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IntroductionIntroduction
● Silicon sensors are used in a wide variety of applications

● Nuclear physics
– Energy measurement of charged particles & Gamma spectroscopy
– Range of MeV

● Particle physics
– As tracking devices: reconstruct trajectory of charged particles

● Precise determination of particle properties
● Vertex reconstruction

– Momentum range of GeV 
– Impact parameters resolution: order of microns

● Satellite Experiments & Dark Matter
– Tracking sensors

● Industrial applications
– Security, medicine, biology
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Pros & Cons of semiconductorsPros & Cons of semiconductors
● Semiconductor detectors are quite dense 

– High energy loss in a small particle path 
– Miniaturisation & small scattering effects → good spatial resolution (μm)

● Ionisation energy is relatively low
– 3.6 eV per e-hole pair: 

● Gas (>20 eV per e-ion pair) & Scintillators (>400 eV per photon)
– Sizeable signals are produced in thin sensor layers. Typical size 300 μm

● Electronics industry: silicon technology is widely available
– Large experience in silicon microchip manufactures → feasibility of complex 

designs  
– Same material as the readout electronics → integration of large number of 

channels
● Suitable for high radiation environments

– For example: LHC & satellite experiments
● High cost

– Power consumption → cooling system
– Need of signal amplification (some exceptions)
– Special laboratories → clean room



25/September/2013 Silicon Sensors Lecture @ TAE 2013 6

Semiconductor basicsSemiconductor basics
● Band structure of the electrons energy levels in the outermost layers

● Insulators, semiconductors & conductors
– Classification depends on the energy gap between the valence and conduction 

bands

Atom → 

Potential well → 

Energy levels  

Crystal → 

Periodic potential → 

Energy bands 
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Important aspects for sensor designImportant aspects for sensor design
● Ideally sensors must have a large signal-to-noise ratio (SNR)

– Large signals & Low noise
● In a semiconductor sensor demanding a large SNR leads to two 

contradictory requisites
– Large signals: low ionisation energy (e-h pair formation) → small band gap
– Low noise: few intrinsic charge carriers (e-h excitation) → large band gap

● Ideally the band gap energy should be around Eg ~ 5 eV 
– Small enough to convert particles ionizing energy loss into a sizeable signal
– Large enough to avoid (at room T) many e-h pairs spontaneous formation and 

keep conduction band virtually empty → low noise
● Diamond has these properties

– Artificial diamonds available in industry (CVD diamonds)
– Unfortunately, diamonds sensors are too expensive for a large area detector 

(even artificial diamonds) 
● Practical alternative: use Silicon

– Eg ~1.12 eV (T dependent)
– Low excitation (e-h pair) energy 3.6 eV
– Fast signal collection (few ns)
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Semiconductor basicsSemiconductor basics
● Covalent bonds of electrons

– Group IV: C, Si & Ge
– 4 covalent bonds
– 3D structure
– Compounds: e.g. GaAs

● Simplified 2D model

● At T=0K all electrons are bound
– No conductivity

● At T>0K thermal excitations 
break some bounds
– Electrons free to move → 

electrical conductivity
– Vacancies can be occupied by 

other electrons → hole conduction 
as a +ve charged particle

T = 0K T > 0K

Valence electron

Conduction electron
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Intrinsic and doped semiconductorsIntrinsic and doped semiconductors
● At T>0K (e.g. room temperature) electrons in conduction band 

recombine with holes
– Equilibrium is reached between excitation and recombination
– Charge carrier concentration → intrinsic carrier concentration

● Doping of silicon with group V elements (donor; P, As, Sb) adds a 5th 
electron weakly bound → electron ready for conduction → n-type

● Doping of silicon with group III elements (acceptor; B, Al, Ga, In) →  
a covalent bond is open → hole formed → p-type

ni=nn=n p ∝ T 3/2exp(−
E g

2 k B T
) In Si, at room temperature 

n
i
 ~ 1.5·1010 cm-3

Energy levels in n-type doping

T = 0K T > 0K
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Carriers mobilityCarriers mobility
● The motion of free carriers leads to a current that we may detect

– Therefore the e-h mobilities are important parameters that influence the device 
design and manufacture

● Two kinds of carrier transport mechanisms
– Drift: caused by an electric field (internal or external)
– Diffusion: due to a carrier density gradient 

● Due to thermal energy, carriers are permanently random moving
– Electrons thermal velocity at room temperature ~107 cm/s = 100 μm/ns
– Atoms in the crystal also vibrate more at high temperature
– Electrons scatter with lattice atoms (loose energy & change direction) → 

random movement

 
● Carriers move like a gas or wave packet with an effective mass (m*)

ℏ
2m✴ ∇ 2ψ+V ψ=E ψ

In Si, at room temperature 
average time between 
collisions 2.6·10-13 s
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Carriers mobilityCarriers mobility
● Drift of charge carriers

– An electric field (E) accelerates the carriers
– The carriers collide with the atoms and lose their energy
– A saturation drift velocity (v) is reached → mobility (μ)

● This is an effective model for carriers drift
– Effective mass applicable for electrons and holes (m

n
 & m

p
)

● Conductivity & Resistivity:
– To avoid noise → high ρ is preferred

v⃗n=−μn⋅E⃗ v⃗ p=μ p⋅E⃗

μn=
e τn

mn

[cm2/(V⋅s)] μ p=
e τ p

m p

τ is the average time between 
collisions

μ
n
 > μ

p 
→

  
electrons move faster

σ=e (μn nn+μ p n p) [(Ω⋅m)−1]

ρ= 1σ = 1
e (μn nn+μ p n p)

S.M. Sze: Semiconductor Devices
J. Willey & Sons, 1985
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The p-n junctionThe p-n junction
● A p-n junction is formed when two opposite doping type 

semiconductors are in contact
– The excess of electrons in the n-type diffuses to the p-type and combine with 

the holes (majority) and vice-versa
– A region free of charge carriers appears → depletion zone
– The dopant atoms become permanently ionized → a net space charge region 

emerges → junction electric field (& built in potential V
bi
) 

Carriers diffusion → 

Depletion zone → 
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● A p-n junction is formed when two opposite doping type 
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– The excess of electrons in the n-type diffuses to the p-type and combine with 

the holes (majority) and vice-versa
– A region free of charge carriers appears → depletion zone
– The dopant atoms become permanently ionized → a net space charge region 

emerges → junction electric field (& built in potential V
bi
) 

Still, thermal excitation 
creates e-h pairs in 
everywhere and of course
in the depleted zone.
The electric field there
splits electrons and holes
in opposite directions
thus producing a 
LEAKAGE CURRENT
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Reverse biased p-n junctionReverse biased p-n junction
● Apply an external (reverse bias) voltage 

– Electrons and holes may get enough energy to cross the barrier
– The depletion zone grows (size depends on dopant concentrations)
– The potential barrier becomes larger (by eV )
– Diffusion across the barrier becomes more difficult (higher barrier)
– Still there is a leakage current across the junction

Width of the depletion zone:

W (V )≈√ 2εSi

e∣N eff∣
(V bi+V ) N eff =N d−N a

Capacitance:

C (V )= dQ
dV

≈ A√ e εSi∣N eff∣
2V

Leakage current (due to e-h pair generation):

J (V )=
e n iW (V )
2 τ g

∝ √V

J (V ,T )=
e ni W (V )
2 τ g (T )

∝
ni
τ g

(T ) ∝ T 2exp (−
E g

2 k B T
)

A → Sensor area
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Basic silicon sensor schemeBasic silicon sensor scheme
● Usually, sensors are operated via a reverse biased p-n junction

– Very different dopant concentrations in p and n sides
● Sensor bulk of a single type (either p- or n-type)

– Depleted zone free of charge carriers 
● Except thermally generated e-h pairs → leakage current

– Ionizing energy loss from incident particles releases e-h pairs (3.6 eV per e-h)
● Minimum ionizing particles average energy loss in silicon: (dE/dx)

Si
 = 3.88 MeV/cm

– Average ~108 e-h pairs per micro-meter 
– Average ~32,000 e-h pairs in 300 μm thick silicon sensors
– Average deposited charge ~5 fC

– The electric field in depleted zone drifts away e-h pairs
● Separation of e and h → current inducted

x

n

--

+

E

electron
hole

n-type 

p-type 

t

si
gn

al

To readout 
electronics
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Carriers motion and signal formationCarriers motion and signal formation
● The movement of the charge carriers (e & h) leads to a current which 

can be detected → signal 
– Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes 

induced by a moving particle
● Signal like for p-on-n sensors

– p-type connected to readout electronics
– n-type bulk
– Fully depleted sensor (V

bias
 > V

fd
)  

E

electron
hole

n-type 

p-type 

t

si
gn

al

To readout 
electronics
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E

electron
hole

n-type 

p-type 

t

si
gn

al

To readout 
electronics

E = 0 → e-h recombination 
→ smaller signal
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Carriers motion and signal formationCarriers motion and signal formation
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– Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes 
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● Signal like for n-on-p sensors
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)  

E

electron
hole

p-type 

n-type 

t

si
gn

al

To readout 
electronics

Advantage: electrons have factor 3 larger mobility → faster signal & smaller collection time

Still the holes contribute to the signal (they keep moving → current)
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Carriers motion and signal formationCarriers motion and signal formation
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can be detected → signal 
– Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes 

induced by a moving particle
● Signal like for p-on-p sensors

– p-type connected to readout electronics
– p-type bulk + n-type layer in the backplane → p-n junction
– Partially depleted sensor (V

bias
 < V

fd
)

  

E

electron
hole

p-type 

p-type 
To readout 
electronics

n-type 

t

si
gn

al

More intense E

In spite of the E=0 region near the readout channels signal is still visible because the charge carriers
move in the depleted region → the current produces signal although spatial resolution degrades 

Signal is visible !!!E = 0
v⃗=μ⋅E⃗
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Position sensitive: segmentationPosition sensitive: segmentation
● Silicon sensors can be used as position sensitive detectors via 

SEGMENTATION
– Add many readout channels in the same sensor
– Planar technology (most common)
– 3D technology (recent development)

Silicon crystal ingot & 
wafers → 

Planar

3D
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Position sensitive: segmentationPosition sensitive: segmentation
● Silicon sensors can be used as position sensitive detectors via 

SEGMENTATION
– Add many readout channels in the same sensor
– Planar technology (most common)
– 3D technology (recent development)

Silicon wafer with sensors

3D

Pixels

microstrips
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Carriers motion and signal formationCarriers motion and signal formation
● The movement of the charge carriers (e & h) leads to a current which 

can be detected → signal 
– Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes 

induced by a moving particle
● Signal like for p-on-p sensors
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 > V
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E

electron
hole

p-type 

p-type 
To readout 
electronics

n-type 

t

si
gn

al

More intense E

The electric field is more intense at the p-n junction (backplane) → As carriers velocity is:
v =  μE → carriers slow down as they approach the readout contact

v⃗=μ⋅E⃗
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Position sensitive: segmentationPosition sensitive: segmentation
● The measurement of the position depends on the fired channel

– Many readout channels in the same sensor: channel ↔ position
– Physics processes: distance between channels (pitch), signal-to-noise ratio, 

readout mode (analogue or binary), channel coupling, ...

microstrips

Naïve expectation of the resolution = pitch / √12
Although many effects may influence the final value

← bias 
resistors



  

Data acquisition in HEP experimentsData acquisition in HEP experiments
● Goal is to record the data registered by sensors when beams collide 



  

Data acquisition in HEP experimentsData acquisition in HEP experiments
● Sensors react to the passage of particles and produce signals 

– Usually as electric pulses
– Digitization: convert those pulse into digits

● Trigger
– Whenever an interesting event happens

● Whatever “interesting” means

● Record the data 
– In digital format
– In disk or tape

● Event reconstruction
– Tracker hits → tracks
– Calorimetry → energy deposition
– Bear in mind the calibration, geometry, etc.

● Event analysis & selection
– According to the reconstructed objects

● Physics results
– Eureka !



  

LHC 40 MHz clockLHC 40 MHz clock
● LHC works with a 40 MHz clock

– It does not mean collisions happen at 40 MHz all day long
● Running schemes

● Electronics should be fast and be ready to record each 25 ns slot 
independently.
– Otherwise signal pile-up may occur

25 ns

25 ns

Peaking time

si
gn

al

time
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Signal processingSignal processing
● The sensors are operated continuously although data is read out only 

when acquisition is triggered
– Output depends on readout mode  

t

si
gn

al

Triggers/clock

Analogue mode →
(arbitrary units) 

+1
 -1
 -1

+8
+3
 -1

+1
 -1
 -1

+1
  0
+4

Possibility to perform
center of gravity
calculations

Storing all data is not practical → zero suppression

Possibility to perform
center of gravity
calculations
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Signal processingSignal processing
● The sensors are operated continuously although data is read out only 

when acquisition is triggered
– Output depends on readout mode  

t

si
gn

al

threshold

Binary mode → 
0
0
0

1
1
0

0
0
0

0
0
1

No center of gravity
calculations

Very compact data format

Triggers/clock
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Signal processing for track fittingSignal processing for track fitting
Single channel → Position: channel center
                            Error: width/√(12)

Many channels → Position and error depend
on clustering algorithm, hit info (analog or 
binary), strategy and conditions
Example 1: use just binary info

0 1 01

Example 2: binary info + incident angle

0 1 01

Example 3: analogue info (use center of gravity)

Q1 0Q2>

● Hit ↔ channel with signal
– Detector specific
– Channel ID & pulse height

● Cluster → group of channels 
– From 1 channel to many
– 3D information:
– Global or local coordinates
– Position: (x, y, z)
– Error: (δx, δy, δz) in a covariance 

matrix form
● Cluster position may depend:

– Hit data: binary or analogue
– Center of gravity
– Lorentz angle corrections

● Operation embedded in a B field
– Charge carriers drift/diffusion
– Track incident angle
– MCS corrections
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Signal processing for track fittingSignal processing for track fitting
● Hit ↔ channel with signal

– Detector specific
– Channel ID & pulse height

● Cluster → group of channels 
– From 1 channel to many
– 3D information:
– Global or local coordinates
– Position: (x, y, z)
– Error: (δx, δy, δz) in a covariance 

matrix form
● Cluster position may depend:

– Hit data: binary or analogue
– Center of gravity
– Lorentz angle corrections

● Operation embedded in a B field
– Charge carriers drift/diffusion
– Track incident angle
– MCS corrections

● Cluster charge (signal)
– Computed from hits 
– Correct for:

● gain & noise
● Track path within tracking volume

● Allow to compute dE/dx
– Analogue (pulse height) data
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NoiseNoise
● Noise degrades the tracking capabilities of silicon sensors

– Genuine signals may be swamped by noise
– Fake hits could spoil the track fitting

● Most important contributions to silicon sensors noise are:
– Leakage current
– Detector capacity
– Detector parallel resistor
– Detector series resistor

ENC=√ ENC l
2+ENCC

2+ENC Rp
2 +ENC Rs

2

ENC = Equivalent Noise Charge
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NoiseNoise
● Noise due to leakage current 

– Thermally generated e-h in depleted zone drift away → current 
● In a similar manner to the e-h pairs released by ionizing particles
● Keep leakage current low 
● Radiation damage → increases the leakage current

● Noise due to detector capacitance
– Usually the dominant source of noise

● Keep capacity low
● Use short strips or pixels (very low noise)

● Noise due to detector parallel resistor
– Dominated by the bias resistors

● Large value of the bias resistors are preferred

● Noise due to series resistor
– Related with the coupling of the channel with the readout electronics

● Low resistance in the aluminium layers is preferred → thick layers
● Short connections → readout chips near the sensors

● Very close relation with amplifier's peaking time
– Sampling time and peaking time dictated by the collision rate 
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Radiation damageRadiation damage
● Silicon atoms are structured in a crystal
● Particles crossing the sensors interact with the electron cloud an 

produce signal by ionizing the atoms (e-h pairs...)
● Those same particles (and neutral ones) can interact with the atoms

– May produce displacement of the atoms of the lattice → crystal defects
– Electrical properties depends on the crystal purity and defects can spoil them

● The rate at which crystal defects are introduced depends on:
– Incident particle flow
– Incident particle energy 
– NIEL

● Non Ionizing Energy Loss
● Which is used to expel Si                                                                                        

atoms from their position                                                                                              
in lattice & create defects

● Microscopic damage
– Changes in the lattice

● Macroscopic effects
– Sensor properties
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Radiation damageRadiation damage
● Point defects: 

– Atoms leaving their position in the lattice leave a Vacancy (V)
● 25 eV ! Energy necessary to remove a Si atom from its lattice location

– They use to occupy an inter-lattice space (interstitial, I)
– Frenkel defect: a vacancy – interstitial pair  (quite stable)
– Otherwise: Annealing process

● defects are mobile  at room T

● Cluster defects:
– The primary knock-on atom may displace other 

atoms in the lattice
– Clusters may involve hundreds of atoms
– Produce amorphous silicon

Schematic distribution of vacancies created
By a 50 KeV Si atom in silicon
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Radiation damageRadiation damage
● One can distinguish between damage in the bulk and in the surface

– Bulk damage: dislocations caused by massive particles
● defects create intermediate energy levels in the band gap
● Doping concentration, leakage current and charge trapping

– Surface damage: charge layer generated in the oxide caused by photons and 
charged particles

● May affect the isolation between strips/channels → micro-discharges 

 

1 MeV neutron equivalent

Damage hardness factor for different particles

+ + + + + +_ _ _ _ _ __

Accumulation 
layer
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Radiation damage: bulk damageRadiation damage: bulk damage
● Change of the effective doping concentration

– New energy levels (defect) act as dopants (p-type)
– Change in the depletion voltage
– Eventual change of bulk type: from n-type to a p-type

● p-n junction may migrate

● Increase of the leakage current
– Due to deep energy levels
– Impact on sensors noise 
– Thermal runaway 

● Power dissipation & cooling system
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Radiation damageRadiation damage
● Charge trapping: carriers may be caught during their drift

– Later they will be released again
● Although the net effect is: stop contributing                                                                  

to the current and therefore to the signal

● Trapping is due to deep levels 
– in the middle of the band gap
– Trapping probability depends on carriers velocity

● Mobility
● Less trapping for electrons 

[B. Rollings in 100 m hurdles final. Moscow 2013] 

100%
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Radiation damage: annealingRadiation damage: annealing
● Annealing: defects are mobile due to thermal excitation 

– Interstitial – vacancy may combine (lattice restoration  → beneficial)
– Form complex defects: di-vacancy (quite stable)
– Temperature & time dependent

● 3 components of structural damage
– Permanent damage
– Beneficial annealing (short term)
– Reverse annealing (long term)

● Effect clearly seen in effective doping
– Evolves with time

● How to fight radiation damage
– Defect engineering

● Oxigenation of substrate (improves radiation hardness)
– Device engineering

● Substrate type (p-type does not inverts)
● 3D (very low depletion, collection time, drift distance...)

– New materials
● MCZ, SiC, Monolithic devices, diamond  
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Other semiconductor sensor typesOther semiconductor sensor types
● Charge Coupled Devices (CCD)

– Slow device but with resolution equivalent to pixel sensors. Excellent SNR
● Silicon drift detectors

– 2D information: segmentation and drift time
● Monolithic active pixels (MAPS)

– All in one concept: detector+connection+readout
– Great integration, low power consumption

● 3D detectors
– Non planar, sideways depletion
– Very low depletion voltages and very fast

● Depleted Field Effect Transistor (DEPFET)
– Low capacitance, low noise & low power consumption
– Combined function of sensor and amplifier

● Avalanche photodiodes (APD)
– Operated in breakdown regime → detect single photon 
– Used in calorimetry & Cerenkov

● Silicon Photo-multipliers (SiPMs)
– Matrices of APD (100 or 1000 per mm2)
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SummarySummary
● Silicon sensors operate thanks to:

– Incident particle creates electron-hole pair by ionization
– Electrons and holes (charge carriers) move → current to be detected
– p-n junction

● Bibliography
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