differentiation of the
equations: £*z = 0 that we differentiate to obtain the same
number of equations as “unknowns”. We deduce by inverting
the system that B*z = 0 and moreover we obtain the operator
M* we want.

» Ly = Bf underdetermined = generically algebraically
solvable. Moreover supports of functions conserved.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Application to Navier-Stokes
[ JeJele]

Algebraic solvability and its link with controllability

Solving a differential system (1)

We apply what we did on our problem. To simplify everything is
C* and no source term.

We call Qo := (T/2, T) X wp with wg open subset of Cs.

B = (B!, B2, %) linear partial differential operator.
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Application to Navier-Stokes
[ JeJele]

Algebraic solvability and its link with controllability

Solving a differential system (1)
We apply what we did on our problem. To simplify everything is
C* and no source term.
We call Qo := (T/2, T) X wp with wg open subset of Cs.
B = (B!, B2, %) linear partial differential operator.

Ve =By + (- Vy + (v V) +p =Buin Q,

Vi =AY+ (- V)Y + (v - V)7 + p2 — By in Q,

=AY+ G-V + (VP +p vl =BuinQ,

V.y =0in Q,

y =0on X,
\y(O,) :yoinga

(NS-lin-Bcont)
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Application to Navier-Stokes
[ JeJele]

Algebraic solvability and its link with controllability

Solving a differential system (1)
We apply what we did on our problem. To simplify everything is
C* and no source term.
We call Qo := (T/2, T) X wp with wg open subset of Cs.
B = (B!, B2, %) linear partial differential operator.

Ve =By + (- Vy + (v V) +p =Buin Q,

Vi =AY+ (- V)Y + (v - V)7 + p2 — By in Q,

=AY+ G-V + (VP +p vl =BuinQ,

V.y =0in Q,

y =0on X,
\y(O,) :yoinga

(NS-lin-Bcont)
Unknowns: y, p,v. Datum: v € COO(Q)k, with support in Q.
Under the form L(y, p,v) = (Bu,0). Underdetermined system.
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Application to Navier-Stokes
0@00

Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (1)

Crucial Proposition:
Proposition
Assume:
» System (NS-lin-Bcont) is algebraically solvable

» We can control the linearized Navier-Stokes system with a
control (having 3 components) being in the image of 3.
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Application to Navier-Stokes
0@00

Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (1)

Crucial Proposition:
Proposition
Assume:
» System (NS-lin-Bcont) is algebraically solvable

» We can control the linearized Navier-Stokes system with a
control (having 3 components) being in the image of 3.

Then we can control with one component (i.e. we can control
(NS-Lin-1Cont).)

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Application to Navier-Stokes
[e]e] o]

Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (2)

Proof:

1. We control with 3 components in the image of B, with u
supported in Qqo, i.e. we can find (¥, p, u) verifying

- AT+ (7 V4 (G- VIF+p  =BiinQ,
V-y =0in Q,
y =0onX,
¥(0,°) =y%in Q,
y(T,.) =0in Q.

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Application to Navier-Stokes
[e]e] o]

Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (2)
Proof:

1. We control with 3 components in the image of B, with u
supported in Qqo, i.e. we can find (¥, p, u) verifying

- AT+ (7 V4 (G- VIF+p  =BiinQ,
V-y =0in Q,
y =0onX,
¥(0,°) =y%in Q,
y(T,.) =0in Q.

2. Algebraic resolution: there exists (¥, p, &r) solution on @ of
L(y,p,0) =Bu. y,p, b vanishing at times t =0 and t =T
(support still included in Qp ).

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Application to Navier-Stokes
[e]e]e] )

Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (3)
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Application to Navier-Stokes
[e]e]e] )

Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (3)

3. Weset (y,p) =(y —¥,p — B). Then (y, p) verifies
L(y,p,v) = 0 with initial condition y° and final condition 0,

which is what we wanted.
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Application to Navier-Stokes
[e]e]e] )

Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (3)

3. Weset (y,p) =(y —¥,p — B). Then (y, p) verifies
L(y, p,v) = 0 with initial condition y° and final condition 0,

which is what we wanted.

What we have to do:
» Find B such that one can solve algebraically (NS-lin-Bcont).

» Find controls in the image of 3, regular enough such that it
has a sense to apply operator M.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Application to Navier-Stokes

000

How to find M

Choice of B and reformulation of the problem

B = Id does not work. In fact B partial differential operator of
order 1:

fl+f+f
B(f17f27f3’f4,f5’f6,f7) — 7(14-1-7(25"1'7(36
f?
We can see that we are led to consider system £*(z,q) =0 on Q

with moreover z3 = 0 on Qg. We have to prove (by the previous
method)
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Application to Navier-Stokes

000

How to find M

Choice of B and reformulation of the problem

B = Id does not work. In fact B partial differential operator of
order 1:

fl+f+f
B(f17f27f3’f4,f5’f6,f7) — 7(14-1-7(25"1'7(36
f?

We can see that we are led to consider system £*(z,q) =0 on Q
with moreover z3 = 0 on Qg. We have to prove (by the previous
method)

211 :z22:z332212:zz2:z32:0.
To have more equations than unknowns, one needs to differentiate
at least 19 times the equations: this brings to 30360 equations and
29900 unknowns, so it cannot be done by hand!
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Application to Navier-Stokes

(o] le]

How to find M

Using the computer (1)

Different steps:

» Differentiate the PDE (C*™) and applying at a particular
point. We stock the result under the form of a sparse matrix A.
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Application to Navier-Stokes

(o] le]

How to find M

Using the computer (1)

Different steps:

» Differentiate the PDE (C*™) and applying at a particular
point. We stock the result under the form of a sparse matrix A.

» See if matrix A is invertible or not. unfortunately not the case.
= find some suitable submatrix of A which is invertible, i.e. of
maximal rank.
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Application to Navier-Stokes

(o] le]

How to find M

Using the computer (1)

Different steps:

» Differentiate the PDE (C*™) and applying at a particular
point. We stock the result under the form of a sparse matrix A.

» See if matrix A is invertible or not. unfortunately not the case.
= find some suitable submatrix of A which is invertible, i.e. of
maximal rank.

» Rank: a lot of time to compute on a computer. We use
instead the notion of structural rank, which only depend on
the coefficients of the matrix that are equal to 0 or not and is
fast to compute. Moreover, there exists an algorithm
(Dulmage-Mendelsohn decomposition) that rearrange the
matrix in a nice way.
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Application to Navier-Stokes

oe] )

How to find M

Using the computer (2)

» Find then a submatrix of A (called P) containing the
unknowns we want (i.e. z{,z3,z3, z%, 22, z2) and being of
maximal structural rank, and then verify that it is of full rank.
P of size 7321 x 7321!
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Application to Navier-Stokes

oe] )

How to find M

Using the computer (2)

» Find then a submatrix of A (called P) containing the
unknowns we want (i.e. z{,z3,z3, z%, 22, z2) and being of
maximal structural rank, and then verify that it is of full rank.
P of size 7321 x 7321!

» Use a genericity argument to see that P is invertible

everywhere in Qp and deduce a differential operator M such
that £ o M = B by inverting P.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Application to Navier-Stokes

0

Regular controls of a particular form

Controlling in the image of B (1)

We use a suitable Carleman inequality coming from Gueye'12.

Lemma
Let w* an open subset of Q). For K1,v large enough, for € small

enough, for every g € L?((0, T) x Q)3 and for every solution z of
the adjoint of the linearized Navier-Stokes system

—z—Az—(y-V)z—(z-V)y+Vrn=g in Q,

V‘ZZO in Q7
z=0 on [0, T] x 02,
one has
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Application to Navier-Stokes

(o] J

Regular controls of a particular form

_ K1 _
|’62’(T_t)5ZH%2((T/2,T),H1(Q)3) + HZ(T/2, -)H%2(Q)3

K1

K __K
<C / le T-9°|VAz? +/ e (T-05 |g|?
(T/2,T)xQ (T/2,T)xQ

This Carleman inequality gives controls under the form

V A((V A u)ly), sum of derivatives, so in image of B. From this
inequality, one can create as regular controls as we want so that we
can apply operator M.
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Application to Navier-Stokes

(o] J

Regular controls of a particular form

_ K1 _
|’62’(T_t)5ZH%2((T/2,T),H1(Q)3) + HZ(T/2, -)H%2(Q)3

K1

K __K
<C / le T-9°|VAz? +/ e (T-05 |g|?
(T/2,T)xQ (T/2,T)xQ

This Carleman inequality gives controls under the form

V A((V A u)ly), sum of derivatives, so in image of B. From this
inequality, one can create as regular controls as we want so that we
can apply operator M. Control v will be such that

(VAu)el?((T/2,T), H3(Q) N HT((T/2, T), H Q).
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Application to Navier-Stokes

(o] J

Regular controls of a particular form

_ K1 _
|’62’(T_t)5ZH%2((T/2,T),H1(Q)3) + HZ(T/2, -)H%2(Q)3

K1

K __K
<C / le T-9°|VAz? +/ e (T-05 |g|?
(T/2,T)xQ (T/2,T)xQ

This Carleman inequality gives controls under the form

V A((V A u)ly), sum of derivatives, so in image of B. From this
inequality, one can create as regular controls as we want so that we
can apply operator M. Control v will be such that

(VAu)el?((T/2,T), H3(Q) N HT((T/2, T), H Q).
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Perspectives

Perspectives

» Global controllability around 0,

Laboratoire Jacques.
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Perspectives

Perspectives

» Global controllability around 0,

» Local, global controllability along any trajectory,
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Perspectives

Perspectives

» Global controllability around 0,
» Local, global controllability along any trajectory,

» Other coupled systems, for example hyperbolic systems
(non-linear systems of wave equations).

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Perspectives

Reference

Local null controllability of the three-dimensional Navier-Stokes
system with a distributed control having two vanishing components,
Jean-Michel Coron and Pierre Lissy, submitted.
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Perspectives

Reference

Local null controllability of the three-dimensional Navier-Stokes
system with a distributed control having two vanishing components,
Jean-Michel Coron and Pierre Lissy, submitted.

Thank you for your attention!
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