Outline	Presentation	Algebraic resolution	Application to Navier-Stokes	Perspect
	00	00000	000	
	0000		00	

Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components joint work with Jean-Michel Coron

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Partial differential equations, optimal design and numerics, Benasque August 29, 2013

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives

Outline

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas

A simple example

Application to the controllability of Navier-Stokes equations Algebraic solvability and its link with controllability

How to find \mathcal{M}

Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation ●000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

Presentation of the problem

Introduction

The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas A simple example

Application to the controllability of Navier-Stokes equations

Algebraic solvability and its link with controllability How to find \mathcal{M} Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation ●000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

Notations

 Ω smooth bounded domain of \mathbb{R}^3 and ω open subset of Ω .

$$\begin{split} \mathcal{T} &> 0, \\ \mathcal{Q} := [0, \, \mathcal{T}] \times \Omega, \\ \boldsymbol{\Sigma} := [0, \, \mathcal{T}] \times \Omega, \end{split}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation ●000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

Notations

 Ω smooth bounded domain of \mathbb{R}^3 and ω open subset of Ω .

$$\begin{split} \mathcal{T} &> 0, \\ Q := [0, \, \mathcal{T}] \times \Omega, \\ \Sigma := [0, \, \mathcal{T}] \times \Omega, \end{split}$$

$$\begin{split} V &:= \left\{ y \in H^1_0(\Omega)^3 | \nabla . y = 0 \right\}, \\ H &:= \left\{ y \in L^2(\Omega)^3 | \nabla . y = 0, y . n_{|\partial \Omega} = 0 \right\}. \end{split}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation ●000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

Notations

 Ω smooth bounded domain of \mathbb{R}^3 and ω open subset of Ω .

 $egin{aligned} &\mathcal{T}>0, \ &\mathcal{Q}:=\left[0,\,\mathcal{T}
ight] imes\Omega, \ &\Sigma:=\left[0,\,\mathcal{T}
ight] imes\Omega, \end{aligned}$

$$V := \left\{ y \in H_0^1(\Omega)^3 | \nabla . y = 0 \right\},$$
$$H := \left\{ y \in L^2(\Omega)^3 | \nabla . y = 0, y . n_{|\partial\Omega} = 0 \right\}.$$

 $v \in L^2(\Omega)$ (control). i-th component of $f: f^i$. j-th derivative of $g: g_j$ (j = 1, 2, 3, t).

Outline	Presentation 0●00 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspective
Introduction				

The controlled Navier-Stokes system

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p &= (0, 0, v \mathbf{1}_{\omega}) \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ in } Q, \\ y(0, \cdot) &= y^0 \text{ in } \Omega, \\ y &\equiv 0 \text{ on } \Sigma.s \end{cases}$$
(NS-1Cont)

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0●00 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

The controlled Navier-Stokes system

$$\begin{cases} y_t - \Delta y + (y \cdot \nabla)y + \nabla p &= (0, 0, v \mathbf{1}_{\omega}) \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ in } Q, \\ y(0, \cdot) &= y^0 \text{ in } \Omega, \\ y &\equiv 0 \text{ on } \Sigma.s \end{cases}$$
(NS-1Cont)

We act only on the third equation (indirect control).

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 00●0 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

 Local exact controllability of Navier-Stokes system and linearized Navier-Stokes systems with a control on each equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,

Outline	Presentation 00●0 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

- Local exact controllability of Navier-Stokes system and linearized Navier-Stokes systems with a control on each equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,
- Local exact controllability of Navier-Stokes system and linearized Navier-Stokes systems with a control having a vanishing component (with a geometric condition on the control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel'06,

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

- Local exact controllability of Navier-Stokes system and linearized Navier-Stokes systems with a control on each equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,
- Local exact controllability of Navier-Stokes system and linearized Navier-Stokes systems with a control having a vanishing component (with a geometric condition on the control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel'06,
- Null-controllability of Stokes system with a control having a vanishing component (without source term): Coron-Guerrero'09,

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

- Local exact controllability of Navier-Stokes system and linearized Navier-Stokes systems with a control on each equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,
- Local exact controllability of Navier-Stokes system and linearized Navier-Stokes systems with a control having a vanishing component (with a geometric condition on the control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel'06,
- Null-controllability of Stokes system with a control having a vanishing component (without source term): Coron-Guerrero'09,
- Null-controllability of Stokes system and local null controllability of Navier-Stokes system with a control having a vanishing component: Carreno-Guerrero'12.

Outline	Presentation 000● 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Introduction				

Main theorem

Theorem

For every T > 0 and for every r > 0, there exists $\eta > 0$ such that, for every $y^0 \in V$ verifying $||y^0||_{H^1(\Omega)^3} \leq \eta$, there exist a control $v \in L^2(Q)$ and a solution (y, p) of (NS-1Cont) such that

$$\begin{aligned} y(T, \cdot) &= 0, \\ ||v||_{L^2(Q)^3} \leqslant r, \\ ||y||_{L^2((0,T), H^2(\Omega)^3) \cap L^\infty((0,T), H^1(\Omega)^3)} \leqslant r. \end{aligned}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation ○○○○ ●○ ○○○○	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The lineariz	ed system			

Presentation of the problem

Introduction The linearized system

Algebraic resolution of differential systems

Some notations and general ideas A simple example

Application to the controllability of Navier-Stokes equations

Algebraic solvability and its link with controllability How to find \mathcal{M} Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 ●0 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The lineariz	ed svstem			

Linearizing around 0

Stokes System:

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Out∣ine	Presentation 0000 ●0 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The lineariz	ed system			

Linearizing around 0

Stokes System:

$$\begin{cases} y_t - \Delta y + \nabla p = (0, 0, v \mathbf{1}_{\omega}) & \text{ in } Q, \\ \nabla \cdot y = 0 & \text{ in } Q, \\ y(0, \cdot) = y_0 & \text{ in } \Omega, \\ y \equiv 0 & \text{ on } [0, T] \times \partial \Omega. \end{cases}$$
 (Stokes)

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation ○○○○ ○○ ○○○○	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The lineariz	ed system			

Linearizing around 0

Stokes System:

$$\begin{cases} y_t - \Delta y + \nabla p = (0, 0, v \mathbf{1}_{\omega}) & \text{ in } Q, \\ \nabla \cdot y = 0 & \text{ in } Q, \\ y(0, \cdot) = y_0 & \text{ in } \Omega, \\ y \equiv 0 & \text{ on } [0, T] \times \partial \Omega. \end{cases}$$
 (Stokes)

Exists geometries for which System (Stokes) is not even approximatively controllable (Lions-Zuazua'96 and Diaz-Fursikov'97). ⇒ Return method

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 0● 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The Recenter				

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 0● 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The Recenter	al acceleration			

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 0● 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The Baseday	d and an			

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 0● 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The Baseday	d and an			

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 ●000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particu	ar trajectory			

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas A simple example

Application to the controllability of Navier-Stokes equations

Algebraic solvability and its link with controllability How to find \mathcal{M} Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 ●000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particul	ar traiectory			

Construction of the particular trajectory (1)

Assume $0 \in \omega$. $r := \sqrt{x_1^2 + x_2^2}$. C_1 cylinder $r \leq r_1$ and $|x_3| \leq r_1$, and C_2 cylinder $r \leq r_1/2$ and $|x_3| \leq r_1/2$ (r_1 small enough such that $C_1, C_2 \subset \subset \omega$).

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 ●000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particul	ar trajectory			

Construction of the particular trajectory (1)

Assume $0 \in \omega$. $r := \sqrt{x_1^2 + x_2^2}$. C_1 cylinder $r \leq r_1$ and $|x_3| \leq r_1$, and C_2 cylinder $r \leq r_1/2$ and $|x_3| \leq r_1/2$ (r_1 small enough such that $C_1, C_2 \subset \subset \omega$).

$$\bar{y}(t,x) := \begin{pmatrix} \varepsilon a(t)b(r^2)c'(x_3)x_1\\ \varepsilon a(t)b(r^2)c'(x_3)x_2\\ -2\varepsilon a(t)(b(r^2) + r^2b'(r^2))c(x_3) \end{pmatrix}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 ●000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particul	ar traiectory			

Construction of the particular trajectory (1)

Assume $0 \in \omega$. $r := \sqrt{x_1^2 + x_2^2}$. C_1 cylinder $r \leq r_1$ and $|x_3| \leq r_1$, and C_2 cylinder $r \leq r_1/2$ and $|x_3| \leq r_1/2$ (r_1 small enough such that $C_1, C_2 \subset \subset \omega$).

$$\bar{y}(t,x) := \begin{pmatrix} \varepsilon a(t)b(r^2)c'(x_3)x_1\\ \varepsilon a(t)b(r^2)c'(x_3)x_2\\ -2\varepsilon a(t)(b(r^2) + r^2b'(r^2))c(x_3) \end{pmatrix}$$

 \bar{y} written in this general form is such that $\nabla.\bar{y} = 0$ and there exists a pressure \bar{p} and a control \bar{v} such that

$$ar{y}_t - \Delta ar{y} + (ar{y} \cdot
abla) ar{y} +
abla ar{p} = (0, 0, ar{v}).$$

Pierre Lissy

Outline	Presentation 0000 00 0●00	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particu	ar traiectory			

Construction of the particular trajectory (2)

 $\nu > 0$ numerical constant.

Supp(a)
$$\subset [T/4, T]$$
 and $a(t) = e^{\frac{-\nu}{(\tau-t)^5}}$ in $[T/2, T]$,
Supp(b) $\subset (-\infty, r_1^2)$ and $b(w) = w$, $\forall w \in (-\infty, r_1^2/4]$,
Supp(c) $\subset (-r_1, r_1)$ and $c(x_3) = x_3^2$ in $[-r_1/2, r_1/2]$.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0●00	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particu	ar traiectory			

Construction of the particular trajectory (2)

 $\nu > 0$ numerical constant.

Supp(a)
$$\subset [T/4, T]$$
 and $a(t) = e^{\frac{-\nu}{(T-t)^5}}$ in $[T/2, T]$,
Supp(b) $\subset (-\infty, r_1^2)$ and $b(w) = w$, $\forall w \in (-\infty, r_1^2/4]$,
Supp(c) $\subset (-r_1, r_1)$ and $c(x_3) = x_3^2$ in $[-r_1/2, r_1/2]$.

 \bar{y} simple form on C_2 (polynomial in space).

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 00●0	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particu	lar traiectory			

Figure representing the different open subsets introduced

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 000●	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particu	ar traiectory			

The linear control system

$$\begin{cases} y_t^1 - \Delta y^1 + (\bar{y} \cdot \nabla) y^1 + (y \cdot \nabla) \bar{y}^1 + p_1 &= 0 \text{ in } Q, \\ y_t^2 - \Delta y^2 + (\bar{y} \cdot \nabla) y^2 + (y \cdot \nabla) \bar{y}^2 + p_2 &= 0 \text{ in } Q, \\ y_t^3 - \Delta y^3 + (\bar{y} \cdot \nabla) y^3 + (y \cdot \nabla) \bar{y}^3 + p_3 &= v \mathbf{1}_{\omega} \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ on } \Sigma, \\ y(0, \cdot) &= y^0 \text{ in } \Omega. \\ (\text{NS-Lin-1Cont}) \end{cases}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 000●	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particul	ar trajectory			

The linear control system

$$\begin{cases} y_t^1 - \Delta y^1 + (\bar{y} \cdot \nabla) y^1 + (y \cdot \nabla) \bar{y}^1 + p_1 &= 0 \text{ in } Q, \\ y_t^2 - \Delta y^2 + (\bar{y} \cdot \nabla) y^2 + (y \cdot \nabla) \bar{y}^2 + p_2 &= 0 \text{ in } Q, \\ y_t^3 - \Delta y^3 + (\bar{y} \cdot \nabla) y^3 + (y \cdot \nabla) \bar{y}^3 + p_3 &= v \mathbf{1}_{\omega} \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ on } \Sigma, \\ y &= y^0 \text{ in } \Omega. \\ y(0, \cdot) &= y^0 \text{ in } \Omega. \end{cases}$$

Goal: prove a result of null-controllability for this system (with a source term) in suitable weighted Sobolev spaces and application of a local inverse mapping theorem to go back to the nonlinear system.

Pierre Lissy

Outline	Presentation 0000 00 000●	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
The particu	ar traiectory			

The linear control system

$$\begin{cases} y_t^1 - \Delta y^1 + (\bar{y} \cdot \nabla) y^1 + (y \cdot \nabla) \bar{y}^1 + p_1 &= 0 \text{ in } Q, \\ y_t^2 - \Delta y^2 + (\bar{y} \cdot \nabla) y^2 + (y \cdot \nabla) \bar{y}^2 + p_2 &= 0 \text{ in } Q, \\ y_t^3 - \Delta y^3 + (\bar{y} \cdot \nabla) y^3 + (y \cdot \nabla) \bar{y}^3 + p_3 &= v \mathbf{1}_{\omega} \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ on } \Sigma, \\ y &= y^0 \text{ in } \Omega. \\ y(0, \cdot) &= y^0 \text{ in } \Omega. \end{cases}$$

Goal: prove a result of null-controllability for this system (with a source term) in suitable weighted Sobolev spaces and application of a local inverse mapping theorem to go back to the nonlinear system. We focus on the linearized problem.

Outline	Presentation 0000 00 0000	Algebraic resolution ●00 ○0000	Application to Navier-Stokes 0000 000 00	Perspectives
Some notati	ons and general ideas			

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas

A simple example

Application to the controllability of Navier-Stokes equations

Algebraic solvability and its link with controllability How to find \mathcal{M} Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Differential operators

Ideas of this section: Gromov (partial differential relations, 1986). To simplify, C^{∞} setting. Q_0 open subset of \mathbb{R}^n .

Definition

 $\mathcal{M}: C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^s \text{ is called linear partial differential} \\ operator of order m if, for all <math>\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}^n \text{ with} \\ |\alpha| := \alpha_1 + \alpha_1 + \dots + \alpha_n \leq m, \text{ there exists} \\ A_{\alpha} \in C^{\infty}(Q_0; \mathcal{L}(\mathbb{R}^k; \mathbb{R}^s)) \text{ such that}$

$$(\mathcal{M} arphi)(\xi) = \sum_{|lpha|\leqslant m} A_lpha(\xi) \partial^lpha arphi(\xi), \, orall \xi \in \mathit{Q}_0, \, orall arphi \in \mathit{C}^\infty(\mathit{Q}_0)^k.$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 0●0 00000	Application to Navier-Stokes 0000 000 00	Perspectives
Some notati	one and general ideas			

Algebraic solvability of differential systems

 $\mathcal{L}: C^{\infty}(Q_0)^m \to C^{\infty}(Q_0)^s, \mathcal{B}: C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^s$ linear partial differential operators. We consider equation

$$\mathcal{L}y = \mathcal{B}f,$$
 (Gen-Dif-Syst)

where the unknown is y.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ⊙●⊙ ○○○○○	Application to Navier-Stokes 0000 000 00	Perspectives
Sama natati	and and general ideas			

Algebraic solvability of differential systems

 $\mathcal{L}: C^{\infty}(Q_0)^m \to C^{\infty}(Q_0)^s, \mathcal{B}: C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^s$ linear partial differential operators. We consider equation

$$\mathcal{L}y = \mathcal{B}f,$$
 (Gen-Dif-Syst)

where the unknown is y.

Definition

Equation (Gen-Dif-Syst) is algebraically solvable if there exists a linear partial differential operator $\mathcal{M} : C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^5$ such that, for every $f \in C^{\infty}(Q_0)^k$, $\mathcal{M}f$ is a solution of (Gen-Dif-Syst), i.e. such that

$$\mathcal{L} \circ \mathcal{M} = \mathcal{B}.$$
 (LcompM=B)

Pierre Lissy

Formal adjoint

For every linear partial differential operator $\mathcal{M}: C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^l, \ \mathcal{M} = \sum_{|\alpha| \leqslant m} A_{\alpha} \partial^{\alpha}$, associate (formal) adjoint

$$\mathcal{M}^*: C^\infty(\mathcal{Q}_0)' o C^\infty(\mathcal{Q}_0)^k$$

defined by

$$\mathcal{M}^*\psi:=\sum_{|lpha|\leqslant m}(-1)^{|lpha|}\partial^lpha(\mathcal{A}^{\mathsf{tr}}_lpha\psi),\,orall\psi\in \mathcal{C}^\infty(\mathcal{Q}_0)^I.$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Formal adjoint

For every linear partial differential operator $\mathcal{M}: C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^l, \ \mathcal{M} = \sum_{|\alpha| \leqslant m} A_{\alpha} \partial^{\alpha}$, associate (formal) adjoint

$$\mathcal{M}^*: C^\infty(Q_0)' \to C^\infty(Q_0)^k$$

defined by

$$\mathcal{M}^*\psi:=\sum_{|lpha|\leqslant m}(-1)^{|lpha|}\partial^lpha(\mathcal{A}^{\mathsf{tr}}_lpha\psi),\,orall\psi\in C^\infty(Q_0)'.$$

 $\mathcal{M}^{**} = \mathcal{M}$ and, if $\mathcal{M} : C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^l$ and $\mathcal{N} : C^{\infty}(Q_0)^l \to C^{\infty}(Q_0)^m$ are two linear partial differential operators, then $(\mathcal{N} \circ \mathcal{M})^* = \mathcal{M}^* \circ \mathcal{N}^*$.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Formal adjoint

For every linear partial differential operator $\mathcal{M}: C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^l, \ \mathcal{M} = \sum_{|\alpha| \leqslant m} A_{\alpha} \partial^{\alpha}$, associate (formal) adjoint

$$\mathcal{M}^*: C^\infty(Q_0)' \to C^\infty(Q_0)^k$$

defined by

$$\mathcal{M}^*\psi:=\sum_{|lpha|\leqslant m}(-1)^{|lpha|}\partial^lpha(\mathcal{A}^{\mathsf{tr}}_lpha\psi),\,orall\psi\in \mathcal{C}^\infty(\mathcal{Q}_{\mathsf{0}})'.$$

 $\mathcal{M}^{**} = \mathcal{M}$ and, if $\mathcal{M} : C^{\infty}(Q_0)^k \to C^{\infty}(Q_0)^l$ and $\mathcal{N} : C^{\infty}(Q_0)^l \to C^{\infty}(Q_0)^m$ are two linear partial differential operators, then $(\mathcal{N} \circ \mathcal{M})^* = \mathcal{M}^* \circ \mathcal{N}^*$. Hence, (LcompM=B) is equivalent to

$$\mathcal{M}^* \circ \mathcal{L}^* = \mathcal{B}^*.$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ●○○○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ex	ample			

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas

A simple example

Application to the controllability of Navier-Stokes equations

Algebraic solvability and its link with controllability How to find \mathcal{M} Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ●○○○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	mple			

$$f \in C_0^{\infty}(\mathbb{R})$$
. find x_1, x_2 in $C_0^{\infty}(\mathbb{R})$ verifying
 $a_1x_1 - a_2x_1' + a_3x_1'' + b_1x_2 - b_2x_2' + b_3x_2'' = f$.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ●○○○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	mple			

$$f \in C_0^{\infty}(\mathbb{R})$$
. find x_1, x_2 in $C_0^{\infty}(\mathbb{R})$ verifying
 $a_1x_1 - a_2x_1' + a_3x_1'' + b_1x_2 - b_2x_2' + b_3x_2'' = f$.
Under the form $\mathcal{L}(x_1, x_2) = \mathcal{B}f$ with $\mathcal{B} = Id_{C^{\infty}(\mathbb{R})}$ and

$$\mathcal{L} = \begin{pmatrix} a_1 - a_2 \partial_t + a_3 \partial_{tt} & b_1 - b_2 \partial_t + b_3 \partial_{tt} \end{pmatrix}.$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ●○○○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ex	ample			

$$f \in C_0^{\infty}(\mathbb{R})$$
. find x_1, x_2 in $C_0^{\infty}(\mathbb{R})$ verifying
 $a_1x_1 - a_2x_1' + a_3x_1'' + b_1x_2 - b_2x_2' + b_3x_2'' = f$.
Under the form $\mathcal{L}(x_1, x_2) = \mathcal{B}f$ with $\mathcal{B} = Id_{C^{\infty}(\mathbb{R})}$ and
 $\mathcal{L} = (a_1 - a_2\partial_t + a_3\partial_{tt} \quad b_1 - b_2\partial_t + b_3\partial_{tt})$.

Find \mathcal{M} such that $\mathcal{L} \circ \mathcal{M} = Id \Leftrightarrow \text{find } \mathcal{N}$ such that $\mathcal{N} \circ \mathcal{L}^* = Id$. This implies necessarily that $\mathcal{L}^* x = 0 \Rightarrow N \circ \mathcal{L}^* x = x = 0$.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○●○○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	ample			

We compute

$$\mathcal{L}^* = \begin{pmatrix} a_1 + a_2 \partial_t + a_3 \partial_{tt} \\ b_1 + b_2 \partial_t + b_3 \partial_{tt} \end{pmatrix}.$$

Let us solve $\mathcal{L}^* x = 0$. (System now analytically overdetermined).

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 0●000	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ave	male			

We compute

$$\mathcal{L}^* = \begin{pmatrix} a_1 + a_2 \partial_t + a_3 \partial_{tt} \\ b_1 + b_2 \partial_t + b_3 \partial_{tt} \end{pmatrix}.$$

Let us solve $\mathcal{L}^* x = 0$. (System now analytically overdetermined). We have to solve

$$\begin{cases} a_1x + a_2x' + a_3x'' = 0\\ b_1x + b_2x' + b_3x'' = 0 \end{cases}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 0●000	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ave	male			

We compute

$$\mathcal{L}^* = \begin{pmatrix} a_1 + a_2 \partial_t + a_3 \partial_{tt} \\ b_1 + b_2 \partial_t + b_3 \partial_{tt} \end{pmatrix}.$$

Let us solve $\mathcal{L}^* x = 0$. (System now analytically overdetermined). We have to solve

$$\begin{cases} a_1 x + a_2 x' + a_3 x'' = 0\\ b_1 x + b_2 x' + b_3 x'' = 0 \end{cases}$$

We differentiate.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○●○○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ex	mole			

We compute

$$\mathcal{L}^* = \begin{pmatrix} a_1 + a_2 \partial_t + a_3 \partial_{tt} \\ b_1 + b_2 \partial_t + b_3 \partial_{tt} \end{pmatrix}.$$

Let us solve $\mathcal{L}^* x = 0$. (System now analytically overdetermined). We have to solve

$$\begin{cases} a_1 x + a_2 x' + a_3 x'' = 0\\ b_1 x + b_2 x' + b_3 x'' = 0 \end{cases}$$

We differentiate.

$$\begin{cases} a_1 x' + a_2 x'' + a_3 x''' = 0 \\ \end{cases}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○●○○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ex	mole			

We compute

$$\mathcal{L}^* = \begin{pmatrix} a_1 + a_2 \partial_t + a_3 \partial_{tt} \\ b_1 + b_2 \partial_t + b_3 \partial_{tt} \end{pmatrix}.$$

Let us solve $\mathcal{L}^* x = 0$. (System now analytically overdetermined). We have to solve

$$\begin{cases} a_1 x + a_2 x' + a_3 x'' = 0\\ b_1 x + b_2 x' + b_3 x'' = 0 \end{cases}$$

We differentiate.

$$\begin{cases} a_1x' + a_2x'' + a_3x''' = 0\\ b_1x' + b_2x'' + b_3x''' = 0 \end{cases}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	ample			

If we see this equations as a purely algebraic equation, we obtain a system with 4 equations and 4 "unknowns" (at the beginning : 2 equations and 3 "unknowns"), that we write under the form C(x, x', x'', x''') = 0 with

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○○●○○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ex	ample			

If we see this equations as a purely algebraic equation, we obtain a system with 4 equations and 4 "unknowns" (at the beginning : 2 equations and 3 "unknowns"), that we write under the form C(x, x', x'', x''') = 0 with

$$C = egin{pmatrix} a_1 & a_2 & a_3 & 0 \ b_1 & b_2 & b_3 & 0 \ 0 & a_1 & a_2 & a_3 \ 0 & b_1 & b_2 & b_3 \end{pmatrix}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○○○●○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	ample			

We see that under some conditions on the coefficients, necessarily $x \equiv 0$. Moreover, one can see C^{-1} (which acts on x, x', x'', x''') as a linear partial differential operator \mathcal{N} acting only on x.

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○○○●○	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	ample			

We see that under some conditions on the coefficients, necessarily $x \equiv 0$. Moreover, one can see C^{-1} (which acts on x, x', x'', x''') as a linear partial differential operator \mathcal{N} acting only on x.

Equality $C^{-1}C = Id_{\mathbb{R}^4}$ can be written in differential form $\mathcal{N} \circ \mathcal{L}^* x = x$ so that $\mathcal{M} = \mathcal{N}^*$ gives $\mathcal{L} \circ \mathcal{M} = Id$.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○○○○●	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ex	ample			

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○○○○●	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	ample			

• $\mathcal{L}y = \mathcal{B}f$ underdetermined \Rightarrow adjoint overdetermined.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives
A simple exa	ample			

- $\mathcal{L}y = \mathcal{B}f$ underdetermined \Rightarrow adjoint overdetermined.
- ▶ We consider $\mathcal{L}^* z = \mathcal{B}^* g$ overdetermined. Differentiation of the equations: $\mathcal{L}^* z = 0$ that we differentiate to obtain the same number of equations as "unknowns". We deduce by inverting the system that $\mathcal{B}^* z = 0$ and moreover we obtain the operator \mathcal{M}^* we want.

Outline	Presentation 0000 00 0000	Algebraic resolution ○○○ ○○○○●	Application to Navier-Stokes 0000 000 00	Perspectives
A simple ex	ample			

- $\mathcal{L}y = \mathcal{B}f$ underdetermined \Rightarrow adjoint overdetermined.
- ▶ We consider $\mathcal{L}^* z = \mathcal{B}^* g$ overdetermined. Differentiation of the equations: $\mathcal{L}^* z = 0$ that we differentiate to obtain the same number of equations as "unknowns". We deduce by inverting the system that $\mathcal{B}^* z = 0$ and moreover we obtain the operator \mathcal{M}^* we want.
- Ly = Bf underdetermined ⇒ generically algebraically solvable. Moreover supports of functions conserved.

Pierre Lissy

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ●000 000 00	Perspectives	
Algebraic solvability and its link with controllability					

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas A simple example

Application to the controllability of Navier-Stokes equations Algebraic solvability and its link with controllability How to find \mathcal{M}

Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Solving a differential system (1)

We apply what we did on our problem. To simplify everything is C^∞ and no source term.

We call $Q_0 := (T/2, T) \times \omega_0$ with ω_0 open subset of C_2 .

 $\mathcal{B} = (\mathcal{B}^1, \mathcal{B}^2, \mathcal{B}^3)$ linear partial differential operator.

Solving a differential system (1)

We apply what we did on our problem. To simplify everything is C^∞ and no source term.

We call $Q_0 := (T/2, T) \times \omega_0$ with ω_0 open subset of C_2 . $\mathcal{B} = (\mathcal{B}^1, \mathcal{B}^2, \mathcal{B}^3)$ linear partial differential operator.

$$\begin{cases} y_t^1 - \Delta y^1 + (\bar{y} \cdot \nabla) y^1 + (y \cdot \nabla) \bar{y}^1 + p_1 &= \mathcal{B}^1 u \text{ in } Q, \\ y_t^2 - \Delta y^2 + (\bar{y} \cdot \nabla) y^2 + (y \cdot \nabla) \bar{y}^2 + p_2 &= \mathcal{B}^2 u \text{ in } Q, \\ y_t^3 - \Delta y^3 + (\bar{y} \cdot \nabla) y^3 + (y \cdot \nabla) \bar{y}^3 + p_3 + v \mathbf{1}_{\omega} &= \mathcal{B}^3 u \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ in } Q, \\ y &= 0 \text{ on } \Sigma, \\ y(0, \cdot) &= y^0 \text{ in } \Omega, \\ (\text{NS-lin-Bcont}) \end{cases}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Solving a differential system (1)

We apply what we did on our problem. To simplify everything is C^∞ and no source term.

We call $Q_0 := (T/2, T) \times \omega_0$ with ω_0 open subset of C_2 . $\mathcal{B} = (\mathcal{B}^1, \mathcal{B}^2, \mathcal{B}^3)$ linear partial differential operator.

$$\begin{cases} y_t^1 - \Delta y^1 + (\bar{y} \cdot \nabla) y^1 + (y \cdot \nabla) \bar{y}^1 + p_1 &= \mathcal{B}^1 u \text{ in } Q, \\ y_t^2 - \Delta y^2 + (\bar{y} \cdot \nabla) y^2 + (y \cdot \nabla) \bar{y}^2 + p_2 &= \mathcal{B}^2 u \text{ in } Q, \\ y_t^3 - \Delta y^3 + (\bar{y} \cdot \nabla) y^3 + (y \cdot \nabla) \bar{y}^3 + p_3 + v \mathbf{1}_{\omega} &= \mathcal{B}^3 u \text{ in } Q, \\ \nabla \cdot y &= 0 \text{ in } Q, \\ y &= 0 \text{ on } \Sigma, \\ y(0, \cdot) &= y^0 \text{ in } \Omega, \\ (\text{NS-lin-Bcont}) \end{cases}$$

Unknowns: y, p, v. Datum: $u \in C^{\infty}(Q)^k$, with support in Q_0 . Under the form $\mathcal{L}(y, p, v) = (\mathcal{B}u, 0)$. Underdetermined system.

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Link between controllability and algebraic solvability (1)

Crucial Proposition:

Proposition

Assume:

- System (NS-lin-Bcont) is algebraically solvable
- ▶ We can control the linearized Navier-Stokes system with a control (having 3 components) being in the image of 𝔅.

Link between controllability and algebraic solvability (1)

Crucial Proposition:

Proposition

Assume:

- System (NS-lin-Bcont) is algebraically solvable
- We can control the linearized Navier-Stokes system with a control (having 3 components) being in the image of B.
 Then we can control with one component (i.e. we can control)

Then we can control with one component (i.e. we can control (NS-Lin-1Cont).)

Pierre Lissy

Link between controllability and algebraic solvability (2) Proof:

1. We control with 3 components in the image of \mathcal{B} , with \hat{u} supported in Q_0 , i.e. we can find $(\hat{y}, \hat{p}, \hat{u})$ verifying

$$\begin{cases} \widehat{y}_t - \Delta \widehat{y} + (\overline{y} \cdot \nabla) \widehat{y} + (\widehat{y} \cdot \nabla) \overline{y} + p &= \mathcal{B} \widehat{u} \text{ in } Q, \\ \nabla \cdot \widehat{y} &= 0 \text{ in } Q, \\ \widehat{y} &= 0 \text{ on } \Sigma, \\ \widehat{y}(0, \cdot) &= y^0 \text{ in } \Omega, \\ \widehat{y}(T, .) &= 0 \text{ in } \Omega. \end{cases}$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Link between controllability and algebraic solvability (2) Proof:

1. We control with 3 components in the image of \mathcal{B} , with \hat{u} supported in Q_0 , i.e. we can find $(\hat{y}, \hat{p}, \hat{u})$ verifying

$$\begin{cases} \widehat{y}_t - \Delta \widehat{y} + (\overline{y} \cdot \nabla) \widehat{y} + (\widehat{y} \cdot \nabla) \overline{y} + p &= \mathcal{B} \widehat{u} \text{ in } Q, \\ \nabla \cdot \widehat{y} &= 0 \text{ in } Q, \\ \widehat{y} &= 0 \text{ on } \Sigma, \\ \widehat{y}(0, \cdot) &= y^0 \text{ in } \Omega, \\ \widehat{y}(\mathcal{T}, .) &= 0 \text{ in } \Omega. \end{cases}$$

2. Algebraic resolution: there exists $(\tilde{y}, \tilde{p}, \tilde{u})$ solution on Q_0 of $\mathcal{L}(\tilde{y}, \tilde{p}, \tilde{u}) = \mathcal{B}\hat{u}$. $\tilde{y}, \tilde{p}, \tilde{u}$ vanishing at times t = 0 and t = T (support still included in Q_0).

Pierre Lissv

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 000● 000	Perspectives
Algebraic so	lvability and its link w	ith controllability		

Link between controllability and algebraic solvability (3)

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Link between controllability and algebraic solvability (3)

3. We set $(y, p) = (\hat{y} - \tilde{y}, \hat{p} - \tilde{p})$. Then (y, p) verifies $\mathcal{L}(y, p, v) = 0$ with initial condition y^0 and final condition 0, which is what we wanted.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Link between controllability and algebraic solvability (3)

3. We set $(y, p) = (\hat{y} - \tilde{y}, \hat{p} - \tilde{p})$. Then (y, p) verifies $\mathcal{L}(y, p, v) = 0$ with initial condition y^0 and final condition 0, which is what we wanted.

What we have to do:

- Find \mathcal{B} such that one can solve algebraically (NS-lin-Bcont).
- ► Find controls in the image of B, regular enough such that it has a sense to apply operator M.

Pierre Lissy

Out in e	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ●○○○ ○○	Perspectiv
How to find	м			

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas A simple example

Application to the controllability of Navier-Stokes equations Algebraic solvability and its link with controllability How to find \mathcal{M} Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

es

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ○○○○ ●○○ ○○	Perspectives
استقرمه ببندانا	14			

Choice of ${\mathcal B}$ and reformulation of the problem

 $\mathcal{B} = Id$ does not work. In fact \mathcal{B} partial differential operator of order 1:

$$\mathcal{B}(f^1,f^2,f^3,f^4,f^5,f^6,f^7):=egin{pmatrix} f_1^1+f_2^2+f_3^3\ f_1^4+f_2^5+f_3^6\ f^7 \end{pmatrix}$$

We can see that we are led to consider system $\mathcal{L}^*(z,q) = 0$ on Q_0 with moreover $z^3 = 0$ on Q_0 . We have to prove (by the previous method)

$$z_1^1 = z_2^2 = z_3^3 = z_1^2 = z_2^2 = z_3^2 = 0.$$

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ○○○○ ●○○ ○○	Perspectives
Line and Cond	14			

Choice of ${\mathcal B}$ and reformulation of the problem

 $\mathcal{B} = \mathit{Id}$ does not work. In fact \mathcal{B} partial differential operator of order 1:

$$\mathcal{B}(f^1,f^2,f^3,f^4,f^5,f^6,f^7):=egin{pmatrix} f_1^1+f_2^2+f_3^3\ f_1^4+f_2^5+f_3^6\ f^7 \end{pmatrix}$$

We can see that we are led to consider system $\mathcal{L}^*(z,q) = 0$ on Q_0 with moreover $z^3 = 0$ on Q_0 . We have to prove (by the previous method)

$$z_1^1 = z_2^2 = z_3^3 = z_1^2 = z_2^2 = z_3^2 = 0.$$

To have more equations than unknowns, one needs to differentiate at least 19 times the equations: this brings to 30360 equations and 29900 unknowns, so it cannot be done by hand!

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Using the computer (1)

Different steps:

 Differentiate the PDE (C⁺⁺) and applying at a particular point. We stock the result under the form of a sparse matrix A.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Using the computer (1)

Different steps:

- Differentiate the PDE (C⁺⁺) and applying at a particular point. We stock the result under the form of a sparse matrix A.
- See if matrix A is invertible or not. unfortunately not the case. ⇒ find some suitable submatrix of A which is invertible, i.e. of maximal rank.

Using the computer (1)

Different steps:

- Differentiate the PDE (C⁺⁺) and applying at a particular point. We stock the result under the form of a sparse matrix A.
- See if matrix A is invertible or not. unfortunately not the case. ⇒ find some suitable submatrix of A which is invertible, i.e. of maximal rank.
- Rank: a lot of time to compute on a computer. We use instead the notion of structural rank, which only depend on the coefficients of the matrix that are equal to 0 or not and is fast to compute. Moreover, there exists an algorithm (Dulmage-Mendelsohn decomposition) that rearrange the matrix in a nice way.

Using the computer (2)

Find then a submatrix of A (called P) containing the unknowns we want (i.e. z₁¹, z₂², z₃³, z₁², z₂², z₃²) and being of maximal structural rank, and then verify that it is of full rank. P of size 7321 × 7321!

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Using the computer (2)

- ► Find then a submatrix of A (called P) containing the unknowns we want (i.e. z₁¹, z₂², z₃³, z₁², z₂², z₃²) and being of maximal structural rank, and then verify that it is of full rank. P of size 7321 × 7321!
- ► Use a genericity argument to see that P is invertible everywhere in Q₀ and deduce a differential operator M such that L ∘ M = B by inverting P.

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ○○○○ ●○	Perspectives
Regular con	trols of a particular fo	rm		

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas A simple example

Application to the controllability of Navier-Stokes equations

Algebraic solvability and its link with controllability How to find $\ensuremath{\mathcal{M}}$

Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controlling in the image of $\mathcal{B}(1)$

We use a suitable Carleman inequality coming from Gueye'12.

Lemma

Let ω^* an open subset of Ω . For K_1, ν large enough, for ε small enough, for every $g \in L^2((0, T) \times \Omega)^3$ and for every solution z of the adjoint of the linearized Navier-Stokes system

$$\begin{cases} -z_t - \Delta z - (\overline{y} \cdot \nabla^t) z - (z \cdot \nabla) \overline{y} + \nabla \pi = g & \text{in } Q, \\ \nabla \cdot z = 0 & \text{in } Q, \\ z = 0 & \text{on } [0, T] \times \partial \Omega, \end{cases}$$

one has

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ००० ०●	Perspectives
Regular con	trols of a particular fo	rm		

$$||e^{\frac{-\kappa_{1}}{2r(\tau-t)^{5}}}z||_{L^{2}((T/2,T),H^{1}(\Omega)^{3})}^{2}+||z(T/2,\cdot)||_{L^{2}(\Omega)^{3}}^{2}$$

$$\leq C\left(\int_{(T/2,T)\times\Omega}1_{\omega^{*}}e^{-\frac{\kappa_{1}}{(\tau-t)^{5}}}|\nabla\wedge z|^{2}+\int_{(T/2,T)\times\Omega}e^{-\frac{\kappa_{1}}{(\tau-t)^{5}}}|g|^{2}\right)$$

This Carleman inequality gives controls under the form $\nabla \wedge ((\nabla \wedge u)\mathbf{1}_{\omega^*})$, sum of derivatives, so in image of \mathcal{B} . From this inequality, one can create as regular controls as we want so that we can apply operator \mathcal{M} .

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ○○○○ ○●●	Perspectives
Regular con	trols of a particular fo	rm		

$$||e^{\frac{-\kappa_{1}}{2r(\tau-t)^{5}}}z||_{L^{2}((T/2,T),H^{1}(\Omega)^{3})}^{2}+||z(T/2,\cdot)||_{L^{2}(\Omega)^{3}}^{2}$$

$$\leq C\left(\int_{(T/2,T)\times\Omega}1_{\omega^{*}}e^{-\frac{\kappa_{1}}{(\tau-t)^{5}}}|\nabla\wedge z|^{2}+\int_{(T/2,T)\times\Omega}e^{-\frac{\kappa_{1}}{(\tau-t)^{5}}}|g|^{2}\right)$$

This Carleman inequality gives controls under the form $\nabla \wedge ((\nabla \wedge u)\mathbf{1}_{\omega^*})$, sum of derivatives, so in image of \mathcal{B} . From this inequality, one can create as regular controls as we want so that we can apply operator \mathcal{M} . Control u will be such that

$$(\nabla \wedge u) \in L^2((T/2, T), H^{53}(\Omega)^3) \cap H^{27}((T/2, T), H^{-1}(\Omega)^3).$$

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes ○○○○ ○●●	Perspectives
Regular con	trols of a particular fo	rm		

$$||e^{\frac{-\kappa_{1}}{2r(\tau-t)^{5}}}z||_{L^{2}((T/2,T),H^{1}(\Omega)^{3})}^{2}+||z(T/2,\cdot)||_{L^{2}(\Omega)^{3}}^{2}$$

$$\leq C\left(\int_{(T/2,T)\times\Omega}1_{\omega^{*}}e^{-\frac{\kappa_{1}}{(\tau-t)^{5}}}|\nabla\wedge z|^{2}+\int_{(T/2,T)\times\Omega}e^{-\frac{\kappa_{1}}{(\tau-t)^{5}}}|g|^{2}\right)$$

This Carleman inequality gives controls under the form $\nabla \wedge ((\nabla \wedge u)\mathbf{1}_{\omega^*})$, sum of derivatives, so in image of \mathcal{B} . From this inequality, one can create as regular controls as we want so that we can apply operator \mathcal{M} . Control u will be such that

$$(\nabla \wedge u) \in L^2((T/2, T), H^{53}(\Omega)^3) \cap H^{27}((T/2, T), H^{-1}(\Omega)^3).$$

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives

Presentation of the problem

Introduction The linearized system The particular trajectory

Algebraic resolution of differential systems

Some notations and general ideas A simple example

Application to the controllability of Navier-Stokes equations

Algebraic solvability and its link with controllability How to find \mathcal{M} Regular controls of a particular form

Perspectives

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation	Algebraic resolution	Application to Navier-Stokes	Perspectives
	0000 00 0000	000 00000	0000 000 00	

Perspectives

Global controllability around 0,

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation	Algebraic resolution	Application to Navier-Stokes	Perspectives
	0000	000	0000	
	00	00000	000	

- Global controllability around 0,
- Local, global controllability along any trajectory,

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation	Algebraic resolution	Application to Navier-Stokes	Perspectives
		00000		
	0000		00	

- Global controllability around 0,
- Local, global controllability along any trajectory,
- Other coupled systems, for example hyperbolic systems (non-linear systems of wave equations).

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives

Reference

Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Jean-Michel Coron and Pierre Lissy, submitted.

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Outline	Presentation 0000 00 0000	Algebraic resolution 000 00000	Application to Navier-Stokes 0000 000 00	Perspectives

Reference

Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Jean-Michel Coron and Pierre Lissy, submitted.

Thank you for your attention!

Pierre Lissy

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie