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Introduction

Notations
Ω smooth bounded domain of R3 and ω open subset of Ω.

T > 0,

Q := [0,T ]× Ω,

Σ := [0,T ]× Ω,

V :=
{
y ∈ H1

0 (Ω)3|∇.y = 0
}
,

H :=
{
y ∈ L2(Ω)3|∇.y = 0, y .n|∂Ω = 0

}
.

v ∈ L2(Ω) (control).

i-th component of f : f i .

j-th derivative of g : gj (j = 1, 2, 3, t).
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Introduction

The controlled Navier-Stokes system


yt −∆y + (y · ∇)y +∇p = (0, 0, v1ω) in Q,
∇ · y = 0 in Q,
y(0, ·) = y0 in Ω,
y ≡ 0 on Σ.s

(NS-1Cont)

We act only on the third equation (indirect control).
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Introduction

Non-exhaustive state of the art

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control on each

equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control having a

vanishing component (with a geometric condition on the

control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel'06,

I Null-controllability of Stokes system with a control having a

vanishing component (without source term):

Coron-Guerrero'09,

I Null-controllability of Stokes system and local null

controllability of Navier-Stokes system with a control having a

vanishing component: Carreno-Guerrero'12.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

Introduction

Non-exhaustive state of the art

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control on each

equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control having a

vanishing component (with a geometric condition on the

control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel'06,

I Null-controllability of Stokes system with a control having a

vanishing component (without source term):

Coron-Guerrero'09,

I Null-controllability of Stokes system and local null

controllability of Navier-Stokes system with a control having a

vanishing component: Carreno-Guerrero'12.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

Introduction

Non-exhaustive state of the art

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control on each

equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control having a

vanishing component (with a geometric condition on the

control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel'06,

I Null-controllability of Stokes system with a control having a

vanishing component (without source term):

Coron-Guerrero'09,

I Null-controllability of Stokes system and local null

controllability of Navier-Stokes system with a control having a

vanishing component: Carreno-Guerrero'12.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

Introduction

Non-exhaustive state of the art

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control on each

equation: Fernandez-Cara-Guerrero-Imanuvilov-Puel'04,

I Local exact controllability of Navier-Stokes system and

linearized Navier-Stokes systems with a control having a

vanishing component (with a geometric condition on the

control domain): Fernandez-Cara-Guerrero-Imanuvilov-Puel'06,

I Null-controllability of Stokes system with a control having a

vanishing component (without source term):

Coron-Guerrero'09,

I Null-controllability of Stokes system and local null

controllability of Navier-Stokes system with a control having a

vanishing component: Carreno-Guerrero'12.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

Introduction

Main theorem

Theorem
For every T > 0 and for every r > 0, there exists η > 0 such that,

for every y0 ∈ V verifying ||y0||H1(Ω)3 6 η, there exist a control

v ∈ L2(Q) and a solution (y , p) of (NS-1Cont) such that

y(T , ·) = 0,

||v ||L2(Q)3 6 r ,

||y ||L2((0,T ),H2(Ω)3)∩L∞((0,T ),H1(Ω)3) 6 r .

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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The linearized system

Linearizing around 0

Stokes System:


yt −∆y +∇p = (0, 0, v1ω) in Q,
∇ · y = 0 in Q,
y(0, ·) = y0 in Ω,
y ≡ 0 on [0,T ]× ∂Ω.

(Stokes)

Exists geometries for which System (Stokes) is not even

approximatively controllable (Lions-Zuazua'96 and

Diaz-Fursikov'97).

⇒ Return method

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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The linearized system

Return method (J.M. Coron)

T

x

t

2
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The linearized system

Return method (J.M. Coron)

T

x

tT

η

6 ε

x̄(t)
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The particular trajectory

Construction of the particular trajectory (1)

Assume 0 ∈ ω.
r :=

√
x21 + x22 . C1 cylinder r 6 r1 and |x3| 6 r1, and C2 cylinder

r 6 r1/2 and |x3| 6 r1/2 (r1 small enough such that C1, C2 ⊂⊂ ω).

ȳ(t, x) :=

 εa(t)b(r2)c ′(x3)x1
εa(t)b(r2)c ′(x3)x2

−2εa(t)(b(r2) + r2b′(r2))c(x3)

 .

ȳ written in this general form is such that ∇.ȳ = 0 and there exists

a pressure p̄ and a control v̄ such that

ȳt −∆ȳ + (ȳ · ∇)ȳ +∇p̄ = (0, 0, v̄).

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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ȳ(t, x) :=

 εa(t)b(r2)c ′(x3)x1
εa(t)b(r2)c ′(x3)x2

−2εa(t)(b(r2) + r2b′(r2))c(x3)

 .
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The particular trajectory

Construction of the particular trajectory (2)

ν > 0 numerical constant.

Supp(a) ⊂ [T/4,T ] and a(t) = e
−ν

(T−t)5 in [T/2,T ],

Supp(b) ⊂ (−∞, r21 ) and b(w) = w , ∀w ∈ (−∞, r21 /4],

Supp(c) ⊂ (−r1, r1) and c(x3) = x23 in [−r1/2, r1/2].

ȳ simple form on C2 (polynomial in space).

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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The particular trajectory

Figure representing the di�erent open subsets introduced

0

Ω

C1 (support of ȳ)

C2 (where ȳ is polynomial)

ω (control domain)

ω0

Figure : The open subsets C1, C2, ω0, ω.
Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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The particular trajectory

The linear control system



y1t −∆y1 + (ȳ · ∇)y1 + (y · ∇)ȳ1 + p1 = 0 in Q,

y2t −∆y2 + (ȳ · ∇)y2 + (y · ∇)ȳ2 + p2 = 0 in Q,

y3t −∆y3 + (ȳ · ∇)y3 + (y · ∇)ȳ3 + p3 = v1ω in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0, ·) = y0 in Ω.

(NS-Lin-1Cont)

Goal: prove a result of null-controllability for this system (with a

source term) in suitable weighted Sobolev spaces and application of

a local inverse mapping theorem to go back to the nonlinear system.

We focus on the linearized problem.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Some notations and general ideas

Di�erential operators

Ideas of this section: Gromov (partial di�erential relations, 1986).

To simplify, C∞ setting. Q0 open subset of Rn.

De�nition
M : C∞(Q0)k → C∞(Q0)s is called linear partial di�erential

operator of order m if, for all α = (α1, α2, . . . , αn) ∈ Nn with

|α| := α1 + α1 + . . .+ αn 6 m, there exists

Aα ∈ C∞(Q0;L(Rk ;Rs)) such that

(Mϕ)(ξ) =
∑
|α|6m

Aα(ξ)∂αϕ(ξ), ∀ξ ∈ Q0, ∀ϕ ∈ C∞(Q0)k .

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Some notations and general ideas

Algebraic solvability of di�erential systems
L : C∞(Q0)m → C∞(Q0)s ,B : C∞(Q0)k → C∞(Q0)s linear
partial di�erential operators. We consider equation

Ly = Bf , (Gen-Dif-Syst)

where the unknown is y .

De�nition
Equation (Gen-Dif-Syst) is algebraically solvable if there exists a

linear partial di�erential operatorM : C∞(Q0)k → C∞(Q0)5 such

that, for every f ∈ C∞(Q0)k ,Mf is a solution of (Gen-Dif-Syst),

i.e. such that

L ◦M = B. (LcompM=B)

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Some notations and general ideas

Formal adjoint
For every linear partial di�erential operator

M : C∞(Q0)k → C∞(Q0)l ,M =
∑
|α|6m Aα∂

α, associate

(formal) adjoint

M∗ : C∞(Q0)l → C∞(Q0)k

de�ned by

M∗ψ :=
∑
|α|6m

(−1)|α|∂α(Atr
αψ), ∀ψ ∈ C∞(Q0)l .

M∗∗ =M and, ifM : C∞(Q0)k → C∞(Q0)l and
N : C∞(Q0)l → C∞(Q0)m are two linear partial di�erential

operators, then (N ◦M)∗ =M∗ ◦ N ∗.
Hence, (LcompM=B) is equivalent to

M∗ ◦ L∗ = B∗.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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|α|6m

(−1)|α|∂α(Atr
αψ), ∀ψ ∈ C∞(Q0)l .

M∗∗ =M and, ifM : C∞(Q0)k → C∞(Q0)l and
N : C∞(Q0)l → C∞(Q0)m are two linear partial di�erential

operators, then (N ◦M)∗ =M∗ ◦ N ∗.

Hence, (LcompM=B) is equivalent to

M∗ ◦ L∗ = B∗.
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A simple example

A simple case (1)

f ∈ C∞0 (R). �nd x1, x2 in C∞0 (R) verifying

a1x1 − a2x1
′ + a3x

′′
1 + b1x2 − b2x2

′ + b3x2
′′ = f .

Under the form L(x1, x2) = Bf with B = IdC∞(R) and

L =
(
a1 − a2∂t + a3∂tt b1 − b2∂t + b3∂tt

)
.

FindM such that L ◦M = Id ⇔ �nd N such that N ◦ L∗ = Id .

This implies necessarily that L∗x = 0⇒ N ◦ L∗x = x = 0.
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A simple example

A simple case (2)

We compute

L∗ =

(
a1 + a2∂t + a3∂tt
b1 + b2∂t + b3∂tt

)
.

Let us solve L∗x = 0. (System now analytically overdetermined).

We have to solve {
a1x + a2x

′ + a3x
′′ = 0

b1x + b2x
′ + b3x

′′ = 0

We di�erentiate. {
a1x
′ + a2x

′′ + a3x
′′′ = 0

b1x
′ + b2x

′′ + b3x
′′′ = 0

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

A simple example

A simple case (2)

We compute

L∗ =

(
a1 + a2∂t + a3∂tt
b1 + b2∂t + b3∂tt

)
.

Let us solve L∗x = 0. (System now analytically overdetermined).

We have to solve {
a1x + a2x

′ + a3x
′′ = 0

b1x + b2x
′ + b3x

′′ = 0

We di�erentiate. {
a1x
′ + a2x

′′ + a3x
′′′ = 0

b1x
′ + b2x

′′ + b3x
′′′ = 0

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

A simple example

A simple case (2)

We compute

L∗ =

(
a1 + a2∂t + a3∂tt
b1 + b2∂t + b3∂tt

)
.

Let us solve L∗x = 0. (System now analytically overdetermined).

We have to solve {
a1x + a2x

′ + a3x
′′ = 0

b1x + b2x
′ + b3x

′′ = 0

We di�erentiate. {

a1x
′ + a2x

′′ + a3x
′′′ = 0

b1x
′ + b2x

′′ + b3x
′′′ = 0

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

A simple example

A simple case (2)

We compute

L∗ =

(
a1 + a2∂t + a3∂tt
b1 + b2∂t + b3∂tt

)
.

Let us solve L∗x = 0. (System now analytically overdetermined).

We have to solve {
a1x + a2x

′ + a3x
′′ = 0

b1x + b2x
′ + b3x

′′ = 0

We di�erentiate. {
a1x
′ + a2x

′′ + a3x
′′′ = 0

b1x
′ + b2x

′′ + b3x
′′′ = 0

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

A simple example

A simple case (2)

We compute

L∗ =

(
a1 + a2∂t + a3∂tt
b1 + b2∂t + b3∂tt

)
.

Let us solve L∗x = 0. (System now analytically overdetermined).

We have to solve {
a1x + a2x

′ + a3x
′′ = 0

b1x + b2x
′ + b3x

′′ = 0

We di�erentiate. {
a1x
′ + a2x

′′ + a3x
′′′ = 0

b1x
′ + b2x

′′ + b3x
′′′ = 0

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

Controllability of Navier-Stokes 3D with a scalar control



Outline Presentation Algebraic resolution Application to Navier-Stokes Perspectives

A simple example

A simple case (3)

If we see this equations as a purely algebraic equation, we obtain a

system with 4 equations and 4 �unknowns� (at the beginning : 2

equations and 3 �unknowns�), that we write under the form

C (x , x ′, x ′′, x ′′′) = 0 with

C =


a1 a2 a3 0

b1 b2 b3 0

0 a1 a2 a3
0 b1 b2 b3

 .
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A simple example

A simple case (4)

We see that under some conditions on the coe�cients, necessarily

x ≡ 0. Moreover, one can see C−1 (which acts on x , x ′, x ′′, x ′′′) as
a linear partial di�erential operator N acting only on x .

Equality C−1C = IdR4 can be written in di�erential form

N ◦ L∗x = x so thatM = N ∗ gives L ◦M = Id .
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A simple example

Generalization

I Ly = Bf underdetermined ⇒ adjoint overdetermined.

I We consider L∗z = B∗g overdetermined. Di�erentiation of the

equations: L∗z = 0 that we di�erentiate to obtain the same

number of equations as �unknowns�. We deduce by inverting

the system that B∗z = 0 and moreover we obtain the operator

M∗ we want.

I Ly = Bf underdetermined ⇒ generically algebraically

solvable. Moreover supports of functions conserved.
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Algebraic solvability and its link with controllability

Solving a di�erential system (1)
We apply what we did on our problem. To simplify everything is

C∞ and no source term.

We call Q0 := (T/2,T )× ω0 with ω0 open subset of C2.
B = (B1,B2,B3) linear partial di�erential operator.



y1t −∆y1 + (ȳ · ∇)y1 + (y · ∇)ȳ1 + p1 = B1u in Q,

y2t −∆y2 + (ȳ · ∇)y2 + (y · ∇)ȳ2 + p2 = B2u in Q,

y3t −∆y3 + (ȳ · ∇)y3 + (y · ∇)ȳ3 + p3 + v1ω = B3u in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0, ·) = y0 in Ω,

(NS-lin-Bcont)

Unknowns: y , p, v . Datum: u ∈ C∞(Q)k , with support in Q0.

Under the form L(y , p, v) = (Bu, 0). Underdetermined system.
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Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (1)

Crucial Proposition:

Proposition

Assume:

I System (NS-lin-Bcont) is algebraically solvable

I We can control the linearized Navier-Stokes system with a

control (having 3 components) being in the image of B.

Then we can control with one component (i.e. we can control

(NS-Lin-1Cont).)
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Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (2)

Proof:

1. We control with 3 components in the image of B, with û

supported in Q0, i.e. we can �nd (ŷ , p̂, û) verifying
ŷt −∆ŷ + (ȳ · ∇)ŷ + (ŷ · ∇)ȳ + p = Bû in Q,
∇ · ŷ = 0 in Q,
ŷ = 0 on Σ,
ŷ(0, ·) = y0 in Ω,
ŷ(T , .) = 0 in Ω.

2. Algebraic resolution: there exists (ỹ , p̃, ũ) solution on Q0 of

L(ỹ , p̃, ũ) = Bû. ỹ , p̃, ũ vanishing at times t = 0 and t = T

(support still included in Q0 ).
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Algebraic solvability and its link with controllability

Link between controllability and algebraic solvability (3)

3. We set (y , p) = (ŷ − ỹ , p̂ − p̃). Then (y , p) veri�es

L(y , p, v) = 0 with initial condition y0 and �nal condition 0,

which is what we wanted.

What we have to do:

I Find B such that one can solve algebraically (NS-lin-Bcont).

I Find controls in the image of B, regular enough such that it

has a sense to apply operatorM.
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How to �ndM

Choice of B and reformulation of the problem
B = Id does not work. In fact B partial di�erential operator of

order 1:

B(f 1, f 2, f 3, f 4, f 5, f 6, f 7) :=

f 11 + f 22 + f 33
f 41 + f 52 + f 63

f 7

 .

We can see that we are led to consider system L∗(z , q) = 0 on Q0

with moreover z3 = 0 on Q0. We have to prove (by the previous

method)

z11 = z22 = z33 = z21 = z22 = z23 = 0.

To have more equations than unknowns, one needs to di�erentiate

at least 19 times the equations: this brings to 30360 equations and

29900 unknowns, so it cannot be done by hand!
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How to �ndM

Using the computer (1)

Di�erent steps:

I Di�erentiate the PDE (C++) and applying at a particular

point. We stock the result under the form of a sparse matrix A.

I See if matrix A is invertible or not. unfortunately not the case.

⇒ �nd some suitable submatrix of A which is invertible, i.e. of

maximal rank.

I Rank: a lot of time to compute on a computer. We use

instead the notion of structural rank, which only depend on

the coe�cients of the matrix that are equal to 0 or not and is

fast to compute. Moreover, there exists an algorithm

(Dulmage-Mendelsohn decomposition) that rearrange the

matrix in a nice way.

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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How to �ndM

Using the computer (2)

I Find then a submatrix of A (called P) containing the

unknowns we want (i.e. z11 , z
2
2 , z

3
3 , z

2
1 , z

2
2 , z

2
3 ) and being of

maximal structural rank, and then verify that it is of full rank.

P of size 7321× 7321!

I Use a genericity argument to see that P is invertible

everywhere in Q0 and deduce a di�erential operatorM such

that L ◦M = B by inverting P .
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Regular controls of a particular form

Controlling in the image of B (1)

We use a suitable Carleman inequality coming from Gueye'12.

Lemma
Let ω∗ an open subset of Ω. For K1, ν large enough, for ε small

enough, for every g ∈ L2((0,T )× Ω)3 and for every solution z of

the adjoint of the linearized Navier-Stokes system
−zt −∆z − (y · ∇t)z − (z · ∇)y +∇π = g in Q,
∇ · z = 0 in Q,
z = 0 on [0,T ]× ∂Ω,

one has

Pierre Lissy Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
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Regular controls of a particular form

||e
−K1

2r(T−t)5 z ||2L2((T/2,T ),H1(Ω)3) + ||z(T/2, ·)||2L2(Ω)3

6 C

(∫
(T/2,T )×Ω

1ω∗e
− K1

(T−t)5 |∇ ∧ z |2 +

∫
(T/2,T )×Ω

e
− K1

(T−t)5 |g |2
)
.

This Carleman inequality gives controls under the form

∇∧ ((∇∧ u)1ω∗), sum of derivatives, so in image of B. From this

inequality, one can create as regular controls as we want so that we

can apply operatorM.

Control u will be such that

(∇∧ u) ∈ L2((T/2,T ),H53(Ω)3) ∩ H27((T/2,T ),H−1(Ω)3).
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Perspectives

I Global controllability around 0,

I Local, global controllability along any trajectory,

I Other coupled systems, for example hyperbolic systems

(non-linear systems of wave equations).
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Reference

Local null controllability of the three-dimensional Navier-Stokes

system with a distributed control having two vanishing components,

Jean-Michel Coron and Pierre Lissy, submitted.

Thank you for your attention!
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