Quantum control of spin correlations in ultracold lattice gases

P.Hauke, R.J.S., M.W.Mitchell & M.Lewenstein, PRA 87, 021601 (2013).

P. Hauke (IQOQI)

M.Lewenstein M.W.Mitchell

Quantum Polarization Spectroscopy

PRL 98, 100404 (2007)

PHYSICAL REVIEW LETTERS

week ending 9 MARCH 2007

Quantum Polarization Spectroscopy of Ultracold Spinor Gases

K. Eckert,¹ Ł. Zawitkowski,² A. Sanpera,³ M. Lewenstein,⁴ and E. S. Polzik^{5,6}

Eckert, PRL 98, 100404 (2007)

Quantum Polarization Spectroscopy

Quantum non-demolition detection of strongly correlated systems

KAI ECKERT¹, ORIOL ROMERO-ISART¹, MIRTA RODRIGUEZ², MACIEJ LEWENSTEIN^{2,3}, EUGENE S. POLZIK⁴ AND ANNA SANPERA^{1,3*}

Example: ID chain of spin-I atoms described by the bilinear-biquadratic Hamiltonian

De Chiara, PRA 83, 021604 (2011)

Example: ID chain of spin-I atoms described by the bilinear-biquadratic Hamiltonian

$$H = \sum_{i} \cos \theta \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \sin \theta \left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} \right)^{2}$$

De Chiara, PRA 83, 021604 (2011)

Quantum Polarization Spectroscopy

Quantum Polarization Spectroscopy

standing wave optical probe

detected variance $\Delta^2 S_2^{(\text{out})} = \Delta^2 S_2^{(\text{in})} + \kappa_p^2 \sum_{i,j} c_i(k_p) c_j(k_p) G_{ij}$

spin correlation function

$$G_{ij} \equiv \langle J_z(r_i) J_z(r_j) \rangle - \langle J_z(r_i) \rangle \langle J_z(r_j) \rangle$$

$$J_{\alpha}(k) \equiv \frac{1}{\sqrt{n_{\rm s}}} \sum_{i} J_{\alpha,i} \exp(ikr_i)$$

$$J_{\alpha}(k) \equiv \frac{1}{\sqrt{n_{\rm s}}} \sum_{i} J_{\alpha,i} \exp(ikr_i)$$

Heisenberg uncertainty relation

 $\Delta J_{\alpha}(k_1) \Delta J_{\beta}(k_2) \ge \frac{1}{4} |\langle J_{\gamma}(k_1 + k_2) \rangle|$

Heisenberg uncertainty relation

 $\Delta J_{\alpha}(k_1) \Delta J_{\beta}(k_2) \ge \frac{1}{4} |\langle J_{\gamma}(k_1 + k_2) \rangle|$

mascroscopic spin singlet

$$\Delta^2 J_{\alpha}(2k_p) \rightarrow 0$$
 & $\langle J_{\alpha}(2k_p) \rangle = 0$
 $|\mathbf{J}(2k_p)| \rightarrow 0$

G.Tóth, NJP 12, 053007 (2010) I. Urizar-Lanz, PRA 88, 013626 (2013)

I. Urizar-Lanz, PRA 88, 013626 (2013)

Feedback cooling of atomic spins

Behbood et al. PRL 111, 103601 (2013)

Feedback cooling of atomic spins

Feedback cooling of atomic spins

Behbood et al. PRL 111, 103601 (2013)

standing wave optical probe

standing wave optical probe

standing wave optical probe

standing wave optical probe

Quantum control of spin correlations in ultracold lattice gases

P.Hauke, R.J.S., M.W.Mitchell & M.Lewenstein, PRA 87, 021601 (2013).

P. Hauke (IQOQI)

M.Lewenstein M.W.Mitchell

