Photon solid phases in driven arrays of nonlinearly coupled cavities

Davide Rossini

Scuola Normale Superiore, Pisa (Italy)

Quantum Simulations Benasque, Spain, 1st October 2013

Photon solid phases in driven arrays of nonlinearly coupled cavities

In collaboration with:

- Jiasen Jin
- Rosario Fazio

@ SNS, Pisa

– Martin Leib

@ TUM, Münich

– Michael Hartmann

Quantum Simulations Benasque, Spain, 1st October 2013

Arrays of coupled QED cavities

M. Hartmann, F. Brandão, M. Plenio, *Nature Phys.* 2, 849 (2006)
A. Greentree, C. Tahan, J. Cole, L. Hollenberg, *Nature Phys.* 2, 856 (2006)
D. Angelakis, M. Santos, S. Bose, *PRA* 76 031805(R) (2007)

Many body physics ?

Two competing phenomena

- Photon hopping between adjacent cavities
- Effective on-site nonlinearity

effective Bose-Hubbard model for **dressed photons**

Strongly-coupled QED cavities

e.g. with superconducting circuits

A. Houck, H. Türeci, J. Koch, Nature Phys. 8, 292 (2012)

 $2q\sqrt{n+1}$

 $2g\sqrt{n}$

A. Imamoğlu, H. Schmidt, G. Woods, M. Deutsch, PRL 79, 1467 (1997) S. Rebić, S. Tan, A. Parkins, D. Walls, J. Opt. B 1, 490 (1999)

Bose-Hubbard model

$$\mathcal{H}_{\rm BH} = -J \sum_{\langle i,j \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + \frac{U}{2} \sum_i n_i (n_i - 1)$$

 J << U boson localization (Mott Insulating phase) gapped, zero superfluid density

 J>> U boson delocalization (superfluid phase) gapless, non-zero superfluid density

2nd order QPT

 $\Psi = \langle b \rangle$

M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch, *Nature* **415**, 39 (2002)

M. Fisher, P. Weichman, G. Grinstein, D. Fisher, *PRB* **40**, 546 (1989) D. Jaksch, C. Bruder, J. Cirac, C. Gardiner, P. Zoller, *PRL* **81**, 3108 (1998)

FIU

 μ/U

3

2

0

MI

N=3

MI

MI N=l

N = 2

<N>=3

<N>=2

<<u>N>=1</u>

~**<N>**=0

JC10

SF

Arrays of coupled QED cavities

$$\mathcal{H}_{\rm JCH} = -J \sum_{\langle i,j \rangle} \left(a_i^{\dagger} a_j + a_j^{\dagger} a_i \right) + \sum_i \mathcal{H}_{\rm JC}^{(i)}$$

– M. Aichhorn, M. Hohenadler, C. Tahan, P. Littlewood, PRL 100, 216401 (2008)

- S. Schmidt, G. Blatter, PRL 103, 086403 (2009), PRL 104, 216402 (2010)

- M. Schirò, M. Bordyuh, B. Oztop, H. Türeci, PRL 109, 053601 (2012)

BH & JCH models belong to the same universality class

D. Haldane, PRL 47, 1840 (1981)

D. Rossini, R. Fazio, G. Santoro, EPL 83, 47011 (2008)

See also:

- J. Koch, K. Le Hur, PRA 80, 023801 (2009)
- M. Hohenadler, M. Aichhorn, S. Schmidt, L. Pollet, PRA 84 041608(R) (2011); PRA 85, 013810 (2012)

BUT: Realistic conditions would also include <u>cavity losses</u>:

- Realize & observe the steady-state phase diagram
- Study the <u>non-equilibrium phases</u> in **open** quantum many-body systems

See e.g. I. Carusotto, C. Ciuti, PRL (2004); M. Wouters, I. Carusotto, PRL (2007); ...

First attempts to characterize the SF-MI transition with dissipation:

Behavior in open cavities:

A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I. Carusotto, H. Türeci, A. Imamoğlu, PRA 81, 061801 (2010)

Many-body physics in dissipative systems Novel quantum phases of matter?

J. Jin, D. Rossini, R. Fazio, M. Leib, M. Hartmann, Phys. Rev. Lett. 110, 163605 (2013)

Our model: on-site + cross-Kerr non-linearities between cavities

e.g. in superconducting circuits

cavities are represented by LC circuits, mutually coupled through Josephson nanocircuits

Cross-Kerr non-linearity (capacitive & inductive coupling)

For another implementation of cross-Kerr non-linearities in circuit QED, see also: Y. Hu, G.-Q. Ge, S. Chen, X.-F. Yang, Y.-L. Chen, *PRA* **84**, 012329 (2011) Effective Hamiltonian:

$$\begin{aligned} \mathcal{H} &= -J \sum_{\langle i,j \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) & \text{A) photon hopping} \\ &-\delta \sum_i b_i^{\dagger} b_i + \Omega \sum_i (b_i^{\dagger} + b_i) & \text{B) laser driving} \\ &+ U \sum_i n_i (n_i - 1) \\ &+ U \sum_i n_i (n_i - 1) \\ &\text{on-site} & \text{cross-Kerr} \end{aligned}$$

Dynamics ruled by the master equation:

$$\frac{\partial_t \rho = -i[\mathcal{H}, \rho] + \mathcal{L}[\rho]}{\text{with } \mathcal{L}[\rho] = \frac{\kappa}{2} \sum_i \left(2b_i \rho b_i^{\dagger} - n_i \rho - \rho n_i \right)$$

Digression on what happens without dissipation ...

$$\mathcal{H}_{\text{EBH}} = -J \sum_{\langle i,j \rangle} b_i^{\dagger} b_j + \frac{U}{2} \sum_i n_i (n_i - 1) + V \sum_{\langle i,j \rangle} n_i n_j \quad \begin{array}{c} \text{Extended} \\ \text{Bose-Hubbard} \end{array}$$

E. Dalla Torre, E. Berg, T. Giamarchi, E. Altman, PRL 97, 260401 (2006): PRB 77, 245119 (2008)

... Let us now go back to our dissipative effective Hamiltonian

A) Mean-field approximation:

$$z^{-1} \sum_{\langle i,j \rangle} b_i^{\dagger} b_j \longrightarrow \langle b_A^{\dagger} \rangle \sum_{i \in B} b_i + \langle b_B^{\dagger} \rangle \sum_{j \in A} b_j$$
$$z^{-1} \sum_{\langle i,j \rangle} n_i n_j \longrightarrow \langle n_A \rangle \sum_{i \in B} n_i + \langle n_B \rangle \sum_{j \in A} n_j$$

we decouple the lattice sites in a minimal structure a bipartite lattice (A-B) is required to take care of the n.n. interactions

z: coordination number

$$\partial_t \rho_A = -i[\mathcal{H}_A, \rho_A] + \mathcal{L}[\rho_A]$$
$$\partial_t \rho_B = -i[\mathcal{H}_B, \rho_B] + \mathcal{L}[\rho_B]$$

 $\mathcal{H}_{A} = -zJ \left[b_{A}^{\dagger} \langle b_{B} \rangle + b_{A} \langle b_{B}^{\dagger} \rangle \right] + \left[\Omega(b_{A}^{\dagger} + b_{A}) - \delta n_{A} \right] + \left[Un_{A}(n_{A} - 1) + zV \langle n_{B} \rangle n_{A} \right]$ $\mathcal{H}_{B} = -zJ \left[b_{B}^{\dagger} \langle b_{A} \rangle + b_{B} \langle b_{A}^{\dagger} \rangle \right] + \left[\Omega(b_{B}^{\dagger} + b_{B}) - \delta n_{B} \right] + \left[Un_{B}(n_{B} - 1) + zV \langle n_{A} \rangle n_{B} \right]$

with $\langle \mathcal{O}_A \rangle = \operatorname{Tr} (\mathcal{O}_A \rho_A)$ and $\langle \mathcal{O}_B \rangle = \operatorname{Tr} (\mathcal{O}_B \rho_B)$

Emergence of photon crystal

Periodic (anti-ferromagnetic) modulation of the photon blockade

$$\Delta n \equiv \left| \langle n_A \rangle - \langle n_B \rangle \right| \stackrel{?}{>} 0$$

order parameter for the crystalline phase

 $\bigcup \rightarrow \infty$

T. Lee, H. Häffner, M. Cross, *PRA* 84, 031402(R) (2011)

For our choice of parameters in the main plot [Ω = 0.75, δ = 0]

$$zV_C \stackrel{U \to \infty}{\approx} 5.73$$

 $zV_C \stackrel{U=0}{\approx} 0.44$

Reentrant behavior as a function of the drive Ω :

- too small density at small pumping
- homogeneous arrangement favored by the pumping

Photon crystal also for V = 0?

Depends on initial conditions... (only under non-equilibrium!)

Emergence of superfluidity

Sublattice phase synchronization

single-site density matrix evolves periodically in time

See also: M. Ludwig, F. Marquardt, PRL 111, 073603 (2013)

M. Boninsegni, N.V. Prokof'ev, Rev. Mod. Phys. 84, 759 (2012)

B) Preliminary DMRG results (1D):

$$g^{(2)}(i,j) = \frac{\langle b_i^{\dagger} b_j^{\dagger} b_j b_i \rangle}{\langle n_i \rangle \langle n_j \rangle}$$

Staggered behavior for V > 0 (strong density-density correl.)

Spatial range of correlations decreases with increasing *J*

True ordering in steady state maybe only in D > 1

MPO technique for dissipative coupled cavities: M. Hartmann, PRL 104, 113601 (2010)

- Arrays of coupled cavities a quantum simulator of <u>many-body states of light</u>
- Non-dissipative phase diagram photon hopping *vs.* blockade the JCH model
- Steady-state phase diagram with on-site + cross-Kerr nonlinearities
 - ---- Emergence of a photon solid
 - → Quantum phase synchronization steady-state *supersolid* ?