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Plan of the course

® First hour:anomalies

* Classical and quantum symmetries. Anomalies
* The axial anomaly: a case study.

* Gauge anomalies and their cancellation.

® Second hour: phenomenological applications

* The phenomenology of the axial anomaly.
* Nonperturbative physics from anomalies.

* Anomaly cancellation and model building.

® Afternoon session: tutorials (see exercise sheet)
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Part |

Anomalies: what they are and why
we should care about them
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Classical and Quantum Symmetries

Classically, continuous symmetries are associated with conserved quantities via
Noether’s theorem. Given a theory with action S|¢;| invariant under global
transformations

Emmy Noether

(3§q5, Zgj ij (/)k (1882-1935)

We use “Noether’s trick”: let us make the parameters &; depend on the position X. If these
functions decrease fast enough at infinity, the variation of the action now reads

S[s + 8 4] = S[¢] +2Jd4x& () (¥)

= 5[o] - Y j d*x E(x)0p 1 (x)

If all fields are on=shell, the action is invariant under any variation of the fields, hence

Jd4x§i(x)@uji“ (x) =0 e Ouji (x) =0
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Let’s move to the quantum theory. Consider the correlation function of a number of
operators

@it| o). o) |12y =5 | (n%) O1(31) .. Ol 519
and carry out a change of variables in the path integral in the right-hand side

di(x) — ¢/ (x) = §i(x) + > Ej(x)Fj (o)

The variation of the action is given by
ST + 891] = S[¢] Zfd“x&, Ol (x)

while the first-order variation of the operators 0,(x) are

Ou(x) — O (x) = Ou(x) + ey
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Let us assume, besides, that the integration measure is invariant under these variations

H D! = H D¢

Collecting the first-order variation of the path integral and setting it to zero (it is just a change
of variables!),

=0

| N
EJ (H Q(Pi’) ﬁ{ (Xl) - ﬁ;l(xn)elS[(pi]

3

we arrive at the Ward identity (for the time being, we have restored #)

n

fdztxgj(x)ay@|T[j;‘(x)ﬁ1(xl)...ﬁn(xn)]|sz> - Z<Q|T[ﬁ1 (xl)...égﬁa(xa)...ﬁn(xn)] Q)

a=1

l

h

Particularizing this identity to the case O,(x) =1 we find

f 0 xE(x) 0, (6)) = 0

The Noether current is conserved quantum mechanically!
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We can relax the condition of invariance of the measure and assume that there is a nontrivial
Jacobian

| |24 = [1 +2Jd4x§k(x)/k(x)} | |29
i k i

This introduces an extra term in the Ward identity

l

hfdatxsj(x)%x)@w[j;‘(x)ﬁl(xl)...@(xn)]|g> — Z<Q|T[ﬁ1(x1)...6§ﬁa(xa)...ﬁn(xn)]|52>
a=1

_<Q|T[ﬁ1 (xl) - ﬁn(xn)] |Q>Z Jd4x§k(x) /k(x)
k

that spoils the quantum mechanical conservation of the Noether currents

J d*x §(x)0, Gl (x)) = ih f dxE(x) 7 (x) DI 0u(j; (x)) =ih_Zi(x)

Whenever this happens, we say that the symmetry in question is anomalous or that the
theory has an anomaly.

M.A Vazquez-Mozo Introduction to anomalies and their phenomenological applications Taller de Altas Energias 2013



We can relax the condition of invariance of the measure and assume that there is a nontrivial
Jacobian

| |24 = [1 +2Jd4x§k(x)/k(x)} | |29
i k i

This introduces an extra term in the Ward identity

n

fdatxsj(x)%x)@w[j;‘(x)ﬁl(xl)...@(xn)]|g> — Z<Q|T[ﬁ1(x1)...6§ﬁa(xa)...ﬁn(xn)]|52>

a=1

_<Q|T[ﬁ1 (xl) - ﬁn(xn)] |Q>Z Jd4x§k(x) /k(x)
k

l

h

that spoils the quantum mechanical conservation of the Noether currents
quantum
effect

J d*x E(x) 0, (Gl () = if f g () Fi(x) EmmE 0u(ji (%)) =[] 7k (x)

Whenever this happens, we say that the symmetry in question is anomalous or that the
theory has an anomaly.
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An anomaly is the quantum breakdown of a classical symmetry.

Anomalies can be of two very different types:
* When they affect a nonfundamental symmetries, e.g.

O Scale invariance

O Global symmetries

These anomalies are at the origin of very interesting physical phenomena:

0

asymptotic freedom, 7~ — 27,...

* When they affect local (gauge) symmetries
O Gauge anomalies

O Gravitational anomalies

These are very dangerous anomalies that have to be cancelled somehow, otherwise the
whole theory becomes inconsistent.
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v 8 First example: Scale invariance

Let us consider a massless @* theory which is invariant under scale transformations

L (1 g . aH — x'* = px?
SZJd x(zﬁud)@“qb—ﬁ ) / A i |
px) — ¢ (x) =L “@p(A "x) (withA=1)

This invariance is broken by quantum corrections. Regularization and renormalization
requires the introduction of an energy scale that breaks scale invariance

This is reflected in the running of the coupling constant. At one loop:

2

38 g(uo)
B(g) =
167° 1 — 2=g(uo)log (%)

so physics at different scales “does not look the same”.

In QCD this quantum breaking of scale invariance is responsible for the most interesting
features of the theory, such as asymptotic freedom and confinement.
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L oy 8 Second example: The axial anomaly
Let us focus on QED:
1 _ _
SQED = Jd“x [_ZFMVFMV +P(id —m)y — el/ﬂ?“/)]
The theory has a U(1) gauge symmetry

P (x) —> Wy (x)

Au(x) — Au(x) + opa(x)

with a conserved vector current
J,=yy'y = 0,0, =0

This invariance is crucial for the internal consistency of the theory (e.g. unitarity).
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In addition, the massless theory has a global axial-vector symmetry
P (x) — Py (x) BeR
The associated conserved axial-vector current is
I\ =Py'ypsy = 0,5\ =0

In the quantum theory, both the axial and the vector-axial current are composite
operators that need to be defined.

The question is whether these operators can be defined to satisfy the quantum
conservation equations

0u(J (X)) =0

0u(J} (1)) =0 00>
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To analyze this problem, we look at a massless Dirac fermion coupled to an classical
external U(1) gauge field

S = Jd“x (@@w — e]‘!/{gz/“) (remember that Jy; = yy"y)

The expectation value of the axial current in this background is given by

f@lp ,@w‘]x (x)eigd4x(i@¢w—615 )

This correlation function can be computed in perturbation theory

T )y = —ie j d*y O[T (4)7% (7)]10) )

82
-5 Jd4y1d4y2 <O|T[JK (X)J\O,C (y1)-](3/ (32)]10).27, ()’1)<be’ ) +...
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To analyze this problem, we look at a massless Dirac fermion coupled to an classical
external U(1) gauge field

S = Jd“x (@@w — e]‘!/{gz/“) (remember that Jy; = yy"y)

The expectation value of the axial current in this background is given by

f@lp ,@w‘]x (x)eigd4x(i@¢w—615 )

This correlation function can be computed in perturbation theory

0
T )y = —Wi TTE (3)]10) 7 ()

62

; Jd4)’1d4)’2 O|T T4 ()G (1)5 (372)]10) e (312 (v2) -+ . .
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We are faced with the calculation of the following free-field correlation function
CHY (x,y) = 0T [J (x)Jy ()47 (0)]]0)

Which, applying Wick’s theorem gives

| ] |—| | ‘ [ |
") Py (0)]0)

C*V9 (x,y) = O[Py* ysyp (x) PyYyY (y) Py (0)[0) + 0Py  ysyp (x) PyYy(y)

These contractions are codified in the celebrated triangle diagram:

C*"Vo(x,y) = A
Jy 7

- N

The sought conservation equation is then

symmetric

62 X Vv
OulJy (X))er = ) Jd“yld“yz@,ﬁ JCHYO (x,y).f (x — y1 + y2) g (X — y2)
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It is convenient to work in momentum space

4 4
O T[IX (0) (x1)Jy (2)]]0) = J (d ) f L ipuab (p,q)eirHie

2m)* ) (2m)4
where p¢ p*
iTyap(P,q) = (p+q)" A+ (ptg) 3
o~ y p

and the anomaly equation to be computed is
(p+4)uil"*F (p,q) =7

Applying the Feynman rules of QED, we have

d*/ i i i o
T _ 2 T » P q
lMOtﬁ(l’?Q) € J(27L’)4 r(Z—¢+isy“ySZ+¢+isy Z—I—l'&‘yﬁ) T ((x<—)ﬁ>
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However, the relevant Feynman integrals are linearly divergent.

Why is this a problem? Let us look at the simple one-dimensional integral

( lim f(x) = constant

o0 |x| > 00
W= defra) A o

— 0 im f(x) —0 ——— logarithmically divergent
L x> g or convergent

linearly divergent

Computing the derivative
#+ () if linearly divergent

ra= | " dxf(x+a) = f(o0) — f(—o0)

— o0 — 0 if logarithmically divergent
or convergent

Hence, if the integral is linearly divergent the result of the integration depends on a shift in
the integration variable!

The same happens for multidimensional integrals.
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Thus, the triangle diagram is ambiguous because its contribution depends on how we label
the loop momentum!

{—p e
A/ #

From Lorentz invariance, the most general form of il ,,5(p,q) is (the Levi-Civita tensor is
due to Ys)

. A
ilyap(Piq) = fieuapoP” + 2€uapod’ + EuacrPpP’q
+ f1€0000dP°q" + fs€uporPar’q’

A A A
+ f6€up0rqaP 9" + f1€aporPuP’qd” + [3€aporquP’q

Besides, from Bose symmetry

| | filp.q) = —f2(q,p),  f3(p.q) = —fe(q.p)
Tuep(P1q) = Hypald; ) - falp.@) = =fs(a,p),  fi(p,q) = —fs(q.p).
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A bit of dimensional analysis:

iTyap(Psq) :@uaﬁapg @uaﬁaqg H f38nacnrpr’qd"

. A . A
H fatn002.98P° 4" K fs8uporPaP’q

. A g A , A
H fotupordaP’q” H freaporPul’q” H f38aporqup’q

O e - Dimensions = (energy)o

===  Dimensions = (energy)

Thus, only fi(p,g) and f2(p,q) are (logarithmically) divergent and their values depend on the
regularization scheme used.

The remaining integrals f3(p,q) to fs(p,q) are convergent and free of ambiguities.

Is there a wise way of fixing these regularization ambiguities?
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So far we have ignored the issue of gauge invariance. The relevant gauge Ward identities
reads

P Uil oc[a’(p Q) 0

fam)

a[o’ p q — = ‘,

/j \ q" ilyap(p,q) =0
JM A JG V

These conditions impose further constraints on the functions fi(p,q)
Pils(p.q) = (f2 s —p- qf6) Eupaoq’p’ === f2(p,q) =P fs(p,q) +p-qfs(p,q)
P iTuap(pr0) = (fi— G fs=p-afs) tuapod’p” === S1(P-0) = ¢’ fa(p,q) = - 4f3(p.q)

Hence, gauge invariance completely fixes the ambiguities and the anomaly is
completely determined by finite integrals

(p+q)"il,0p(p,q) = [ 2(fs+ )+ (—fa+ ) + P-al—fs+ fo+ fr Jrﬁa)]8a/3cm61"1r9A
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Now we only have to evaluate the integrals

i€2 1 1—x Xy
f P.q) = _f6 q,D Z_J dXJ dy
- @p) w Jo  Jo x(1=x)p? +y(1 =y)g*>+2xyp-q
et y(1-y) |
f4 P,q) = _f5 q,pP) = _J dXJ dy - RS
( ) ( ) 7 0 0 X(l —X)p2+y(1 —y)q2+2xyp-q Steven Adler
b. 1939
f1(p.q) = —fs(q,p) =0 ( )
to find the result
. 2
. e
(p_I_Q)MlFMOCﬁ(p?CI) - _z—ﬂ’,zgocﬁa)»qap}L
John S. Bell
(1928-1990)

Back in position space, we arrive at the famous Adler-Bell-Jackiw anomaly

Roman Jackiw
Jack Steinberger (b. 1939)
(b. 1921)
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Is the one-loop result enough? We can ask about the contribution of higher loop

diagrams to the anomaly, e.g.
y} + <y + +...

These diagrams contain five fermion propagator. The integration over the “triangle
momentum’” has the structure

a0 i

and it is unambiguous. The integration over the photon momentum can

be regularized in a gauge-invariant way, for example adding the term Steven Adler
(b. 1939)
A2
1 4
AS = /? d XFMVDF‘MV E - GMV(p) ~ F

Hence, higher-loop triangles do not contribute to the anomaly.

This is known as the Adler-Bardeen theorem (the rigorous proof is more

involved that this back-of-the-envelope argument) W”“T; f;fﬁ)"deen
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To summarize...

%* The result

OulJ (X))ey = A(e*) "V P F 1y Ty with A(e?)
is exact to all orders in perturbation theory.

* Our derivation stresses the fact that, once Lorentz invariance, Bose symmetry and
gauge invariance are imposed, the anomaly is determined only by finite integrals

* There is a tension between global chiral transformations and gauge invariance. In order to
fix the ambiguities we cound have chosen to impose the axial Ward identity

(P+q@)" il 0p(P,q) = [—fl +hH+pfi+p-alf Jrfg)+qug]ealmq"pA =%

@

This leads however to a violation of the gauge Ward identities

p“il,4p(p.q) #0, q"ilqp(p.q) #0.

The true meaning of the anomaly is that there exists no regularization scheme leading
to the simultaneous conservation of both the vector and the axial current.

* The anomaly cannot be “renormalized away”, i.e. removed by adding a local counterterm.
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* The anomaly is not the result of a poor choice of regulator. It reflects a fundamental
incompatibility between the conservation of the vector and the axial currents.

As a matter of fact, the anomaly admits a topological interpretation:
Jd4x OulJ\ (X))er = —Zi(dimkerD+ — dimkerDl)

1
where D, =il) (/) (%) .Here

dimkerD, = # of positive-chirality zero modes of the Dirac operator i) (<)

dimkerD!, = # of negative-chirality zero modes of the Dirac operator ilp (<)

The difference between these two integers defines the index of the operator D.. Its value is

given in terms of the Chern character ch(F) by the celebrated Atiyah-Singer index
theorem

1

[ ch(F) = trexp (LF>
3272

27T

IndexD, = J[Ch(F)]VOl = Jd%e’”‘ﬂ* FuvFs;  Where <

1
\ F = Effwdx“ A dx”

Beware! this gives the axial anomaly in Euclidean space (thus the extra i)
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UV or IR?

Usually, the anomaly is presented as resulting from the UV behavior of the theory. The need
to regularize the theory clashes with the invariance under chiral transformations and the
conservation of the axial current remains broken after the UV cutoff is removed.

The axial anomaly can also be seen as the consequence of the existence of a zero-
momentum pole in the three-current correlation function

2

. e  (p+q)u
F —_— —
Tuap (P:4) 2712 (p+q)?* +ic

EaBo p°q” + higher order terms

whose residue gives the anomaly.

It is instructive to look at the imaginary part of the triangle diagram, where the anomaly
appears as a delta function at zero momentum

Whereas the real part of the amplitude depends on possible subtractions, the imaginary part
is unambiguous. Remember that in our previous calculation, the anomaly was given by
unambiguous integrals (once we imposed Lorentz invariance, Bose symmetry, and vector
current conservation).
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This delta function (or the pole in the full amplitude) can be regularized by giving a mass to
the fermion. Applying unitarity

N\

e

The two on-shell processes on the right-hand side are forbidden for massless fermions due
to axial charge conservation. Hence, naively we would expect

Iim
m—0

However, the actual calculation gives

Thus, the anomaly is signaled by a discontinuity in the imaginary part of the amplitude at
zero fermion mass. This is the infrared face of the axial anomaly.
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@

Third example: The gauge anomaly

The axial anomaly was not dangerous because the global axial current does not couple to a

gauge field. In a chiral gauge theory (e.g. a V-A theory), the axial current does couple to a
gauge fields and its not conservation leads to a breaking of gauge invariance.

This is potentially disastrous because the anomaly spoils unitarity (and renormalizability)

Nonchiral theories, however, are save. If the left- and right-handed fermions transform in the

same representation, a Dirac mass term can be constructed and the theory can be regulated
using Pauli-Villars fields, which preserves gauge invariance.

We look at a theory of a chiral fermion coupled to an external nonabelian gauge field

r\

S = | d*xPilp () Py

[ — a1 .
= | d*x lw¢w+gYMwT+y“< 2”)1/}%]

Gauge invariance requires, at the quantum level,
N (x) =PIty
D {(jy+Jjs))e =0  with wa .
T () =Ty ysy
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The relevant quantity to compute is
qa ua 1 — ua way i(d*x|ip 1 TRy L V4%
W+ IR D = ZJ%P@IP% + jy e ST e Oy A ]
and in perturbation theory the relevant term is the three-current correlation function
- Jv+ja T

OIT[ (4 + RO + X0+ 8V |10y = | v +ia A

- Jvtija symmetric

Here we are not interested in computing the anomaly, just in finding the conditions for its
cancellation. For this purpose it is enough to compute

] e
Q

OIT| /4O (0 77 0) |0y = | jue A

Q

u 0 ¢ — symmetric
Jv
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This three-current correlations function is proportional to the group-theoretic factor

@ 77 |
T A ~Tr |Te {7t T

C
o T¢

symmetric

Thus, the condition for the cancellation of the gauge anomaly reads
T | 7e {7, Ts | =0

In a theory with N, positive chirality fermions and N- negative chirality fermions, the
anomaly cancellation condition takes the form

4 )

Ny N_
DT | AT T | = YT | T TR T ] =0
i=1 j=1
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For an arbitrary representation R, we can define the invariant A(R) by
Tr [Tlg{Tl’g,Tlg}] — A(R)d“b

where d?c is independent of R and A(R) = 1 for the fundamental representation.

Representations for which A(R) =0 are safe because chiral fermions transforming under them
do not give rise to gauge anomalies. This is the case, for example, when (S unitary)

S—=s! real representation
(1) = —STgs™ real representarion

s=_s' (pseudoreal representation)

If the generators are taken Hermitian, we have
Tr [Tg{Tﬁ,Tﬁ}] —Tr [Tﬁ‘{TII{,Tﬁ}]T —Tr [(Tlg)* {(Tll{)*, (Tlg)*}]
and for real or pseudoreal representations
Tr[(Tlg)*{(T{g)*, (Tlg)*}] — _Tr [STlgS—l{ST{gs—l,STlgs—l}] — _Tr [Tlg{Tl’g,Tlg}]

so we conclude that A(R) =0.
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Thus, real and pseudoreal representations are safe.This includes all representations of the
groups

SU(2), SO2N+1), SO(4N), Sp(2N), G2, Fa, E7, Es
In addition, the adjoint representation of any group is real and therefore safe.
In conclusion, anomalies can only appear when chiral fermions transform in complex

representations, for which there is no unitary equivalence between the representation and its
complex conjugate. This is the case, for example, of SU(N) with N = 3.

Thus, if the representation is complex we have to explicitly check whether A(R) =0 or not.

If the gauge group is a direct product, Gi ® ... ® Gy, there might be mixed gauge anomalies
associated with triangles with “different group factors” at each vertex

more on this later.
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Gravity can also contribute to the gauge anomaly...

If the gauge theory is coupled to gravity, there is a new interaction term in the action coupling
the graviton field h,y to the energy-momentum tensor of the gauge theory

AS = de4thVT“V
Expanding in powers of the gravitational coupling, this extra term gives an additional

contribution to the anomaly given by the triangle anomaly with two energy-momentum
tensor couplings

O [AOT TP ) |10y = ji A

ToB | sym

Since the gravitational coupling does not affect the gauge quantum numbers, the mixed
anomaly is proportional to the trace of the generators of the gauge group

TVO
R~

N, N_
Ja A ~ 2Tr(7}?+) — ZTr(Tlf’_) Source of trouble for U(1)’s!
i=1 i=1

a4

TobB
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Part |l

Anomalies: how to take advantage
of them to learn about Nature
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Anomalies and pion decay

The axial anomaly has very important consequences for the physics of strong interactions,
and in particular for the pion decay.

Let us begin by studying the global symmetries of QCD in the chiral limit
! J
Zqoep = —ZFSVFAW + Z (@{QQ{ + @QDQ{Q)
f=1

The action is invariant under the U(Ny). xU(N¢)gr symmetry

4 N ( f f
0l — 3 (UL 0) LG
L RIFEL UL, Ug € U(Ny)
UNp) = 3 =1 Ui 4 %( ) Ok o f
Opr — UR) r 1 Or
| Ok — Ok \ f1=1

Since U(NV)=U(1)xSU(N) the symmetry group can be written as

SU(Ny), x SUNp), x U(1), x U(1)g
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The left-right global transformations can be now decomposed into vector and vector-axial

parts

with

U(l)g : 1

SUNy), : 4

UWNy); X UNp)p = SUWN¢)y x SUWy), X U(l)p x U(1)p

(0] = 0]

\ Q£ — eiaQ£

U(1)4 o

SU(Nf)A D 4

The associated classically conserved currents are

Ly =

Ny
Tu —f /
N= > o0

M.A Vazquez-Mozo

Ny
N o'yo!
f=1

ff=1

Ny
= >0/ yys 0
f=l1

ZQYYS

f.f=1
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Axial currents are potentially anomalous. To settle the question we compute the
correlation function of one axial current and two gauge currents.

For the abelian current we have:

Ny
C*Y9 (x,x") = O|T [T (%) Jgange (') Joange (0) ] 10> = = 0 Ao
le JA
8

- — symmetric
Ny

where jgaﬂlilge = Z QfVMTAQf.
f=1

The diagram contains two SU(/N.) generators at the gauge current vertices, so the group
theoretical factor multiplying this diagram is

A _B
Tr{t",t°} #0
so the anomaly does not cancel. An explicit calculation gives

g°Ny

o guvak a ra
3272

uv: oA
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We study next the SU(Ny)a current. Looking at the group theory factor, we find

where T'are the generators of SU(Ny)a.

~TrT! Tr{z*, 7%} =0

symmetric

since TrT!' =0

This however is hot enough to conclude that SU(Ny)a is anomaly free. Quarks also couple to
the electromagnetic field, so there is second contribution to the anomaly

_ Qf f’y —_
Ny
OIT |75 () jen ()i 0) | 10y = o' Ao
=1
A Y
- LL — symmetric
The computation of the diagram gives
I N, R _ A
C
aMJAM - 16772 Z (Tl)ffq% ehve FuvFs),
f=1
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We particularize the result to the case of QCD (N, = 3) with the two light flavors u and d (Ny= 2).
Taking into account that

2 1
u = 3¢€ dd = —3¢€
we have
2
3 2 €
D (TMYerar= ), (TP srq; =0 D (T)yrq; = "3
f=u,d f=u,d f:bt,d

so only the third component is anomalous.
To summarize:

* U(l)a is always anomalous. This is not too problematic, since this axial symmetry is
explicitly broken by instantons. This is the idea behind the famous resolution of the U(I)
problem by ‘t Hooft.

* Of SU(2)a only the third isospin component Jiu is anomalous. This is interesting, because
the field 6,&2“ has precisely the quantum numbers of the neutral pion .

In fact, we are going to see how the existence of this anomaly is the way to understand the
electromagnetic decay of the pion, which is the dominant channel despite the
Sutherland-Veltman suppression.
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Due to the dynamics of QCD, the axial symmetry SU(2)a is spontaneously broken by quark
condensates

<@fo> £ (no summation on f)

The three pions 7t*, m are the (pseudo)Goldstone bosons associated with this ySB. By the
Goldstone theorem his means that

O (xX)|A(p)y #0 el O () |7 (p)) = frpt6Pe P
Moreover, taking the divergence here we have

O0uI " (0)|7°(p)) = —ifamz 6P

This means that the (canonically normalized) interpolating field for the neutral pion is

1

- famz aMJ3M )

@ (X)
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Using the LSZ formula, we can compute the physical amplitude for a) —s 2y
1, €1,K2, €2|71°(g)) = (&7 q — K1 —K2)€ (K1)& (K2 ) Luvig,K1,K2
ks erska, e2|n(q)) = (27)*0 ™ (g — ki — ko) ef (k1) 3 (k2) Fv (g, K1 o)

where
I~ i [t [t e O a0 0)2(0)] 0
W

the Ji“anomaly
Evaluating the amplitude in the soft pion limit ¢ — 0

2
e“N,
JU

Averaging over the photon polarizations, we find the width of the decay to be

; a3 N2 |
Ir'n’—2y) = 576312 == color counting observable
T

and substituting the numerical values we find

I'(#x°—2y)=7064eV F(J‘EO — 2Y)exp = 7.37€V
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Nonperturbative physics from anomalies

In theories whose spectrum changes with the scale (such a QCD), the matching of
anomalies between the high- and low-energy theories provide nontrivial nonperturbative

information.

Let us take a gauge theory with massless fermions confining below certain energy scale A
and with a nonanomalous global symmetry group G with generators

T (a=1,...,dimG)

Below A, the theory will contain a number of composite massless fermions transforming in

some representation of the global group G

~~/

T (a=1,...,dimG)
We gauge now the global group G by adding a new set of nonabelian gauge field B}, (x) with
the coupling

AS = g’Jd%BZ (X)J5" (x)
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If, however,

M [TL“{TL”,TLC}] M [T,gl{T,é’,T,g}] £0

the “new” gauge symmetry will be anomalous.

To prevent this, we add new fermions coupling only to B, that cancel this anomaly. Since we
can take the coupling g’ as small as we like, these spectator fermions do not modify the

dynamics of the original gauge theory! .
Y sinal salis Y an example will come later

This cancellation of the anomaly should work both in the unconfined and confined theories.

Tb
spectator
uv: T ~ N [TL“{T,?,TLC}] ~Nir [T,?{T,’g,Tlg}] + —0
L R fermions
TC
Tb
g o spectator
IR: T¢ ~ [TE{TZ’,TE}] —Ytr [T,?{TRb,TRC}] + | =0
L R fermions
Tc

Taller de Altas Energias 2013
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M.A Vazquez-Mozo

Since the spectator fermions are weakly coupled to the original gauge theory, they

have the same contribution in the UV and the IR. Thus, we arrive at ‘t Hooft’s

=
anomaly matching condition 8
o
£

M [TL“{TL]’,TLC}] N [T,g{Tg,T,g}] =N [Tg{Tf,Tg}] N [T,?{Tg,f,g}] Gerard 't Hooft
L R

7 R (b. 1946)

This identity is still true in the limit ¢ — 0 in which all spectators fermions decouple.
To see the power of this matching condition, we look to a couple of examples:

QCD with Nf= 2: The global symmetry group is SU(2); x SU2)r x U(1)g

At high energies, the fermionic spectrum is composed by the massless quarks u and d [we
use the notation (71,7z)g]. The anomalous triangles are

SU2), SU(2)
qL. (2, 1)% §
U(l)g N (3 y l) sab _ sab  U(l) .- (3 < 1) 5% — _ b
3 3
qR- (172)%
SUQ2), SUQ2)g
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At low energies, there are two possibilities:

* The global group SU(2); x SU2)r x U(1)z remains unbroken and we have massless protons

and neutrons
SU2),, SUR)g

Ni: (2,1)
U(l)s ~ §b U(1)p ~ —§%b

Nr: ( 1 ) 2) 1
SU2), SUQ2)g

Using the IR interpretation of the anomaly, the pole at zero momentum is associated with
the massless composite chiral fermions (its residue matches the UV anomaly).

* The global symmetry is spontaneously broken to the diagonal group SU(2), x U(1)g. protons
and neutrons are massive and we have three Goldstone bosons contributing to the pole.

The axial current interpolates between the vacuum and the Goldstone boson, and the IR
pole is associated with the propagation of this massless state (equivalently, the delta function
in the imaginary part)

 (p)

O3 0)|p,q)er = k- = LR O0)]k: ¢) 5 (ki 9. 4).r

(q)
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In the case of QCD with two flavors, the matching of anomalies cannot distinguish
between massless composites and spontaneous chiral symmetry breaking.

QCD with N¢= 3: Now, the global symmetry group is SU(3).x SU(3)zrx U(1)s.

At high energies we have three massless quarks (u, d, and s). The potentially anomalous
diagrams are now

SUQ3), SUR)x
1 ab ab 1 b b
U(l)g ~ (3 x 3 8% =96 U(1)g ~ — (3 x 5) g
qu: (3,1)1 SU3), SUG3)g
qr: (1,3)1 SUG)L o
3
SU(3)L N dabc SU(3)R ~ —dabc
SUQR); SUGk
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At low energies there is the octet of composite fermions (p, n, 2+, 2, 29, A, =0, =-). If they
are massless, their contribution to the anomaly does not match the result for the high
energy theory. For example

SUQG)L

SUQG)L

Since the anomalies do not match, the bound state fermions cannot remain massless and
SU(3)a has to be spontaneously broken. We conclude that for Ny = 3 chiral symmetry
breaking takes place.

The resulting massless Goldstone bosons are responsible for the singularities at zero
momentum.

‘t Hooft anomaly matching allows to extract a very nonperturbative piece of information
from purely algebraic arguments. This tool is very useful in analyzing a wide class of theories.
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Constraints from anomaly cancellation

We have seen how in chiral gauge theories the absence of gauge anomalies are
determined by the condition

Ny N_
ZTr [rif‘Jr{tiiL, ti’CJF}] - ZTr [rﬁ_{rﬁ_, rf_}] =0
i=1 , , j=1 \ )

positive chirality negative chirality

This provides a nontrivial constraint on the matter content and group representations of a
theory and it is a useful tool in model building since it selects both matter content and
group representations.

Here we analyze two cases:

% The standard model

* Minimal supersymmetric standard model
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The standard model: We only have to care about the chiral fermions in the standard
model (i.e. leptons and quarks). Denoting their representations of SU(3) x SU(2) x U(1)yby

(ncanw)Y
the matter content of the theory is
Left-handed fermions: (3, 2)% (1, 2)51
5 2
x 3 families
Right-handed fermions: (3, 1)§ (3, DX (1, 1)51
2 _

QI =

N e N~

quarks leptons
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Symbolically, the ten anomaly coefficients to compute are:

SU(3) SUQ3) SU(3) SU(2)

SU(3) SU(2) uc) SU(3)
SU(3) SU(3) SU(3) SU(2)
SU(3) U(1) SU(2) SU(2)

u() SU®3) SU(2) U(l)
SU(2) U(1) SU(2) SU(2)

U(l) u(l)
SU(2) u(1)

U(l) u(l)
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Symbolically, the ten anomaly coefficients to compute are:

SU(3)

SU(3)
SU(3)
SU(3)

u(1)
SU(2)

M.A Vazquez-Mozo

SU(3) SU(3)
SU(2) u()

SU(3) SU(3)
U(1) SU(2)

SU(3) SU(2)
U(1) SU(2)
U(l) u(l)

SU(2) U(1)
U(l) u(l)

Introduction to anomalies and their phenomenological applications

SU(2)
SU(3)

SU(2)

SU(2)
u(l)

SU(2)

SU(3) is chirality-blind

J
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Symbolically, the ten anomaly coefficients to compute are:

SU(3)

SU(3)
SU(3)
SU(3)

u(1)
SU(2)

M.A Vazquez-Mozo

SUQ3) SU(3)
SU(2) u()

SU(3) SU(3)
U(1) SU(2)

SU(3) SU(2)
U(1) SU(2)
U(l) u(l)

SU(2) U(l)
U(l) u(l)
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SU(2)
SU(3)

SU(2)

SU(2)
u(l)

SU(2)

The generator of
SU(2) and SU(3) are

traceless

J
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Symbolically, the ten anomaly coefficients to compute are:

SU(3) SU(3) SU(2)
SU(3) SU(2) SU(3)
SU(3) SU(3) SU(2)
SU(3) u()
U(1) SU(3)

SU(2) U(l)

U(1)

SU(2)
U(l)
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SU(2)

SUQ) — Tr [a,-{aj, ok}] = 2(Tro7)d 5 =0

SU(2) {0j,01} =20

SU2)
U(l) 1 1 [right-handed fermions

~ DY =3x%2x (g) +2x <—§) =0 do not couple to SU(2)]
3
leptons
SU@3)

1 2 1
Uu(l) ~§YL—%YR=3X2X(6>—3X(§)—3X(—§>=0

SU(3)

M.A Vazquez-Mozo
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The strongest condition comes from:

Uu(l)

u() Y- —awae (M) ran (21) Sax ()
LT 2k c 5 3

L

u(1) —3x (-%)3—(—1)% (—%)Jr(%) =0

quarks leptons

Hence, all pure gauge anomalies cancel in the standard model within each family!

However, we still have to deal with mixed gauge-gravitational anomalies:

Luv Luv Ty

SU(3) SU(2) U()
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The strongest condition comes from:

Uu(l)

u() Y- —awae (M) ran (21) Sax ()
LT 2k c 5 3

L

u(1) —3x (-%)3—(—1)% (—%)JFG) =0

quarks leptons

Hence, all pure gauge anomalies cancel in the standard model within each family!

However, we still have to deal with mixed gauge-gravitational anomalies:

Luv Luv Ty

SU(3) SU(2) U()

Luv Luv Ty
s \

The generator of SU(2) and SU(3)
are traceless

- J
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The strongest condition comes from:

Uu(l)

u() Y- —awae (M) ran (21) Sax ()
LT 2k c 5 3

L

u(1) —3x (-%)3—(—1)% (—%)JFG) =0

quarks leptons

Hence, all pure gauge anomalies cancel in the standard model within each family!

However, we still have to deal with mixed gauge-gravitational anomalies:

Ty Ty

SU(3) SU(2)

4 A

The generator of SU(2) and SU(3)
are traceless

- J
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1 1
u(l) =ZYL—ZYR=3><2><<6>-|—2><(_E)

t’ﬂ

2

|

O
X
N\
W N
N

|

O
X
/|\
W | =
N

|

|

[

I

)

Thus, all pure and mixed gauge anomalies cancel and the standard model is anomaly free!

This cancellation is very delicate and severely constraints any extension of the standard

model. For example, the addition of a sterile right-handed neutrino is innocuous, since it
does not contribute to the triangle:

right-handed neutrino: (1, l)g

We can also add any number of extra families. An extra lepton (quark), however, makes the

theory inconsistent, e.g.
ucl)

u() %+ ()

U(l)
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Flashback!

We have seen how quarks and leptons are needed to cancel the anomalies associated with the
SU(2) x U(l)y sector of the standard model. This illustrate the idea of “spectator fermions”
introduced when talking about anomaly matching.

From the QCD point of view SU(2)xU(1)y can be seen as a global symmetry that is gauged by
coupling quarks to the electroweak gauge bosons.

This theory, by itself, is anomalous:
SU(2) u(l)
1 3
Ul ~ ZYqL:3><2>< (8) =1 U(1) ~ ZY;L—ZY;R=—Z
qL 4R

qL

SU(2) u(l)

To cancel the anomaly, we add the spectator fermions, i.e. the standard model leptons!

These new fermions, however, do not modify the strongly coupled IR dynamics of the quarks.
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MSSM: let us consider now the minimal supersymmetric extension of the standard model.
The spectrum now is doubled

1
gauge bosons (s =1) <@==B>  gauginos (s = 5)
1
quarks (s = 5 ) <<= squarks (s =0)
1
leptons (s = 5 ) == sleptons (s =0)

Higgs (s =0) <= Higgsino (s = %)

We have learned that all anomalies cancel in the standard model. So we only have to worry
about the new chiral fermions:

gluino  (8,1), e ’
. , since the adjoint representation is rea
gauginos: 4 wino  (1,3)o = there are no anomalies!
bino (1,1)o
Higgsino: (1,2),
2
SU(2) u(1)
1 1’ Thus, the MSSM with a single
v ) o (2> = Higgsino is anomalous!
SU(2) u(l)
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Solving this requres the addition of a second Higgs doublet with opposite hypercharge.
Thus, the MSSM has two Higgsinos with the same helicity

H (1,2)1 Hj: (172)_

[\
D o|—

and all anomalies cancel (remember that adding the second Higgs scalar doublet does not
contribute to the SM anomaly!)

SU2) u)

| | 1 3 1 3

u(l)

SU(2)

as well as the mixed gauge-gravitational anomaly
Tuv

1 1
Uu(1) ~_a(_2)=
2+( 2) 0

Incidentally, the second Higgsino also cancels Witten’s global anomaly (a theory with an
odd number of SU(2) doublets is anomalous under “large” gauge transformations)
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Some topics left out of this lectures

% Functional methods

Here we have studied anomalies from a diagrammatic point of view. Functional methods,
however, offer a very powerful tool to compute anomalies in arbitrary dimensions.

Given a chiral fermion coupled to a gauge field, we define the (Euclidean) fermion
effective action

e—T[JZfM]eff — J@w@w exp [_ JdanwlD (QQ%M)P—FI/)]

The gauge anomaly is determined by the gauge variation of the effective action
O [y left = I' [y + Dy€less — I' [y ]ett

= — | et (Du wer)

The anomaly is associated with the existence of a nontrivial transformation of the
functional integration measure.

The real part of the effective action is always gauge invariant, so the anomaly can only occur
in its complex part.
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% Gravitational anomalies

When chiral fermions are coupled to gravity they may produce anomalies in the
conservation of the energy-momentum tensor

VulT#"(x))g # 0

When can we expect to have pure gravitational anomalies? To answer the question we have
to study two different cases:

D = 4k: Particles and antiparticles have opposite helicity. Since gravity does not distinguish
between them, the gravitational coupling of the fermions “looks” vector-like

no gravitational anomalies

D = 4k+2: Now, particles and antiparticles have the same helicity. The gravitational coupling is
chiral and anomalies might arise.

D=2
This includes two important cases:

B * Green-Schwarz
b=10 == mechanism

Other fields such as gravitinos and self-dual antisymmetric tensors also contribute.
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* The topological theory of anomalies:

Axial, gauge, and gravitational anomalies in D dimensions can be understood in terms of
the topology of the gauge bundle that defines the gauge theory.

© The global axial anomaly is given by the index of the Dirac operator and can be
computed using the Atiyah-Singer index theorem.

© Gauge anomalies in 2n dimensions are related to the index of a Dirac operators
defined in 2n+2 dimensions.

The anomaly can be computed then using the appropriate index theorem.

% Global anomalies

A SU(2) chiral gauge theory can be anomalous with respect to gauge transformations not
in the connected component of the identity. If this anomaly is not cancelled, all
correlation functions vanish

Witten showed that the theory is anomalous if the number of SU(2) doublets is odd (not
the case of the standard model!).
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Thank you
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