Tailoring Coupling Constants
to Simulate Spin Models
in a Segmented Trap
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Microwaves & Hyperfine Qubit

= use microwaves and
rf for coherent state
manipulation of 71Yb*

= the magnetic gradient makes

Zeeman splitting position
dependent

= the resonance frequency is
unique for each ion

F. Mintert & Ch. Wunderlich, Phys. Rev. Lett. 87, 4 (2001); 91, 029902 (2003).
Ch. Wunderlich, Laser Physics at the Limit, Springer Berlin;
C. Ospelkaus et al., Phys. Rev: Lett 101, 090502 (2008)



Spin-Spin Coupling
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= total energy: sum of Zeeman shift and the trapping potential

= equilibrium positions becomes state dependent, mimicks

momentum transfer; MAgnetic Gradient Induced Coupling:
MAGIC

= via Coulomb repulsion each ion affects the equilibrium
positions of all otherions, changing their eigen values
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F. Mintert & Ch. Wunderlich, Phys. Rev. Lett. 87, 4 (2001); 91, 029902 (2003).
Ch. Wunderlich, Laser Physics at the Limit, Springer Berlin;
Ch. Wunderlich & Ch. Balzer, Adv. in At. Mol. Opt. Phys. 49, 293—372 (2003).



Long distance entanglement (LDE)

= ground-state, indirect, end-to-end entanglement in
spin-chains, useful for quantum bus

= loosely coupled end/messenger ions
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L. Campos Venuti et al., Phys. Rev. Lett., 96, 247206 (2006);
L. Campos Venuti et al., Phys. Rev. A 76, 052328 (2007);
S. M. Giampaolo et al., New J. of Phys. 12, 025019 (2010).



LDE Conditions

= weak coupling between the two external spins and
the remaining spins

= hon-degenerate ground state, no B field

= examples: models with competing interactions
along orthogonal axes as XY, XYZ, Heisenberg...
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LDE Work Plan

1. Manipulation of the spin-spin couplings:
»weakly coupled end-spins

2. Engineering of Hamiltonian:
»interaction along z and along another axis

3. Preparation of the ground state:

»adiabatic variation of some Hamiltonian
parameter



Segmented ptrap

= linear Paul trap, three
layer structure

= basic design from Mainz
group (Schmidt-Kaler),
altered by our group

= segments allow flexible
axial trapping potentials
and multiple trapping
zones

= carrier acts as vacuum
interface (1)
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Potential Simulation

= boundary element
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= structures reflected in
potentials simulation:

e width of electrodes
e electrode separation
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e middle layer coils

EEEEEEEEEEEE. I _qmmw " helpful for shuttling,

\ tayloring of potentials

=[1] K. Singer et al., Rev. Mod. Phys., arXiv:0912.0196v2



Extension: Tikhonov Regularization

= we want to get a specific potential ¢7
= we need to solve vor the voltages V..

AV =¢
A - 12
= often ill conditioned, instead weminimize ||[AV —¢@
(least squares)

= boundary condition

9
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= if Tikhonov matrix I equals identitiy, algorithm
prefers solution with smaller norm
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Designing the Coupling

= triple well potential
defines couplings with
three parameters

* find appropriate triple
well

" minima can be much

closer than 2 segment
widths (1)

= find voltages
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Multi Channel AWG

24 independent channels

synchronous, arbitrary
sequences

amplitude x10V

update rate 20 MHz

16 bit resolution

low noise & drift

loss free transmission up to 2 m
freely programmable via USB



1. Tailoring Coupling Constants
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= harmonic coupling:
e delocalized normal modes
e all ions are strongly coupled, long range
e global scaling by trap frequency and gradient



1. Tailoring Coupling Constants

06l T 150
| i =100
S04 | £ E;
g | | = 50 >
9_0.2: 1 ‘

N I

100 0 100
X (um)

= triple well:
e |ocalized modes within wells
e jons within the same well are strongly couples
e inter-well coupling strongly reduced
e |ocal scaling by curvature and gradient



1. Tailoring Coupling Constants
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= anharmonic trap:
e some modes localized, localization scalable
e scalable inter-well coupling



1. Tailoring Coupling Constants
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= anharmonic trap
e some modes localized, localization scalable
e scalable inter-well coupling
e similar conditions for more ions in centre well



2. Mimic Other Hamiltonians

= engineer Hamiltonian dynamics using microwave
fields which sequentially drive the atomic spins

H = ZmJO_Z‘I'ZJ]kG_ZO_Z_IZQm(t) [cr+ Wit _ “’fmf]

- everytlme-step. driving field is quasi-resonant
with a single spin resonance; effect on the other
off-resonant spins is negligible

= bracketing a free evolution between pwave pulses
mimics coupling along a different axis:
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c‘o%-Coupling

CW precession



c‘o%-Coupling

CCW precession



6’6*-Coupling

CW precession



6’6*-Coupling




3. Adiabatic Prep. of Ground State

Under a slow variation of some Hamiltonian
parameter, a system initially in an eigenstate will
follow the instantaneous eigenstate

Heg(h, @) = HP(h) + aH" (h)

. h(tyg) = hy h(tf) =0
aty) = 0 aty) = 1
o H(ho,0) = H (ko) H(0, 1) =ZJJ-,;¢ (o7 + o)
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Time Dependence

Parameters
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= initially the large gap allows for fast sweeping

= slow down towards smaller gaps to remain adiabatic



Adiabatic transformation

0.5}

Fidelity / Concurrence
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time (s)
= adiabaticity well fulfilled

= final state: high fidelity with instantaneous ground
state (red curve)

= large concurrence / entanglement (blue curve)



Adiabatic Transformation
+ Pulsed Dynamics
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= reasonable agreement with effective Hamiltonian
= quantum simulation
= ground state entanglement



Increase Ramp Speed

end-to-end Concurrence
pulsed dynamics

end-to-end Concurrence
effective dynamics

Fidelity with instant. ground state
pulsed dynamics

Fidelity with instant. ground state
effective dynamics
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= lower fidelity
= oscillatory behavior
= still good concurrence



Adiabatic Transformation
+ Pulsed Dynamics + Dephasing
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= fidelity decreases over time
= still good concurrence



LDE Outlook

= tailoring the axial trapping potential can generate
coupling patterns useful for LDE

= an effective XZ Hamiltonian by bracketing the
evolution time with resonant microwave pulses

= changing the relative evolution times allows to
sweep from Ising to XZ Hamiltonian

= simulations show ground state population,
concurrence

= challenges: large gradients, coherence
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