Quantum Field Theory:
Standard Model and
Electroweak Symmetry Breaking
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1. Gauge Theories




The symmetry principle

free Lagrangian

e Lagrangian of a free fermion field {(x):

(Dirac) Lo=y{id —m)p| J= ’)’Vay , P = l/)Jr'YO

= Invariant under global U(1) phase transformations:

P(x) = ' (x) = e Py(x), g, 0 (constants) € R

= By Noether’s theorem there is a conserved current:

and a Noether charge:

F=qyty, oyt =0

Q:/d3xj0, 3,0 = 0
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The symmetry principle || free Lagrangian

e A |quantized | free fermion field:

3
S ) (ﬂp,su(s) (p)e P* +bf 01 (p)el x)

vl = / (27)3\/2Ep (5

— is a solution of the Dirac equation (Euler-Lagrange):

(ig —m)yp(x) =0, (f—mu(p)=0, (f+m)o(p)=0,

— is an operator from the canonical quantization rules (anticommutation):

{ap,r, ”L,s} = {bp,r, blt,s} = (271)°0°(p — k)dys , {apranst=---=0,

that annihilates/creates particles/antiparticles on the Fock space of fermions
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The symmetry principle || free Lagrangian

e For a |quantized | free fermion field:

= Normal ordering for fermionic operators (H spectrum bounded from below):

. L — T . L— t
. ap,raqls « — _aqlsap’r 7 . bp’rbqls . — _bqlsbp,r

= The Noether charge is an operator:

Q= q/d3x ;@701/) L= Q/ (2753 _Z (“;;,sapfs - b;;,sbp,8>

Qal,|0) = +qaf.|0) (particle), Q b}, |0) = —q bL,[0) (antiparticle)
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The symmetry principle

gauge symmetry dictates interactions

e To make Ly invariant under local = gauge transformations of U(1):

Pp(x) = ¢'(x) =e "Wy(x), 6=16(x) eR

perform the minimal substitution:

d, = D, =9, +ieqA, (covariant derivative)

where a gauge field A, (x) is introduced transforming as:

Au(x) > AL(x) = Ay(x) + %aye(x) = [Dw e @D, y| FDyinv.

= The new Lagrangian contains | interactions | between 1 and Ay,:

—eq PP PA,| { coupling e

charge g
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The symmetry principle || gauge invariance dictates interactions

e Dynamics for the gauge field = add gauge invariant kinetic term:

1
(Maxwell) L= _EFWFW < Fy=0,A,—0d,A,— Fyu

e The full U(1) gauge invariant Lagrangian for a fermion field ¢(x) reads:

— 1
ﬁsym = Qb(lw — m)ED — ZFvayv (: Lo+ Lint + El)

e The same applies to a complex scalar field ¢(x):

1
Lesym = (D Mb) D¢ —m 9b ¢ — )‘(‘P 4)) — _FMVFW
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The symmetry principle || non-Abelian gauge theories

e A general gauge symmetry group G is an N-dimensional compact Lie group
ge G, g(@):e_iTaea, a=1,..., N
0" =0"(x) €« R, T, = Hermitian generators, [T, Ty =ifu.T. (Lie algebra)

Te{T,T}} = %5,119 , structure constants: f,;,. =0 Abelian
fave 70 non-Abelian

= Finite-dimensional irreducible representations are unitary:

(lPl\

d-multiplet : ¥(x) — ¥'(x) = U(0)¥(x), ¥ =

\¥

d x d matrices : U(0) [given by {T,} algebra representation]
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The symmetry principle || non-Abelian gauge theories

e Examples: G N  Abelian
u() 1 Yes
SU(n) | n? —1 No (n X n matrices with det = 1)

— U(1): 1 generator (g), one-dimensional irreps only

— SU(2): 3 generators
fave = €apc (Levi-Civita symbol)
+* Fundamental irrep (d = 2): T, = %aa (3 Pauli matrices)

+ Adjoint irrep (d = N = 3): (T;dj)bc = —ifapc

— SU(3): 8 generators

123 _ =1, f458 — f678 __ V3 f f156 — f246 — f247 f345 — f367 —
T, =

1A (8 Gell-Mann matrices)

dj
( ; ])bc — _1fabc

(for SU(n): f,p. totally antisymmetric)

2/
+ Fundamental irrep (d = 3):
= 8):

* Adjoint irrep (d =

1. Gauge Theories 10



The symmetry principle || non-Abelian gauge theories

e To make £y invariant under local = gauge transformations of G:

¥(x) = ¥ (x) = UO)¥(x), 6=80(x)cR

substitute the covariant derivative:

W, =T, WZ

where a gauge field A (x) per generator is introduced, transforming as:

~

Wy (x) s W, (x) = U (1)U — é(ayuw

< [D,¥— UD,Y

= The new Lagrangian contains | interactions

between ¥ and Wﬁ:

»Cint — & ?’YV Taquﬁ

(=g jtWy)

~ { coupling ¢

charge T,

YV inv.

1. Gauge Theories
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The symmetry principle || non-Abelian gauge theories

e Dynamics for the gauge fields = add gauge invariant kinetic terms:

1 1

(Yang-Mills) | Lyy = —5Te {Wu W } = =W, W | &= Wiy = UW, U

~ ~

W,y = DyW, — D,W,, = 3, W, — 9, W,, — ig[W,,, W,]
= Wi, =0, W, — Wy + gfarc WiWS

= Lym contains cubic and quartic | self-interactions | of the gauge fields Wy;:

Lo = —%(ang — 0 W) (MW — QYW
1
L cubic = _ngabc (anyf — avwﬁ)wb,ﬂwcﬂf
1

Equartic — = Zg Zf abef cde Wﬁ W5 Wer Wdlv
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Quantization of gauge theories || propagators

e The (Feynman) propagator of a scalar field:

d*p i
27)% p? — m? +ie

o~ ip-(x—y)

D(x ~y) = O T{p()¢" (1)} 0) = [ -
is a Green’s function of the Klein-Gordon operator:

(O +m*)D(x —y) = ~i6*(x—y) < D(p) =

e The propagator of a fermion field:

d*p i

e_ip'(x_y)
27)% p? — m? +ie

S(x—y) = O TP} 0) = (@ +m) [ ¢
is a Green’s function of the Dirac operator:

(B —m)S(x —y) =i0"(x —y) & S(p)
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Quantization of gauge theories || propagators

e BUT the propagator of a gauge field cannot be defined unless £ is modified:

1 1
(e.g. modified Maxwell) L=—=Fu v _ E

1 (9" A,)?

oL oL

1
— e (12 2 argy _
il [gD (1 6)88]/1” 0

— In momentum space the propagator is the inverse of:

Euler-Lagrange:

1 ~ i
—JPoMV [ 1 — = ) KkMKY —
3 (1 é)k = Dl =

— Note that (—k%¢"V + k¥kY) is singular!
8 &

k,k,
[_Sﬂv+(1—§) ZZ ]

= One may argue that £ above will not lead to Maxwell equations ...

unless we fix a (Lorentz) gauge where:

MA, =0 <<= Ay A=A, +9A with 9"9,A = -4,

1. Gauge Theories 14



Quantization of gauge theories || gauge fixing | (Abelian case)

e The extra term is called Gauge Fixing:

1
Lcr = —E(H“Ay)z

= modified £ equivalent to Maxwell Lagrangian just in the gauge 0¥ A, =0

= the {-dependence always cancels out in physical amplitudes

e Several choices for the gauge fixing term (simplify calculations): Rz gauges

('t Hooft-Feynman gauge) ¢ =1: 5;11/(1() 8w

_ i kyky
(Landau gauge) ¢ =0: Dy (k) = 5—— [_gzw T iz ]

1. Gauge Theories
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Quantization of gauge theories || gauge fixing | (non-Abelian case)

e For a non-Abelian gauge theory, the gauge fixing terms:

1
— UTATA 2
LGr 2L (0" W)

allow to define the propagators:

k
—guw +(1-20) Zz

BUT, unlike the Abelian case, this is not the end of the story ...

1. Gauge Theories 16



Quantization of gauge theories || Faddeev-Popov ghosts

e Add Faddeev-Popov ghost fields c,(x) in the adjoint irrep:

— adj — adj . adj
Lep = (3'80) (D) apey = (9"8a) (Buca — &fanccsWS) | & Dy = 9y — igTEIWS

Computational trick: anticommuting scalar fields, just in loops as virtual particles

[(—1) sign for closed loops! (like fermions)]

= Faddeev-Popov ghosts needed to preserve gauge symmetry:

(® ) (b)

AAAAAAA  RAAAAAA

= (guvk?® — kyky )T1(k?)

: ,(;:_)_ .

1. Gauge Theories 17




Quantization of gauge theories

complete Lagrangian

e Then the complete quantum Lagrangian is

Lsym + Lcr + Lrp

= Note that in the case of a massive vector field

1 1

_ 2
(Proca) L=——F,F" + -M"A,AF

it 1s not gauge invariant

— The propagator is:

4 2

1. Gauge Theories
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Spontaneous Symmetry Breaking

discrete symmetry

e Consider a real scalar field ¢(x) with Lagrangian:

L= %(ayq))(aﬂcp) — %ychz — %c/# invariant under ¢ — —¢

= H= (4 (V9 +V(9)

1 1
V= 21202 4+ A8
WP+ AP

/

(a)

1%, A € R (Real/Hermitian Hamiltonian) and A > 0 (existence of a ground state)

(a) % > 0: min of V(¢) at ¢ = 0

(b) #? < 0: min of V(¢) at pg = v = £/ _T]ﬂ, in QFT (0| ¢ |0) = v # 0 (VEV)

— A quantum field must have v = 0

al0) =0

=

p(x) =v+n(x),

(0]7710) =0

1. Gauge Theories
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Spontaneous Symmetry Breaking || discrete symmetry

e At the quantum level, the same system is described by 7(x) with Lagrangian:

L= %(87,{17)(8”17) — Av*n? — Aoy — %174 not invariant under 7 +— —y

(my = V2A0)

= Lesson:

L(¢) had the symmetry but the parameters can be such that the ground state of
the Hamiltonian is not symmetric (Spontaneous Symmetry Breaking)

= Note:

One may argue that £(7) exhibits an explicit breaking of the symmetry. However
this is not the case since the coefficients of terms 72, ° and 1* are determined by
just two parameters, A and v (remnant of the original symmetry)

1. Gauge Theories 20



Spontaneous Symmetry Breaking || continuous symmetry

e Consider a complex scalar field ¢(x) with Lagrangian:

[ — (ay(er)(a”gb) — yng+gb — )\(4;*4))2 invariant under U(1): ¢ — e_tiCP

2 v — 2
A>0,u"<0: <O‘¢|O>Eﬁ, | = —

Take v € R™. In terms of quantum fields:

p(x) = %[vwx) Tix(@)], {0]7]0) = (0] x[0) = 0

p—

1

A
L= 5@um) (@) + 5(3ux) (3"x) = Av*n* = Ao (” + %) = L (1 + Xx°)°

"2

Note: if ve'* (complex) replace 77 by (17 cosa — xsina) and x by (17 sina + x cosa)

= The actual quantum Lagrangian £(7, x) is not invariant under U(1)

U(1) broken = one scalar field remains massless: m, = vV2Av, my, =0

1. Gauge Theories 21



Spontaneous Symmetry Breaking || continuous symmetry

e Another example: consider a real scalar SU(2) triplet ®(x)

L= %(ayqﬁ)(aﬂcb) ; 1o o — %(@Tcp) inv. under SUQ): & — e %@
that for A > 0, u? < 0 acquires a VEV (0| ®T®|0) = ? (1? = —Av?)
¢1(x)
Assume O (x) = @2 (x) and define ¢ = \[(gol +ig»)
v+ ¢3(x)

1 A
L= (@u9")(9"9) + 5 (9g3) (9" p3) — Av* 3 — A0(297 9+ 93) 93— 7 (2979 + ¢3)°

= Not symmetric under SU(2) but invariant under U(1):

—ig6

¢ — e e (q= arbitrary) @3 +— @3 (g =0)

SU(2) broken to U(1) = 3 — 1 = 2 broken generators
= 2 (real) scalar fields (= 1 complex) remain massless: m, = 0, my, = V2A0

1. Gauge Theories 22



Spontaneous Symmetry Breaking || continuous symmetry

= Goldstone’s theorem: [Nambu ‘60; Goldstone '61]

The number of massless particles (Nambu-Goldstone bosons) is equal to the number of
spontaneously broken generators of the symmetry

Hamiltonian symmetric under group G = T,,H| =0, a=1,...,N
By definition: H|0) =0 = H(T,|0)) =T,H|0) =0

— If |0) is such that T, |0) = O for all generators

= non-degenerate minimum: the vacuum

—If |0) is such that T, |0) # 0 for some (broken) generators a’
= degenerate minimum: chose one (true vacuum) and e iTu0" 0) # |0)

. a
= excitations (particles) from |0) to e '7#?" |0) cost no energy: massless!

1. Gauge Theories 23



Spontaneous Symmetry Breaking

gauge symmetry

e Consider a U(1) gauge invariant Lagrangian for a complex scalar field ¢(x):

L= —iFWFf“’ + (D) (DFe) — p*¢" 9 — A(9'¢)*, Dy =9y +ieqA,

inv. under ¢(x) — ¢'(x) = e WXp(x), Au(x) — Ay (x) = Ay(x) + %8y9(x)
If A >0, u* <0, the £ in terms of quantum fields 7 and x with null VEVs:

1

p(x) = ﬁ[erﬂ(X)Hx(x)], o= —Av*

1 1

1

L= —7EwF™ 4 5(0un)(9%) + 5(9ux) (9" X)

A
= Av*y® = Ao (i + x*) = T (1" + x7)°

1
+ E(eqv)szA”

L1
2

+ equA, 0t x |+ quy(qBVX — x9"n)

(eq)* Ay A (n* + 2on + x°)

Comments:
i) my = Vv2A0
m, =0

(i) Ma = |eqo| ()
(iii) Term A,0¥x (?)
(iv) Add Lgr

1. Gauge Theories
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Spontaneous Symmetry Breaking || gauge symmetry

e Removing the cross term and the (new) gauge fixing Lagrangian:

1
Lor =~z (A" = EMax)?
total deriv.
1 w o Ly w1 )2 AR

1 1
+ 5 @) (9"X) = EMAX* + ...

and the propagators of A, and yx are:

_ i Kk
Dy (k) = k2 — M5 +ie gWJr(l_g)kz—CMzzq
~ 1
D) = sz

= X has a gauge-dependent mass: actually it is not a physical field!

1. Gauge Theories



Spontaneous Symmetry Breaking || gauge symmetry

e A more transparent parameterization of the quantum field ¢ is

p(x) = emﬁﬂ/v%[vm(x)] . (0]7]0) = (0]Z]0) =0
p(x) - e 00 2p(x) = [0+ y(x)] = gauged away!
1 1 Comments:
L= _ZF],WFW/ + E(a}lﬂ)(ayn)
A i) my = V2A v
42,2 3 Ay
AU = Av = ] (i) Ma = |eqo]

+ %(eqv)szA” — %(eq)szA”(Zmy +7n%)  (iii) No need for Lgr

= This is the unitary gauge (¢ — 00): just physical fields

1. Gauge Theories
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Spontaneous Symmetry Breaking || gauge symmetry

— nggS mechanism: [Anderson '62; Higgs '64; Englert, Brout ‘64, Guralnik, Hagen, Kibble '64]

The gauge bosons associated with the spontaneously broken generators become massive,
the corresponding would-be Goldstone bosons are unphysical and can be absorbed,
the remaining massive scalars (Higgs bosons) are physical (the smoking gun!)

— The would-be Goldstone bosons are ‘eaten up’ by the gauge bosons (‘get fat)
and disappear (gauge away) in the unitary gauge ({ — o)

= Degrees of freedom are preserved
Before SSB: 2 (massless gauge boson) + 1 (Goldstone boson)

After SSB: 3 (massive gauge boson) + 0 (absorbed would-be Goldstone)

— For loops calculations, 't Hooft-Feynman gauge (§ = 1) is more convenient:
= Gauge boson propagators are simpler, but

= Goldstone bosons must be included in internal lines

1. Gauge Theories 27



Spontaneous Symmetry Breaking || gauge symmetry

o Comments:

— After SSB the FP’ ghost fields (unphysical) acquire a gauge-dependent mass,
due to interactions with the scalar field(s):

~ 10,
D (k) = L
oK) K2 — M2 +ie
— Gauge theories with SSB are renormalizable 't Hooft, Veltman '72]

UV divergences appearing at loop level can be removed by renormalization of
parameters and fields of the classical Lagrangian = predictive!
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2. The Standard Model
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Gauge group and particle representations

[Glashow "61;

Weinberg '67; Salam ’68]

[Gell-Mann '64; Zweig '64]

e The Standard Model is a gauge theory based on the local symmetry group:

SU(3). ®SU(2), ® U(1)y — SU(3), ®
—— N ~ _

strong electroweak

em

(Do

with the electroweak symmetry spontaneously broken to the electromagnetic

U(1)p symmetry by the Higgs mechanism

e The particle (field) content: (ingredients: 12 flavors + 12 gauge bosons + H)
Fermions I 11 111 Q Bosons
spin % Quarks | f || uuu | ccc | tit 5 || spin1 | 8 gluons || strong interaction
f' || ddd | sss | bbb || —3 W, Z weak interaction
Leptons | f Ve vy | vr 0 v em interaction
f' e U T —1 || spin O | Higgs origin of mass
Qr=Qp +1

2. The Standard Model

30



Gauge group and particle representations

e The fields lay in the following representations (color, weak isospin, hypercharge):

Multiplets | SU(3), ® SU(2)r @ U(1)y I II 111 Q= Tz+Y
u C t 2 1,41
Quarks 3,2 %) k L L ?i i ?
dr SL br —3=—5+32
(3,1, %) UR CR IR % = 0+ %
(3/ 1, _%) dR SR bR —% = () — %
% % v 0= L_1
Leptons (1, 2, —%) oL HL L i i
er KL L —1=—-35—3
(1/ 1/ _1) €R ]/lR TR —1 = 0—1
Higgs (1, 2, %) (3 families of quarks & leptons)

= From now on just the electroweak part (EWSM): SU(2),®U(1)y

2. The Standard Model 31




The EWSM with one family | (of quarks or leptons)

e Consider two massless fermion fields f(x) and f’(x) with electric charges
Qf = Qp + 1 in three irreps of SU(2),@U(1)y:

_ —y 1 1
LY =ifgf+if of fR,LZE(li')G)f/ fﬁ,LZE(li%)f/
= i¥19%1 +ip,dyPn +ipsdps ;Y= (@) , Y= fr , Y3= fr
f v -
N — (1, y2) (1,y3)

(2,41)
e To get a Langrangian invariant under gauge transformations:
¥, (x) = Uy (x)e VPOW, (x), Up(x) =e 7@ T, =~ (weak isospin gen.)

Po(x) > e 12PWyy (x)
P3(x) = e WPy (x)

2. The Standard Model 32



The EWSM with one family || covariant derivatives

= Introduce gauge fields W;l(x) (=123 and By, (x) through covariant derivatives:

e : ~ Oicvri )
Dyxfl = (ay — 1gWy + lg/ley)lFl , Wy = EZW]/{
D,/ﬂ./)z = <ay + ig/ysz)tpz > = Lr
Dups = (9 +i8'y3By) 93 }

where two couplings ¢ and ¢’ have been introduced and

~

vwmkwmmWM%mw—;%mumim

Bu(x) > By(x) + ~9,(x)

g
= Add gauge invariant kinetic terms for the gauge fields
1 . 1 . . . -
Lyy = =g Wi W — 2By BY - Wy, = 0, W, — 9, W,, + g€k Wi, Wi

(include self-interactions of the SU(2) gauge fields) and B, = d,B, — 9, B,

2. The Standard Model 33



The EWSM with one family

mass terms forbidden

= Note that mass terms are not invariant under SU(2); ®U(1)y, since LH and RH

components do not transform the same:
ff = m(Fif+ Fife)

= Mass terms for the gauge bosons are not allowed either

= Next the different types of interactions are analyzed

2. The Standard Model
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The EWSM with one family

charged current interactions

o Lr D g?yy’“‘I/NVy‘Ifl )

oo L Wi V2w
o2 \vaw, -wB

= charged current interactions of LH fermions with complex vector boson field W:

Loc = z%ﬁm ) fWEthe, W= \%(w; i)
( q
W W
14 u
14 u
W W

2. The Standard Model
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The EWSM with one family || neutral current interactions

e The diagonal part of

LrD ng’Y”Wy‘Fl — ¢'Bu(1Y17"¥1 + 2o Y 2 + y3 Py s)

= neutral current interactions with neutral vector boson fields ij and BV
We would like to identify B, with the photon field A, but that requires:

yi=Yy2=y3 and g'yj=eQ; = impossible!

= Since they are both neutral, try a combination:

Wﬁ CWw —Sw Zy sw =sinfy , cw = cosOpy
B, Sw Cw Ay 0w = weak mixing angle

3
Lne =) ¥ {— [8Tssw + g'yjew] Ay + [8Tsew — 8'yjsw] Zy } ¥
j=1

with T3 = % (0) the third weak isospin component of the doublet (singlet)

2. The Standard Model



The EWSM with one family || neutral current interactions

e To make A, the photon field:

e=gsw=9g¢cwl| |Q=T3+Y

0
)/ QZZQf/ Q3:Qf’

where the electric charge operator is: Qp = ( .
O f/

= Electroweak unification: ¢ of SU(2) and ¢’ of U(1) are related

= The hyperchages are fixed in terms of electric charges and weak isospin:

1 1

Nn=Qr—5=Qp+5, =0,  Yy3=0Qf

Logp = —e QfY'f Ay + (5~ 7

= RH neutrinos are sterile: y, = Qf =0

2. The Standard Model 37



The EWSM with one family

neutral current interactions

e The Zy is the neutral weak boson field:

[,lic —e ffyl“‘(vf —agys)f Zy +(f—f)

with

of

ZSWCW

T2y, T

aAr =
’ 2SWCW

e The complete neutral current Lagrangian reads:

LNne = ﬁQED + ﬁl%lC

f=u,dt

f=u,d v/t

2. The Standard Model
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The EWSM with one family

gauge boson self-interactions

e Cubic:

1ec
»CYM D) £3 = — W

SW

{WWW;;Z,, — W, WHZY — W;QWVZW}

+ie {WWWJAV — WHWFAY W;wVFW}

with

Fup = 0,Ay —0vA,  Zyy = 3,2y — 3,2,

Wy = 3, W, — 3, W,

2. The Standard Model
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The EWSM with one family || gauge boson self-interactions

e Quartic:

e’ t 2 tant

Lym D Ly= ——o { (w W”) — Wik WVWV}
ZSW H H
ezc%/\/ T v T %

- wiwrz,zr - wizrw,zv |

Sw
€2CW

{2w;:w#szV — WIZFW, AV — W;AP‘WVZV}
SW

. {W;[W”AVAV _ W;[AP‘WUAV}

14 w W 7w Z W Z

Note: even number of W and no vertex with just 7y or Z
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Electroweak symmetry breaking || setup

e Out of the 4 gauge bosons of SU(2); ®U(1)y with generators T1, Tp, T3, Y we
need all to be broken except the combination Q = T3 + Y so that A, remains
massless and the other three gauge bosons get massive after SSB

8

Lo = (D,®)'D'D — p?d'd — A(@'D)?, D@ = (9, —igW, +ig'yeB,)P

= Introduce a complex SU(2) Higgs doublet

.
® = (Z()) , (0] ®0) =

with gauge invariant Lagrangian (1> = —A0?):

Sl

takeyq):% = (,+Y)|0)=0Q (:) ~0

{T, T2, Ts = Y}|0) #0
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Electroweak symmetry breaking || gauge boson masses

e Quantum fields in the unitary gauge:

0
O(x) = exp{ 2091( )} \% (U+H(x))

1 physical Higgs field

. 1 0 H(x)
d(x) — exp{ —i—0'(x) P(x) = — =
(%) P{ 20 ( )} (x) NG (U+H(x)) 3 would-be Goldstones
0'(x) gauged away

— The 3 dof apparently lost become the longitudinal polarizations of W= and Z that
get massive after SSB:

2.2
1
E@DﬁM:&W;W”—I-g 0 Z,Z" = My = Mgy = =0
4 8CW 2
\/./
i b
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Electroweak symmetry breaking

Higgs sector

= In the unitary gauge (just physical fields):

L zlaHWH—lMﬁﬁ—A@H&—Méﬁl My =/ —2u2 = V20
=" 2H 20 802’
L? H H R L H
H---< s
\\ /, \\
\\ H H ’, \\ H

1

2 H? 5

w W - H

2

£q> — £H‘|‘£M+£Hv2

2 H?2
14+ =-H+ —
0 0
7
A

}

2. The Standard Model



Electroweak symmetry breaking

Higgs sector

e Quantum fields in the Ry gauges:

(x
q)(x)(l 0t (x

ﬁ[v+H<x>+ix<x>]> S

ﬁq; — £H+LM+£HV2

1

+ (9™ (0"¢™) + 5(9ux) (9"X)

+ iMy (Wyot'pt —Widle™) + Mz Z,0"x

+ trilinear interactions [SSS, SSV, SVV]

+ quadrilinear interactions [SSSS, SSVV]
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Electroweak symmetry breaking || gauge fixing

e To remove the cross terms W,0"¢™, W; ¢~ , Z,0" x and define propagators add:

1 1
- AV u 2

1

gw |ayW’“‘ + i(:wMqu_ |2

= Massive propagators for gauge and (unphysical) would-be Goldstone fields:

- i kyuky
DZV(k) — k2 4+ ie [ gVV+ (1 C’Y) 2 ]
- i k., k ~ i
DZ (k) = ! L (1— pov ] . DX(k) =
v (K) 2 — M2 +i [ 8w + CZ)kZ—CZM% (k) k? — {7 M2 + ie
» i k. k ~ i
DW (k) = . L (1— il ] . DOk) =
o (K) k2 — M2, +ie [ 8w+ gW)kz—CjWM%,V () k2 — SwMj, +ie

('t Hooft-Feynman gauge: {, =z = ¢w = 1)
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Electroweak symmetry breaking || Faddeev-Popov ghosts

5 I g i ( ) ( 7 7 )

Lrp = (0%¢;)(9uci — gel]kc]Wk) + 1nteract10ns with <I>

U kmetlc + [UUV] U masses + [SUU]

= Massive propagators for (unphysical) FP ghost fields:

1 ~ i ~
, DMZ k — , Dui k —
k? + ie () k2 — 7 M2 +ie (k) k2 — CwMz, + ie

D" (k) =

('t Hooft-Feynman gauge: z = {w = 1)
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Electroweak symmetry breaking || Faddeev-Popov ghosts

Lrp = (0utty)(0"u,y) + (041z)(0"uz) + (914 )(*uy) + (9,u—) (0 u_)
(e[ (9M0, )uy — (3P )u_|A, — %[(aﬂmm — (3" )u_)Z,
[UUVI{ — ie[(9" 5 )ity — (3" )u_] W liivw (914 Yuz — (3Mz)u_ W
e[0T )ity — (M ) )Wy — SW M Vuy — (99T, ) |W
\ ie[ (M- )uy — (MU )uy]W, - (" u_)uz — ("uz)uy|W,
— &zM3 Tizuy — EwMiyy Wiy — SwMyy Tu_
( _ 1 1 _
—elz Mz Uiz ZSWCWHuZ ~ 2o (pTu_ +¢ u+)]
1 N 2 —s3 )
[SUU] { —eSwMw ti4 | =—(H +ix)usy —¢™ | uy U
25 2SWCW
1 ~ c3y — S5
= eCwMw u_ f(H —ix)u— — ¢ (ufy = Dswem U )
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Electroweak symmetry breaking || fermion masses

e We need masses for quarks and leptons without breaking gauge symmetry

= Introduce Yukawa interactions:

+ O
‘CY — —/\d (EL HL> gb() dr — Ay (ﬁL HL) ¢ | ur
¢ —¢
_|_
— Ay (VL ZL) (¢ ) (R +h.c.
"
(PO* (P_|_
where @ = i0,®" = transforms under SU(2) like & = )
—¢ ¢
= After EW SSB, fermions acquire masses:

1 > » v
Ly D ——F—@0+H){A;dd+ Ay uu+ Ay 0L = M= Af—=
vD = oo+ H) {Ag @+ Aty } r=75
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Additional generations || Yukawa matrices

e There are 3 generations of quarks and leptons in Nature. They are identical copies
with the same properties under SU(2); ® U(1), differing only in their masses

= Take a general case of ng generations and let ujl , d]I , v} €I be the members of
family j (j =1,...,ng). Superindex I (interaction ba51s) Was omitted so far

= General gauge invariant Yukawa Lagrangian:

+ (E2 ]
Ly = Z{(”]IL H]ZL) (z ))‘Jk dig + (4?4) )A]k iR

N _
(il; ))\]k EkR } + h.c.

where A](.,f ), /\](;j ), A](.,f) are arbitrary Yukawa matrices
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Additional generations || mass matrices

o After EW SSB, in n5-dimensional matrix form:

H — _
£Y3—<1+;> (@ My dl + af M, uk + 1 M, 1 + he
with mass matrices
_ 5@ C _ 5w @ _ 50 Y
(Mg);; = Ay NG (My);; = Aj; NG (My);; = Aj; 7

= Diagonalization determines mass eigenstates d;, u;, £;, v;
in terms of interaction states d]l ) u]l ) 6]1- , Vi, respectively

= Each Mf can be written as
Mf=H;U; =S M;S;U; <= MM} =H;=S8;M:S,

with H f=M fM;E a Hermitian positive definite matrix and U/ £ unitary
— Every H; can be diagonalized by a unitary matrix S
— The resulting M fls diagonal and positive definite

2. The Standard Model
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Additional generations

fermion masses and mixings

e In terms of diagonal mass matrices (mass eigenstate basis):

M, = diag(my, ms,my,...), M, = diag(my, me, my,...

M, = diag(me, my, me, . ..)

H\ (= _
Ly D — (1+;) {d/\/ldd +aM,u + 1M1

where fermion couplings to Higgs are proportional to masses and

dLEde£ uLESuu£ ILESgli

Neutral Currents preserve chirality

FLf —F, f, and L £l = Fg £,

= GIM mechanism

2. The Standard Model

= Lnc does not change flavor

[Glashow, Iliopoulos, Maiani "70]



Additional generations || quark sector

e However, in Charged Currents (also chirality preserving and only LH):
Gl dl =g tg oo
up = ur Su Sd dL — uLVdL
with V =S, S! the (unitary) CKM mixing matrix [Cabibbo ‘63; Kobayashi, Maskawa ‘73]

‘u(l — ’)’5) Vij d] W;l- + h.c.

= If u; or d; had degenerate masses one could choose S, = S (field redefinition)
and flavor would be conserved in the quark sector. But they are not degenerate

= S, and S, are not observable. Just masses and CKM mixings are observable
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Additional generations || quark sector

e How many physical parameters in this sector?
— Quark masses and CKM mixings determined by mass (or Yukawa) matrices

— A general ng X ng unitary matrix, like the CKM, is given by

nz real parameters = ng(ng — 1)/2 moduli + ng(ng + 1)/2 phases

Some phases are unphysical since they can be absorbed by field redefinitions:

u; — ei‘l’i u;, d] — eiej d] = Vi]' — Vz'j ei(ej_cpi)

Therefore 2n; — 1 unphysical phases and the physical parameters are:

(ng —1)? = ng(ng —1)/2 moduli + (ng —1)(ng —2)/2 phases

2. The Standard Model
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Additional generations || quark sector

= Case of ng = 2 generations: 1 parameter, the Cabibbo angle 6:

cosfc sinfc
V =
—sinfc- cosfc

= Case of ng = 3 generations: 3 angles + 1 phase. In the standard parameterization:

Vi Vus Vyp r o0 0 €13 0 sj3e 13 ci2 S12 O

V=1[Vy Vs Vug | =10 c23 s23 0 1 0 —s12 ¢12 O
Vig Vis Vy 0 —sp3 c23) \—s13€“3 0 13 0 0 1
( €12€13 $12€13 8136_1513\

013 only source
= | —S12C23 — C1252381361513 C12C23 — 81252351381513 $723C13 = of CP violation
in the SM !

6 i6
\ 512523 — C12023513€¥8  —C12823 — 51202351361 co3c13 )

with ¢;j = cosb;; >0, s;;=sinb; >0 (<j=123) and0 <3 <27
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Additional generations || lepton sector

e If neutrinos were massless we could redefine the (LH) fields = no lepton mixing
But they have (tiny) masses because there are neutrino oscillations!

e Neutrinos are special:
they may be their own antiparticle (Majorana) since they are neutral

o [f they are Majorana:

— Mass terms are different to Dirac case
(neutrino and antineutrino may mix)

— Intergenerational mixings are richer (more CP phases)
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*

lepton sector

e About Majorana fermions

— A Dirac fermion field is a spinor with 4 independent components: 2 LH+2 RH

(left/right-handed particles and antiparticles)

Yr="P¢p, Yr=Pry, ¢ =) =PryY°, yYr=(Yr) =Py

where ¢° = C@T = iy?y* (charge conjugate) with C = iy?4", Pg | = %(1 + v5)

— A Majorana fermion field has just 2 independent components since ¢ = r7*:

Yr=n¥r, Yr =191
where 7 = —incp (CP parity) with |7|?> = 1. Only possible if neutral

2. The Standard Model
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*

lepton sector

About mass terms

PRYL = Y5U% , YR = P55 (AF =0)
iYL , YLyt

o _C (IaF| = 2)
PRYR ’ ¢R¢R

oho 1 2hC 1 PYARPTAS
= —L,= mp YrYp + zmg l/)Ll/JL + EmR YrYp + h.c.

2

\ . \

-~ "~

Dirac term Majorana terms

— A Dirac fermion can only have Dirac mass term

— A Majorana fermion can have both Dirac and Majorana mass terms

= In the SM: * mp from Yukawa coupling after EW SSB
+ mr forbidden by gauge symmetry

* mpr compatible with gauge symmetry!

(mD = Ay U/\/i)

2. The Standard Model
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% || lepton sector

e About mass terms (a more transparent parameterization)

Rewrite previous mass terms introducing a doublet of Majorana fermions:

0 _ 0c _ _
20 = 2% = 0 4 0 = X1 Xp=X1°=Xir + X35 = Yo+ 9§
X3 X3 = X3 = Xop T X35 = YR+ ¢r

11— mp m

= —Emzixch)((L)nLh.c. with M = LR

mp mMQpR

M is a square symmetric matrix = diagonalizable by a unitary matrix I
UTM U = M = diag(my,my) , x| =Uxe (xi =UX])

To get real and positive eigenvalues m; = ;m’ (physical masses) take x¥ = UZ;:

¢1= xiL + mxjs;

U = Z;{vdiag(\/iT, V112) j
Cr = XoL + MXor

(physical fields) #; = CP parities
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*

lepton sector

e About mass terms (a more transparent parameterization)

— Case of only Dirac term (my = mg = 0)

M 0 mp N Zj 1 1 1 , ,
= = — , my=—mp, MmMy=mp
mp 0 V2 \ -1 1 ! ?
Eigenstates = Physical states
1 1
X1L = \ﬁ( (1)L - XgL) — \ﬁ(% — PR) Cr=xiL+mxir |m=—1
1 0 1 . Co = XoL +12X5r |12 = +1]
XoL = ﬁ(%lL + Xor) = \ﬁ(% + Yr) with masses m; = n, = mp

1 1 = z T e - o
= —Lm=gmp(=X1X1 +XoX2) = 5mp (6161 + 6262) = mp(Pryr + YrYL)

One Dirac fermion = two Majorana of equal mass and opposite CP parities
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% || lepton sector

e About mass terms (a more transparent parameterization)

— Case Of seesaw (type I) [Yanagida '79; Gell-Mann, Ramond, Slansky '79; Mohapatra, Senjanovic "80]
(mp =0, mp < mg)

0 m ~ cosf sinf
M = Pl = U= , 0~"D T (eoligible)
mp Mg —sinf cos6 MR my
o M
m=my >~ — < My =myN >~ MR
mpg °
— = + ¢ = —1 1 — 1 —
G1 YL UllpL [771 ] = L, = Emv VEVL + Enle NICQNR + h.c.
(2 = N =9 +myr |12 = +1]

Perhaps the observed neutrino vy is the LH component of a light Majorana v
(then v = RH) and light because of a very heavy Majorana neutrino N

eg. mp~v~246GeV, mp~my~10°GeV = m, ~01eV
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Additional generations || lepton sector

e Lepton mixings

— From Z lineshape: there are ng = 3 generations of vy [v; (i =1,...,n¢)]
(but we do not know (yet) if neutrinos are Dirac or Majorana fermions)

— From neutrino oscillations: neutrinos are light, non degenerate and mix
va) =) Uilvi) <= |v) ZU | va)
i

mass eigenstates v; (i = 1,2,3) / interaction states v, (x = ¢, 1, T)

= U matrix is unitary (negligible mixing with heavy neutrinos) and analogous
to Su, S4, Sy defined for quarks and charged leptons except for:

— v fields have both chiralities

— If neutrinos are Majorana, U may contain two additional physical (Majorana)
phases (irrelevant and therefore not measurable in oscillation experiments)
that cannot be absorbed since then field phases are fixed by v; = #;v7
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Additional generations || lepton sector

e Lepton mixings

The SO Called PMNS matrix U [Pontecorvo '57; Maki, Nakagawa, Sakata '62; Pontecorvo '68]

— does not change Neutral Currents (unitarity), but

— introduces intergenerational mixings in Charged Currents:

Lcc = \/—Zgoc')’yl_’)’S)UocszW + h.c.

(basis where charged leptons are diagonal)

l
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Additional generations

lepton sector

= Standard parameterization of the PMNS matrix:

-[Jel -[Je2 IJ?B
U=[U;x Up Uy
U U Ug

{ €12 €13

\ 512523 — €12€23 513 €

1013

512 €13

= | —s12023 — C12523513€913 €15 Co3 — 510 593 513 €13

5
—C12 523 — S12 €23 513 €13

(different values than in CKM)

[013 =05, 023 =0am and 013

size ) feim g g

$73 €13 0 e% (
€23 €13 ) o0 1

(Majorana
phases)

(not yet 413) measured in oscillations]
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Complete SM Lagrangian || fields and interactions

L=Lr+Lywm+Ls+Ly+ L+ Lpp

e Fields: [F] fermions [S] scalars

[V] vector bosons [U] unphysical ghosts

e Interactions: [FFV] [FFS] [SSV] [SVV] [SSVV]
[VVV] [VVVV] [SSS] [SSSS]
SUU] [UUVV]
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Complete SM Lagrangian || Feynman rules

e Feynman rules for generic couplings normalized to e (all momenta incoming):

(if) [FEV,] iev#(gv — gars) = iev*(gLPL + grPR)
[FES] ie(gs — gp7s) = ie(crPL + crPR)
[SV,. V] ieKguy
[S(p1)S(p2)Vyl  ieG(p1 = p2)y
[Viu(k1)Vy(k2)Vp(ks)] ie] [gyV(kZ —k1)p + Guolks — k2)u + up (k1 — kB)V}
[Viu(k1)Vy(k2)Vp(k3) Ve (k)] ie”C [28’741/8;70 — Sup8ve — gwgw}
[SSV, V] ie?Cagpu also [UUVV]
[SSS] ieCs also [SUU]
[SSSS]  ie?Cy

Note: grr = gv £ 34 Attention to symmetry factors!

CLR = 85t gp
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Complete SM Lagrangian

Feynman rules

("t Hooft-Feynman gauge)

FFV Flf]’)/ ﬁf]Z Hid]-W+ H]-uiW_ UiEjW+ Z]-viW_
1 1 1 1
— 05 f(g.. V. V=
St Qf i) 3+ \ﬁsw ! \@Sw 7 \ﬁsw \ﬁsw
gr | —Qs% | &Ly 0 0 0 0
f 1) —2Qss}, Ty
&+ = vf + af vf B 2SWCW af B ZSWCW
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Complete SM Lagrangian || Feynman rules

("t Hooft-Feynman gauge)

FFS fifiH fifix uid;p™" djuip~
1 my, 1 £ My, 1 my 1 Mg,
c _ L5 | 2T/L _Jis. | 4 LV | — L VE
Lol 2sw My 7| 25w 3 My V lesw Angw / lesw My Y
C _ Y, YO TIL s | — IV | + L V*
R 2sw Mw J 25 3 My g \/ESW My / \/ESW My Y
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Complete SM Lagrangian

Feynman rules

("t Hooft-Feynman gauge)

SVV HZZ HWTW™ | T WTy | ¢pTWTZ
K Mw/SWc%V Mw/SW —MW —Mwsw/CW
SSV | XHZ | ¢"¢Ty | ¢"¢TZ | $THW™ | pTYW~
. p p .
1 Coy — S 1 1
G | - R R A I .
ZSWCW + ZSWCW ZFZSW 2SW

VVV | yWTW~ | ZWHIW-

—1 cw/Sw
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Complete SM Lagrangian || Feynman rules | ('t Hooft-Feynman gauge)

VVVV | WHWHW-W— | WTW—ZZ | WTW—Z | WH Wy
2
Sw Sw SW
SSVV | HHW-W* | HHZZ SSS HHH SSSS | HHHH
1 1 2 2
G 02 752 2 Cs | — My Cy | — 3A2/IH2
S SwCi 2Mwsw My Sy

— Would-be Goldstone bosons in [SSVV], [SSS] and [SSSS]| omitted
— Faddeev-Popov ghosts in [UUVV] and [SUU] omitted

— All Feynman rules from FeynArts (same conventions):

http://www.ugr.es/local /jillana/SM /FeynmanRulesSM.pdf

. The Standard Model



http://www.feynarts.de/
http://www.ugr.es/local/jillana/SM/FeynmanRulesSM.pdf
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Input parameters

e Parameters:

17 1 1 1 1 9 4
formal: ¢ ¢ v A Ag
practica: « Mw Mz Mg m f Vexm

where e = gsyy = ¢'cw and

2 1 M
(x:e— MW:Egv MZ:—W

= Many (more) experiments

MH = V2A0

m]c:

= After Higgs discovery, for the first time all parameters measured!

=
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Input parameters

e Experimental values [Particle Data Group '13]

— Fine structure constant:
a~! =137.035999074 (44)  from Harvard cyclotron (g.)

— The SM predicts My < Mz in agreement with measurements:
Mz = (91.1876 +0.021) GeV  from LEP1/SLD
My = (80.385 +0.015) GeV  from LEP2/Tevatron/LHC

— Top quark mass:

my = (173.24+0.9) GeV from Tevatron/LHC

— Higgs boson mass:

Mpg = (125.9 £ 04) GeV from LHC
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Observables and experiments

e Low energy observables

— v-nucleon (NuTeV) and ve (CERN) scattering:

asymmetries CC/NC and v/7 = |s%,

— atomic parity violation (Ce, T1, Pb):

asymmetries eg [N — eX due to Z-exchange between e and nucleus = |sjy

— muon decay (PSI):

lifetime
Gam:
T, = H 2 2
_ w1927 f e i) = [Gp
: f(x) =1—8x+8x>—x* - 12x%Inx
\%%
Fermi theory (—g*<Ms3,)
: 2 : 2 7 ~
, 1€ _ —1805 5 AGr . Gr Tt
iM = ey v v =i— (eyfvy) (v L =
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Observables and experiments

e Low energy observables

= Fermi constant provides the Higgs VEV (electroweak scale):
~1/2
v=(V2Gr) " ~246Gev

= Consistency checks: e.g.

From muon lifetime:
Gr = 1.1663787(6) x 107> GeV 2

If one compares with (tree level result)

Gr T TN

V2 o 285, M2, 2(1— M3/ MZ)MZ,

using measurements of My, Mz and « there is a discrepancy that disappears
when quantum corrections are included
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Observables and experiments

e efe” — ff

et do f0€2 2 2\ il
: 55 = N Br{ [1+cos?6+ (1— B})sin6] Ga(s)
— s

e +2(,B?f —1) Ga(s) +2pfcos0 G3(S)}

Gi1(s) = Q2Q7 +2Q.QsvevfRexz(s) + (v + az) (v; +a7) [ xz(s) |
Ga(s) = (vz +az)at|xz(s) [
Gs(s) = zQleﬂeﬂfReXZ(S) +4vevfaeaf‘XZ<S>‘2

wn

93]

S
S — M% +iM I,

, NZ =1 (3) for f = lepton (quark), s = velocity

with xz(s)

To?
o(s) = N{23S Br [(3—B3)G1(s) —3(1 - B3)Gals)| , B = /1 —4m2/s
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Observables and experiments

e Z production (LEP1/SLD)
MZI 1_-'Z/ Uhad- AFB/ ALR/ Rb/ RC/ RE = MZI S%/\[

from ete™ — ff at the Z pole (7 — Z interference vanishes). Neglecting m Iz

40 :rrllfllriI'lrrlITTTYI'rrrvTvrrll't!r!"trl’!’]"'

- , ~ ... +
35 E g:.: / \\ © ALEPH 3 o . 127Tr(e e )r(had)
30 - y w\’ v DELPHI = had — M2 I—Q
. e L3 3 /-7

® OPAL

N I'(bb) I'(cc) I'(had)

; Ry = R;, = R, =
15 F F(had) F(had) F(€+€—)
10 F
5 F f ; (XMZ
I ST TOUT TV TOUTE DUUUR DUUUY DUUON DUUUT DU [(Z— ff) =T(ff) = Nf (Uf‘|‘af)
87 88 89 90 91 92 93 94 95 96

V5= Eqy (GeV)

Forward-Backward and (if polarized e™) Left-Right asymmetries due to Z:

_ A, L P _

2vfaf
or+og 4 /14 DPA, o7 + OR UJ%Jra]%
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Observables and experiments

e W-pair production (LEP2) e W production (Tevatron/LHC)
ete” > WW — 4 f (+7) pp/pp — W — fvy (+7)
A%
et b
Ve
e W
W P, P

= | Mw

e Top-quark production (Tevatron/LHC)
pp/pp > tt =6 f
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Observables and experiments

e Higgs production (LHC)
pp — H + X and H decays to different channels = | My
[VBF] g [VH]

q WW, ZZ fusion

1P T T g

2 — 1 j\ T T T T T ‘ T T T ‘ T T T T T ?3
— 1 X F WW 33
o \s=8TeV = 0 o E
— {8 Ca 8
X g o €
:’E" 10 % Oyl T zZ |3

T g

o = u — ]

= + | cc J

© o

1 m102 E

(7)) F E

o ]

o [ ]

1 I .

10
R up -
1 0 2 1 1 | 1 | 1 1 1 1 1 1 1 1 I 1 1 1 _E 1 0-4 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 1 1 1

100 150 200 250 300 80 100 120 140 160 180 200

My [GeV] My [GeV]
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Precise determination of parameters

e Experimental precision requires accurate predictions = quantum corrections

(complication: loop calculations involve renormalization)

— Correction to Gr from muon lifetime:

Gp \ GF TTKX
V2 va T a A e A M)

when loop corrections are included:

7 t e " H e " W e
MW W W T 2 Toops
Y b Ve Vi W Ve Vi Z ~ Ve

Since muon lifetime is measured more precisely than Myy, it is traded for Gr:

M?2 47w
2 M Z ms. M
it e M) == ( ﬁcpz\/@[ o H)]>

(correlation between My, m; and My, given a and Gr)
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Precise determination of parameters

Indirect constraints from LEP1/SLD Direct measurements from LEP2/Tevatron

Mpy(Mywy, m;)  Allowed regions for My

[LEPEWWG 2013]

80.5

1 1 1 |
[JLHC excluded

| —LEP2 and Tevatron
{ -~ LEP1 and SLD
68% CL

LHC excluded
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Precise determination of parameters

— Corrections to vector and axial couplings from Z pole observables:

Uf%gézvﬁAgé af%gfq:ﬂﬁAg{q
S
1
= sin fof:@{l_Re(g{//g{cx)} (1—M /MZ) ,

(Two) loop calculations are crucial and point to a light Higgs:

0.2325 [Awramik, Czakon, Freitas] e m—— p—

0230 | heii@%ﬁ/ﬁ 2 loops | s2, = 0.22290 =+ 0.00029 (tree)

0.2315 T 3 sin? 0" = 0.23148 + 0.000017 (exp)

S 0231} +QCDamT T e

—
= aghas
o

]opt

2

0.2305p*
0.23 "1 100p — a —— ﬂ':fz't.’rm
- + a0y —+ o
0.2295} | - + aa? —-+ leading o’, oo
200 400 600 800 1000
My [GeV]
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Precise determination of parameters

e In addition, experiments and observables testing the flavor structure of the SM:
flavor conserving: dipole moments, ... flavor changing: b — sv, ...

= very sensitive to new physics through loop corrections
Extremely precise measurements are:

— muon anomalous magnetic moment: a, = (g, —2)/2

a, T =116592089 (63) x 10~ [Brookhaven '06]
a7’ =116584718  x 10~ [QED: 5 loops]
[
[e”

ay, T — asM =287 (80) x 101!

W = 154 %107 [W, Z, H: 2 loops] g .
.00 !

and = 6930 (48) x 10~ 1 e~ — had]

aM = 116591802 (49) x 10~1

— electron magnetic moment (new physics suppressed by a factor of m?/ m%):

exp: ge/2 = 1.001159 65218076 (27)

= a1 = 137.035999 074 (44)
theo: QED (8 loops!)
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Global fits

e Fit input data from a list of observables (EWPO):
. 1
MH/ MW/ FW/ MZI FZI Uhad- Alb_“,lcglfl Ab,C,f/ Rb,c,fl Slnz Ge?fft/ c e
finding the 2. for n4.s = 13 (14) when My is included (excluded):

zxs(M%) Aochad(M%), Gr, Mz, 9 fermion masses, My

4
7

-~

1 (QCD) 17—4=13 (CKM irrelevant)

Gritter 2013] http://gfitter.desy.de

2
Ndof Xaun | P-value

14 20.7 0.11 = SM describes data to 1.60 (about 90% CL)
13 193 0.11
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Global fits

e Compare direct measurements of these observables with fit values:

[LoL1"602L:AIX4E] [ 10 paeyiaq] Aq paiidsul joid

10-
€0
00
00
A
00
90
00
G'c
60
L0
6'L-
¢o0
8'0-
-
9'tl-
00
¢o
1'0
¢'L-
00

seawl seaw 1
o/(C70- 0)
€ 4 1 0O - ¢ ¢
__________________________________
AR A
P
o
S
m i
i
|
[
I
g
I
e
H—
__________________________________

juswainseaw "y o/m =
juswainseaw My yum =

Z \pey
()" OV

a4

n.o<
a4

o.o<

g4
(0)."e,us

1da)

(@1s)'v

= some tensions (none above 30): A;(SLD), A%, (LEP), Ry, ...
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Global fits

= Fits prefer a somewhat lighter Higgs:

(3] 5 — L | L | L L L L | LN B L | L §:
= SM fit w/o M,; measurement =

4 b T e — 20
- -@- ATLAS measurement [arXiv:1207.7214] -
3-5 E_ -l- CMS measurement [arXiv:1207.7235] _E
3 B y
25 &
2 =
1.5 — —

Ll T | SR 1o
0.5 — =
0 - L 1 1 | | L 1 1 1 | L 1 1 1 | I I | L 1 1 1 | L 1 1 1 | L1 | L1 1 1 -

60 70 80 90 100 110 120 130 140

M, [GeV]
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Global fits

= In general, impressive consistency of the SM, e.g.:

(o]
o
(4]

o)
o
'S ¢
a
T T T[T T

68% and 95% CL fit contours
w/o M,, and m, measurements

68% and 95% CL fit contours
w/o M, m, and M,, measurements

M,, world average = 1o

I I I I I I I I I I I I I IS

b

T

T

I ',I' I

.~ Ny
.~ N
Y A\

80.4

......................

80.35

80.3

” ” .

t’ v .

. . E

. L :
’1 1 1 1 d | (|

150 60 170

180

fitter SM§
1 1 | 1 1 1 1
190 200
m, [GeV]
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Summary

e The SM is a gauge theory with spontaneous symmetry breaking (renormalizable)

e Confirmed by many low and high energy experiments with remarkable accuracy,
at the level of quantum corrections, with (almost) no significant deviations
e In spite of its tremendous success, it leaves fundamental questions unanswered:
why 3 generations? why the observed pattern of fermion masses and mixings?

and there are several hints for physics beyond:

— phenomenological: — conceptual:
* (g —2) * gravity is not included
* neutrino masses * hierarchy problem

+ dark matter

* baryogenesis = The SM is an Effective Theory
* cosmological constant valid up to electroweak scale?
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AND WHAT IS THE USE OF THIS?

WE ARE NOT QUITE SURE. THIS IS BASIC RESEARCH

GREAT! WE'RE BREAKING OUR BACKS DRAGGING ROCKS
AND ANIMALS WHILE YOU GUYS ARE STANDING AROUND
DOING USELESS THINGS
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.Y PARA QUE SE PUEDE USAR ESTO?

NO SABEMOS, LO QUE HACEMOS ES INVESTIGACION BASICA

QUE BONITO, NOSOTROS NOS MATAMOS EMPUJANDO PIEDRAS
¥ ARRASTRANDO ANIMALES SALVAJES, MIENTRAS LOS SERORES
SE ENTRETIENEN HACIENDO COSAS QUE NO SIRVEN PARA NADA
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Kinematics
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Cross-section

Py, My b3 mg
Pg, My DP9 My o
1

WD) = i papaf = wmdy 7

IMPP2r)*s* (pi—pr) [ ] (2n)3iE

j=3

> Sum over initial polarizations and/or average over final polarizations if the

initial state is unpolarized and/or the final state polarization is not measured

> Divide the total cross-section by a symmetry factor S = 1

identical particles of species i in the final state

| ki! if there are k;

Kinematics

91



Cross-section

case 2 — 2 in CM frame

S
I
S

:>/dq)2 =

and if mqy = my

p]_’ m]_ p3’ m3
—po P = P3 = —P4
p2, m2 p4a m4
d3p3 d3]94 ‘p’dﬂ
2m)* / 5t —p3— -
(271) (P1+p2—p3—pa) (271)32E3 (277)32E, 167T2Ecyp

= 4{( p1p2)2 — m%m%}l/z = 4EcMm|q|

do 1 |p

dQ)

—(1,2 = 3,4) =
6472E2,, |q]

M|

Kinematics
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Decay width

dr(i — f) = 5y | MP@m)64 (P — py)]

casel — 2

> Note that masses M, m; and m; fix final energies and momenta:

Ei =

pl = Ip1] = |p2| =

P,M

Mz—m%—l—m%

P, My

pza m2

Mz—m%—km%

n d3p],
15 (2m)%2E;
ol 712 =5mpM

{[M? — (mq + mp)?|[M? — (my — m2)?]}

1/2

2M

Kinematics




Loop calculations
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Structure of one-loop amplitudes

e Consider the following generic one-loop diagram with N external legs:

b1 D2
\ q+ ki /
m
q 4 My
my—1
// q+kna \\
PN PN-1
N-1
ki=p1, ka=pi+p2 kn-1= ) Pi
i=1
e It contains general integrals of the kind:
LN E‘uﬁl—D/ d”q Gn """ up
1672 FiHE (270)7 [q? = mgl[(q + k1)? = mi] - - [(q + kn-1)* = m3y ]

Loop calculations
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Structure of one-loop amplitudes

>

>

>

D dimensional integration in dimensional regularization
Integrals are symmetric under permutations of Lorentz indices
Scale y introduced to keep the proper mass dimensions

P is the number of g’s in the numerator and determines the tensor structure of the
integral (scalar if P = 0, vector if P = 1, etc.). Note that P < N

Notation: A for T, B for T2, etc. For example, the scalar integrals Ay, By, etc.

The tensor integrals can be decomposed as a linear combination of the Lorentz
covariant tensors that can be built with g, and a set of linearly independent
momenta [Passarino, Veltman "79]

The choice of basis is not unique

Here we use the basis formed by ¢,, and the momenta k;, where the the tensor
coefficients are totally symmetric in their indices [Denner 93]

This the basis used by the computer package LoopTools [www.feynarts.de/looptools]
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Structure of one-loop amplitudes

e We focus here on:

By = guvBoo + kiuk1,B11
CP‘ = klyCl + szCZ

2
Cyv — gyvC00+ Z kiykjvcij
=1

CP‘VP T
e We will see that the scalar integrals Ag and By and the tensor integral coefficients

B4, Boo, B11 and Cyp are divergent in D = 4 dimensions (ultraviolet divergence,
equivalent to take cutoff A — oo in g)

e It is possible to express every tensor coefficient in terms of scalar integrals
(scalar reduction) [Denner '93]
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Explicit calculation

e Basic ingredients:

— Euler Gamma function:
(x+1) = xI['(x)

Taylor expansion around poles at x =0, -1, -2,...:

x=0: T(x) = %—’erO(x)
x=-n: T(x) = nf&:z];)—’y+1+---+%+(’)(x+n)

where v ~ 0.5772... is Euler-Mascheroni constant

— Feynman parameters:

_ | (n—1)!
aq1dy - / Ao <Z 1) (X141 + X202 + - - - Xpan]"
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Explicit calculation

— The following integrals, with e — 07, will be needed:

/ dPq 1 (=DM T(n—D/2) (1)“9/2
(2n)D(q2—A+ie)n - (4m)b/2 T(n) A

j/ 9> (= 1DF(n—D/2—1) (1)’“9/21
D (g2 — A +ie)*  (4m)D/ ['(n) A
> Let’s solve the first integral in Euclidean space: q° =iq%, ¢ = qg, 4° = —¢7,

/ d’g : — i(—l)”/ dge 1
(2m)P (4% — A +ie)" (27)P (93 + A)"
(equivalent to a Wick rotation of 90°). The second integral follows from this

Im ¢"

S=q’>+A
—f+17 10
> _\\ > Req()
° €
A +VO—1——=
Vo 5

Loop calculations
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Explicit calculation

In D-dimensional spherical coordinates:

/quE L [daop [~ dgegp ™! L _7,x1
CmP (g + oy~ TSy THIE @A T AT

27D/2
[(D/2)

where Ty = /dQD:

0 D N
since (ﬁ)D = (/ dx e_xz) :/de o= Ll :/dQD/ dx xPle—¥°

— (/dQD> %/OOO dt tP/2le ! = (/dQD) I'(D/2)

and, changing variables: t = q%, z=A/(t+ A), we have

n—D/2 4 n—D/2 B
e

1
where Euler Beta function was used: B(a, B) = / dz z* 11 —2)P7 ! = (a)T(B)
0
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Explicit calculation || Two-point functions

q+ ki
p Q :
q
i B dP {1, 9", q"q"}
By, BV, B :4D/ 1 i
162 (Bo Hargs) =10 | e (@ =) [(a + p)2 -l
> ki =p

> The integrals depend on the masses mg, m; and the invariant p*:

(args) = (p* mg, m3)
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Explicit calculation || Two-point functions

e Using Feynman parameters,

1
— = / dx 5
amaz  Jo  [mx+ax(1—x)]

D U UV U AV
{BO,B BW} ]/14D/dx/dq{1 A/qq+AA}

16712 (72 — )2

with
Ny = X224 x(m — m — p?) + i

o = (q+p)*—mj

2 )
ap = (g — My

and a loop momentum shift to obtain a perfect square in the denominator:
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Explicit calculation || Two-point functions

e Then, the scalar function is:

i
By = 4D/d /
1672 * q—Az)

= By = Ae— dx an——I—O() D =4—¢|

2
where A, = -7 + In 47t and the Euler Gamma function was expanded around

x =0 for D =4 —¢, using x* = exp{elnx} =1+ elnx + O(e?):

R 2-D/2 :
]/14_D1F(2 D/2) (A12> _ i (A ln&) L O(e)

(47t)D/2 16712 u?
e Comparing with the definitions of the tensor coefficientes we have:
i
B¥ = —u* b / d /
1672 * D (g2 — Az)
A
= By = ——A€+/ dxxln—2+(9(e) D =4 — €]
2 0 u
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Explicit calculation || Two-point functions

and
L pw _ 4D/ / ﬁl/DSWJFA”AV
Tor2” dx (P — Br)?
= By = (]9 —37710 3m1)(A —‘,—2’)/—1)—|—0( ) [D:4—€]
Bll — —A — dxx ln;u——l—(/)( ) [D:4—€]

where g#g" have been replaced by (g%/D)g"’ in the integrand and the Euler
Gamma function was expanded around x = —1 for D =4 — e:

+p il(1—D/2) ( 1 )1D/2 i 1

" ampre) \ A = Tomap 2B 27 = 1) + Ole)
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Explicit calculation || Three-point functions

P1

P2 — D1

—P2

i p [ d° {1, 9", 9"9"}
Co, CF, CH ars:4D/ 1 1
tom2 (0 OB = G n E ) [+ p ] (g + p)? ]

> It is convenient to choose the external momenta so that:
ki =p1, ko= p2.
> The integrals depend on the masses my, m1, m, and the invariants:

(args) = (p7, Q% p5;mg, mi, m3), Q> = (p2—p1)>
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Explicit calculation || Three-point functions

e Using Feynman parameters,

1 1—x 1
—_— 2/ dX/ Yy 3
a1a-as3 0 0 [a1x+azy+a3(1 — X _y)]

1—x D _AH gH HAY
{Co, CF, CIY = 2ut D/dx/ dy/dq{l A(qqqA)H\A}
- 823

167T2
with

Az = x*pi +y7ps + xy(pi + p5 — Q) + x(mf — m§ — p3) + y(m3 — m§ — p3) + mj

am = (g+p1)*—mj

i = (44 p2)*—m>

2 2
a3 = q- —mp

and a loop momentum shift to obtain a perfect square in the denominator:

gt — g — A', AV = xpl +yph
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Explicit calculation || Three-point functions

e Then the scalar function is:

i B 4 D 1—x /
o2 <0 = /dx/ dy D (g2 —A3)

1—x
-~ C = - / dx / dy — [D—4
0 0 0 Y A3 [ )
e Comparing with the definitions of the tensor coefficientes we have:
Lor = - 4D/dx/1xd/
162~ / D (4 —A3)3

1—x
- ¢ = /de/O dyA—3 D = 4

1d 1—xd ]/
C, — / / Y D=4
2 0 * 0 yA3 | |
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Explicit calculation || Three-point functions

1-x (4?/D)gH" + Al A
W _ 4 D g
16712C /dx/ dy/ (g% — A3)3
d - xd
~ Cpy = —/ / ¥ D=1
= 0o o yA3 | |
1 - 2
C22 = —/ dX/ dy— [D:4]
A3
1—x
C12 = / dX/ dy [D:4]
1—x A3
Cop = 1AG—E/O dx/o dyIn'3+0(e)  [D=4-¢]

2
where A; = c ot In 47 and g"q" was replaced by (g°/D)g"’ in the integrand
In Cyp the Euler Gamma function was expanded around x =0 for D =4 — €:

s pil(2=D/2) (1\*P i 1/ A
H (am)D72r(3) (A3) 16n22(A lny—>+0()
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Note about Diracology in D dimensions

e Attention should be paid to the traces of Dirac matrices when working in D
dimensions (dimensional regularization) since

Yyl + 'yt = 2g]/WLLxAL/ g”vg;w = Tr{g'w} =D

Thus, the following identities involving contractions of Lorentz indices can be

proven:
Yy = D
Y'Y’y = —(D—-2)9"
VY vPy, = 48" — (4 —D)y"yF
Y'Yy v = =2979"9" 4+ (4 — D)y v+
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