

Search for the Higgs boson in VH, H→bb using the ATLAS detector

Silvia Fracchia

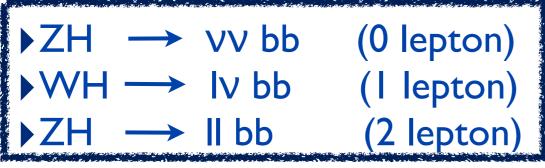
as student of the ATLAS HSG5 working group

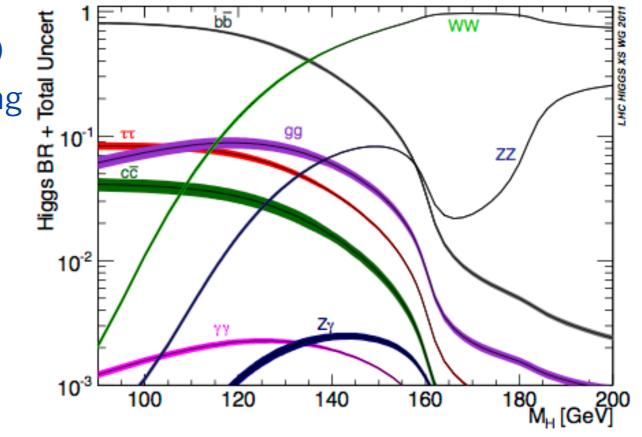
IFAE Barcelona

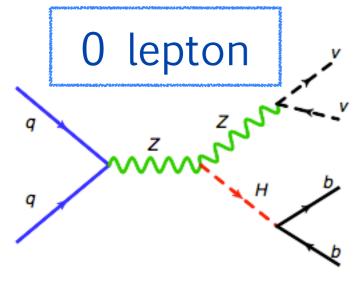
23 September

Taller de Altas Energías 2013

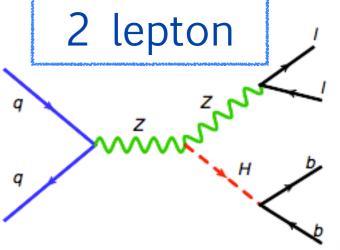
Introduction


- Analysis overview
- Event selection
- Search strategy
- Background modeling
- Systematic uncertainties
- Statistical treatment
- Validation: diboson fit
- Results
- Summary


Analysis overview


Highest B.R. in the low mass region

- Investigating fermionic couplings
- Associated production VH (H->bb)
 - Necessary to cope with the overwhelming Hamiltijet background at the LHC
- Combination of three channels in order to increase the sensitivity


7TeV pp collisions: 4.7 fb⁻¹ 8TeV pp collisions: 20.3 fb⁻¹

N.B. lepton = (e,μ)

1 lepton

nber

Event selection

COMMON SELECTION:

- Two jets (p_T > 20 GeV and central region), both b-tagged with MV1 (70% b-tagging efficiency)
- Leading jet p_T > 45 GeV
- $ightharpoonup \Delta R$ cuts bewteen the two leading jets depending on p_T^V to exploit the different signal/background kinematics

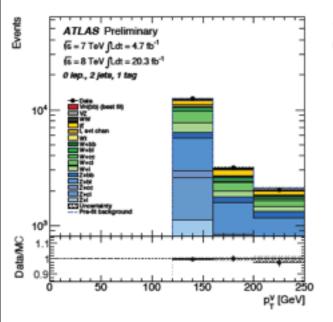
PLUS CHANNEL SPECIFIC KINEMATICS CUTS:

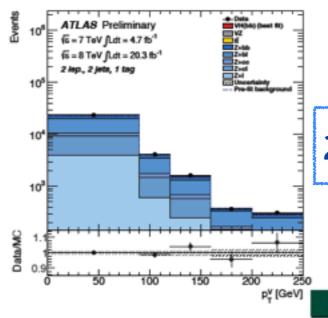
- ▶ lepton selection for reconstructing the vector boson candidate
- specific cuts to suppress QCD and other backgrounds (more in the backup)

p_T^V defined as:

1-lepton: p_T(l+missing transverse energy)

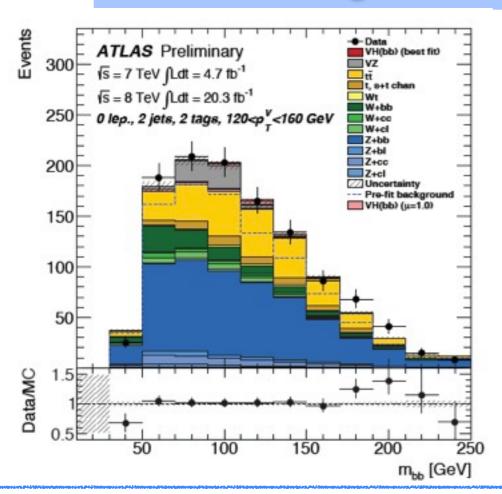
2-lepton: p_T(ll)


0-lepton: missing transverse energy


Search strategy

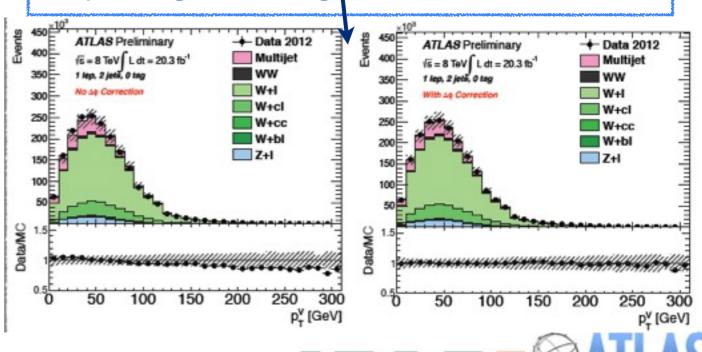
- Definition of different event categories by discriminating on:
 - number of jets (2, 3 jets regions)
 - number of b-tags (0, 1-tag control regions, 2-tag signal regions)
 - ightharpoonup Each category divided in **bins of p**T V :
 - → 0-90, 90-120, 120-160, 160-200, >200 GeV
- Different categories dominated by different backgrounds:

	2jets, 1tag	3jets,	1tag	2jets,	2tags	3jets,	2tags	top	eμ	CR	х3	\mathbf{p}_T^V	bins
0-lepton	W+jets/Z+jets	W+j/Z+j/top		top/Z+b		top/Z+b			-		x5	\mathbf{p}_{T}^{V}	bins
1-lepton	W+c	W+c	top	W+b	top	to	p		-		x5	\mathbf{p}_{T}^{V}	bins
2-lepton	Z+c	Z+c		Z+b		Z+b			top		x5	p_{T}^{V}	bins



2jet 1tag p_T^V distribution

Background modeling


Backgrounds and generators:

- ttbar POWHEG+PYTHIA
- ▶ W+jets (ll, cl, cc, bl, bb) SHERPA
- ▶ Z+jets (ll, cl, cc, bl, bb) SHERPA
- ► WH/ZH PYTHIA8
- ▶ single top ACER/POWHEG
- diboson Herwig
- multijet data driven

- Mbb shape
- ▶ 3 to 2 jets normalization
- ▶ p_T^V shape
- ▶ flavor composition in V+jets
- normalization (diboson, single top)

MC mismodeling of data:

- ▶ truth top p_T correction derived from dedicated study
- Δφ correction for V+jets Sherpa,
 improving modeling of other distributions

Systematic uncertainties

Three categories:

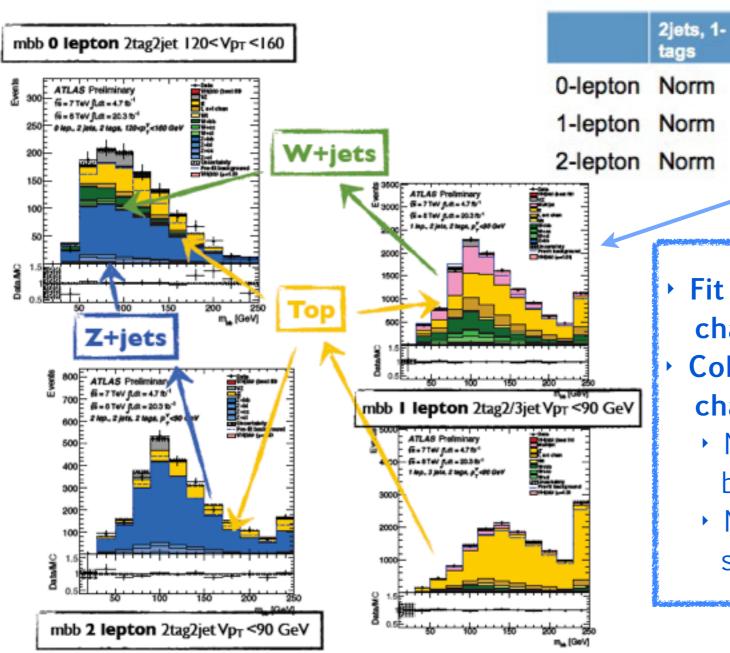
- experimental uncertainties
- uncertainties on the modeling of the background processes
- theoretical uncertainties on the signal processes

Experimental

- luminosity and pileup
- trigger
- lepton ID and reconstruction
- MET
- jet energy scale and resolution
- jet vertex fraction
- b-tagging

Theoretical

- NLO EW corrections
- renormalization and
 - factorization scale
 - PDFs
 - signal acceptance


+ uncertainties on flavor composition, cross sections

- Uncertainties related to **b-tagging** and **jet energy scale** are dominant
- Each systematic uncertainty is treated as a nuisance parameter in the statistical fit

Statistical treatment

- Combined profile likelihood fit
- Each systematic uncertainty is treated as a nuisance parameter
- Fit performed in signal regions and 1-tag, top control regions

Norm Norm Shape Shape Norm Norm Shape Shape Norm

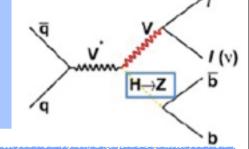
Shape

2jets, 2-tags

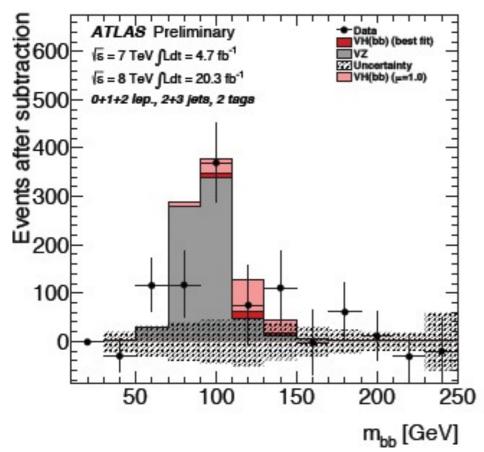
3jets, 2-

Shape

Top emu


3jets, 1-tags

Norm


- Fit performed simultaneously on the 3 channels and all the regions
- Coherent normalization among the channels and region
 - Normalization floated for main backgrounds: V+cl, V+bl, V+bb/cc, ttbar
 - Normalization fixed to MC for diboson, single top, V+light jets

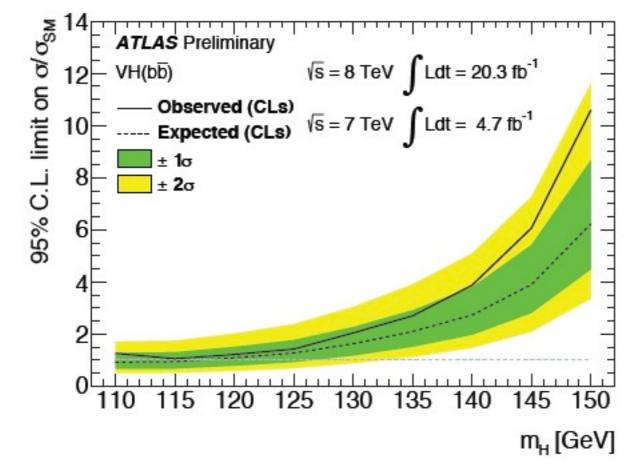
Validation: diboson fit

- ► The VZ, Z->bb process has a similar signature with 5 times larger cross section with respect to VH, H->bb
- ▶ Use this process to validate the fit model with identical procedure used for the Higgs boson search

 $\mu = \frac{\sigma_{meas}}{\sigma_{SM}}$ $\mu_{VZ} = 0.9^{+0.2}_{-0.2}$ compatible with SM expectation $\mu\text{=}1$

ATLAS Prelim. Total uncertainty o(sys) ± 1σ on μ_{ν7} o(theo) VZ(bb), 7 TeV $\mu_{VZ} = 0.7^{+0.5}_{-0.5}$ VZ, 0 lepton $\mu_{VZ} = 0.7^{+0.8}_{-0.7}$ VZ, 1 lepton $\mu_{VZ} = 0.3^{+0.8}_{-0.8} \pm 0.5$ VZ, 2 leptons VZ(bb), 8 TeV $\mu_{VZ} = 1.0^{+0.2}_{-0.2}$ $\mu_{VZ} = 1.2^{+0.4}_{-0.3} \pm 0.2$ VZ, 0 lepton $\mu_{VZ} = 0.9^{+0.3}_{-0.3} \pm 0.2$ VZ, 1 lepton $\mu_{m} = 0.9^{+0.4}_{-0.4}$ VZ, 2 potons Comb. VZ(bb) VZ, 0 lepton $\mu_{VZ} = 0.9^{+0.3}_{-0.3} \pm 0.2$ VZ, 1 lepton VZ, 2 leptons $\sqrt{s} = 7 \text{ TeV } \int L dt = 4.7 \text{ fb}^{-1}$ Signal strength $[\mu_{VZ}]$

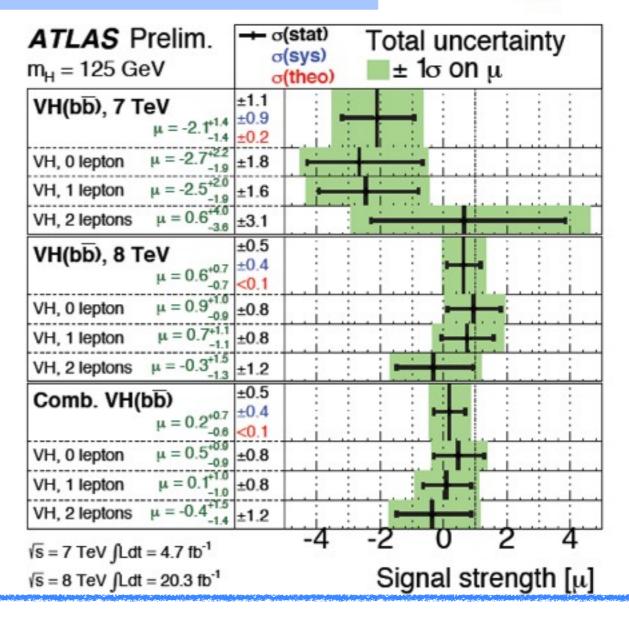
Light red: SM Higgs peak with $\mu = 1$ Dark red: Higgs peak with fit μ result


Obs. (exp.) signifi

Obs. (exp.) significance (5 = 8 TeV)Ldt = 20.3 fb⁻¹ 4.8 (5.1)

Results

$$\mu = \frac{\sigma_{\mathrm{meas}}}{\sigma_{\mathrm{SM}}}$$


- ▶ Fit for the Higgs signal performed with the diboson contribution constrained to its SM value
- No significant excess observed

Observed (expected) 95% CL limit on σ/σ_{SM} at m_H=125 GeV:

1.4 (1.3)

The fitted value of the signal strength parameter (m_H=125 GeV) is: $= 0.2 \pm 0.5 \text{ (stat.)} \pm 0.4 \text{ (syst.)}$

Summary

- ▶ Latest preliminary results on the ATLAS search for VH, H->bb production
 - ▶ Combination of full 7TeV (4.7 fb⁻¹) and 8TeV (20.3 fb⁻¹) datasets
- ▶ The diboson VZ cross-section measurement is consistent with SM prediction with an observed (expected) significance of 4.8 (5.1) standard deviations
- The search for VH production is performed and a combined observed (expected) 95% CL limit on σ/σ_{SM} at m_H=125 GeV of 1.4 (1.3) is obtained
- The observed signal strength is $\mu = 0.2 \pm 0.5$ (stat.) ± 0.4 (syst.)
- ▶ Besides the gain from the increased integrated luminosity, the analysis has seen an improvement in sensitivity of ~35% with respect to the last released results
- ▶ Future improvements will come... Stay tuned!
- ▶ For more information: ATLAS-CONF-2013-07

BACKUP

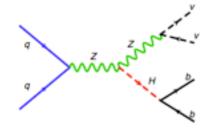
Event selection

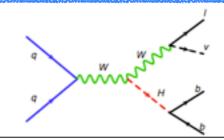
COMMON SELECTION:

- Two jets (p_T > 20 GeV and central region), both b-tagged with MV1 (70% b-tagging efficiency)
- Leading jet p_T > 45 GeV
- ΔR cuts bewteen the two leading jets depending on p_T^V to exploit the different signal/background kinematics

PLUS CHANNEL SPECIFIC KINEMATICS CUTS:

0-lepton cuts


- no loose leptons
- E_Tmiss > 120 GeV
- QCD rejection cuts


1-lepton cuts

- 1 tight lepton
- no additional leptons
- QCD rejection cuts
- \rightarrow m_TW>40 GeV (if p_TW<160)
- \rightarrow ET^{miss}>50 GeV (if pTW>200)

2-lepton cuts

- →1medium + 1loose lepton
- no additional leptons
- 83<m_{ll}<99 GeV
 - E_Tmiss < 60 GeV

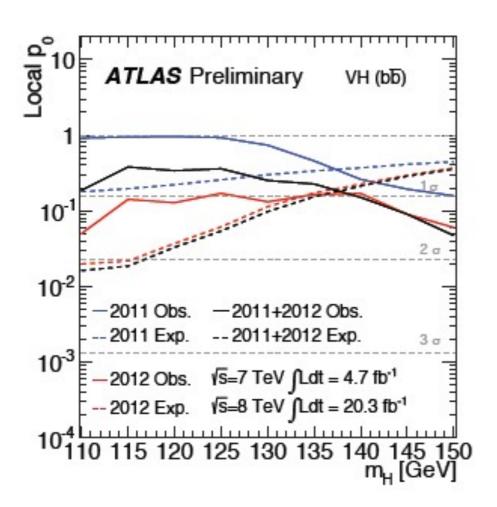
Fil model

Combined profile likelihood fit

Likelihood function constructed as product of Poisson probability terms

$$L(\mu,\theta) = \prod_{j=1}^{N} \frac{[(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

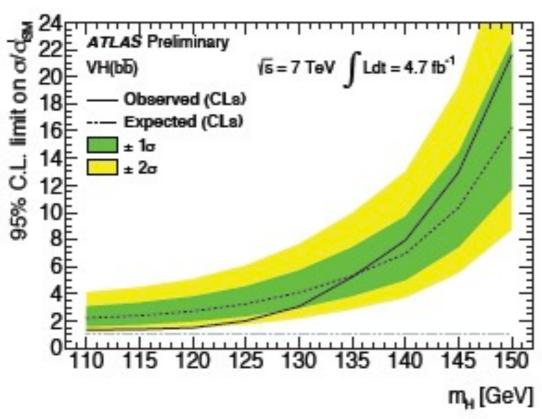
Signal and background parametrization:

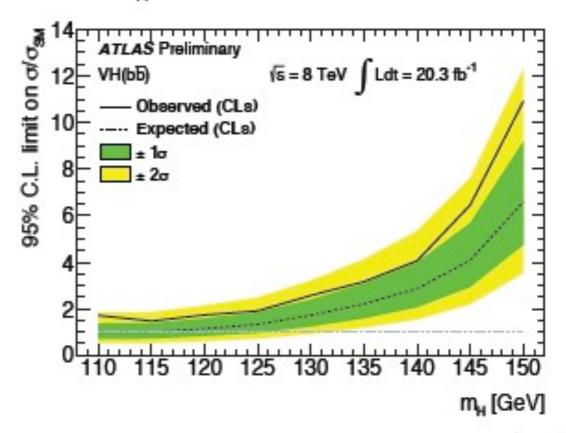

$$s_i = s_{tot} \int_{\text{bin } i} f_s(x; \theta_s) dx$$
 $b_i = b_{tot} \int_{\text{bin } i} f_b(x; \theta_b) dx$

Test statistics constructed according to the profile likelihood ratio:

$$\Lambda(\mu) = \frac{L(\mu, \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta})}$$

θ: nuisance parameters




More results

7 TeV data deficit drives a rather small excess compared with the SM po expectation

Compatibility with $\mu=0:36\%$

Compatibility with $\mu=1:11\%$

