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A. Lucia (UCM) Stability of dissipative systems qip 2014 1 / 19



Dissipative quantum systems

Let H be a finite-dimensional Hilbert space.

A dissipative quantum system is given by a 1-parameter continuous
semigroup (Tt)t>0 of completely positive, trace preserving (CPTP) maps
(also called quantum channels):

Tt : B(H)→ B(H)

system environment

Physically, this models to a system weakly coupled with an environment.
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Liouvillian: generator of dissipative evolution

The generator L of a semigroup of quantum channels is called Liouvillian.

For time-homogeneous dynamics:

Tt = etL ←→ L =
d

dt
Tt

∣∣
t=0

The properties of Tt force L to have a very particular structure, called the
Lindblad-Kossakowski form:

L(ρ) = i [H, ρ] +
∑
i

KiρK
†
i −

1

2
{KiK

†
i , ρ}

[see e.g. M. Wolf, Quantum Channels & Operations. Guided Tour for details]
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In dissipative dynamics, the Liouvillian plays the analogous role to the
Hamiltonian in unitary dynamics (it encodes all the physical properties of
the system).
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Liouvillians on many-body quantum systems

L =
∑
u∈Λ

∑
r>0

Lu(r); suppLu(r) = Bu(r)

Bu(r)

u

On many-body quantum systems on a lattice Λ, it is natural to assume
locality of the Liouvillian:
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Liouvillians on many-body quantum systems

L =
∑
u∈Λ

∑
r>0

Lu(r); suppLu(r) = Bu(r)

Bu(r)

u

We usually assume either:

Finite range: Lu(r) = 0 for r > r∗

Exponential decay: ‖Lu(r)‖1→1 6 e−αr

Power law decay: ‖Lu(r)‖1→1 6 (1 + r)−α

For the rest of the talk, just consider exponential decay,
but results can be generalised to polynomial decay.
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Motivation

Why are they interesting?
I Theoretical models for some kind of open evolutions

• Modelling of noise

I Dissipative quantum computation
I Dissipative state engineering

• Theoretical work: [Kraus et al, 2008] [Verstraete, Wolf, Cirac, 2008]
• Experimental implementations: [Barreiro et al, 2010] [Krauteret al, 2011]
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Stability is crucial for applicability

Let OA be an observable supported on A ⊂ Λ
and OA(t) it’s evolution under L (in the Heisenberg picture).

We consider a perturbed evolution given by L̃ =
∑

u,r L̃u(r) such that∥∥∥L̃u(r)− Lu(r)
∥∥∥

1→1
6 ε ‖Lu(r)‖1→1

The problem

Let ÕA(t) be the perturbed observable. Under which conditions can we
conclude

∀t > 0,
∥∥∥OA(t)− ÕA(t)

∥∥∥ 6 kA ε ?
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It is not just standard perturbation theory

The problem

∥∥∥L̃u(r)− Lu(r)
∥∥∥

1→1

‖Lu(r)‖1→1

6 ε
?

=⇒
∥∥∥OA(t)− ÕA(t)

∥∥∥ 6 kA ε, ∀t

Remark

ε is the microscopic strength of the perturbation, not its global norm:∥∥∥L̃u(r)− Lu(r)
∥∥∥

1→1

‖Lu(r)‖1→1

6 ε but
∥∥∥L − L̃∥∥∥

1→1
→∞
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Conditions for stability

Conditions for stability:

I unique fixed point (not necessary of full rank) and no periodic points

I rapid mixing

I bulk interactions are defined independently of the system size
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Rapid mixing

Let Tt = etL. We define the contraction of Tt the number

η(Tt) =
1

2
sup
ρ
‖Tt(ρ)− T∞(ρ)‖1 .

We say that L satisfies rapid mixing if

η(Tt) 6 poly(|Λ|)e−γt .

Equivalently:
tmix(ε) 6 O(logN/ε).
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Rapid mixing

We say that L satisfies rapid mixing if

η(Tt) 6 poly(|Λ|)e−γt .

Recent work has generalized Logarithmic Sobolev inequalities to the
quantum setting [Kastoryano, Temme, 2012].

A size-independent log-Sobolev constant implies exactly the type of
convergence required by rapid mixing (but it is not needed, i.e. rapid mixing
is well defined if the fixed point is pure).
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Stability theorem

Let L be a local Liouvillian with a unique fixed point, that satisfies rapid
mixing.

Let E =
∑

u

∑
r Eu(r) a local perturbation: ‖Eu(r)‖1→1 6 εe(r), and

L̃u(r) = Lu(r) + Eu(r)

Then of all observables OA supported on A ⊂ Λ we have that

∀t > 0,
∥∥∥OA(t)− ÕA(t)

∥∥∥ 6 poly(|A|) ‖OA‖ ε

Exponential decay of correlations/mutual information

The fix point of L satisfies:

I (A : B) 6 poly(|A|+ |B|)e−γdAB
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Sketch of the proof

Proof

Decompose using the integral representation:

OA(t)− ÕA(t) =
∑
u

∑
r

t∫
0

T̃ ∗t−sE
∗
u (r)OA(s) ds

Take norms

∥∥∥OA(t)− ÕA(t)
∥∥∥ 6

∑
u

∑
r

t∫
0

‖E ∗u (r)OA(s)‖ ds
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Lieb-Robinson Bounds

In many-body systems (Hamiltonian, dissipative) there is a finite speed of
propagation of information. This is given by the Lieb-Robinson bound.

The support of a local observables spreads linearly in time (in the
Heisenberg picture), up to an exponentially-small error.

A A(t)A(t)

Ã(t)

[Nachtergaele, Vershynina, Zagrebnov, 2011]
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Short times

A Bu(r)
d

Proof

For “short” times t 6 t0 we apply Lieb-Robinoson bounds

t0∫
0

‖E ∗u (r)OA(s)‖ ds 6 εe(r) |A| evt0e−µd

where d = dist(A,Bu(r)).
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Long times

Proof

For “long” times t > t0 we insert the fixed point (since E ∗u (r)1 = 0):

t∫
t0

‖E ∗u (r)OA(s)‖ ds =

t∫
t0

‖E ∗u (r)[OA(s)− OA(∞)]‖ ds

6 ‖Eu(r)‖1→1

∞∫
t0

‖OA(s)− OA(∞)‖ ds

We are looking for a bound on ‖OA(s)− OA(∞)‖ independent of the
system size.

A. Lucia (UCM) Stability of dissipative systems qip 2014 14 / 19



Local rapid mixing

Definition

Let A ⊂ Λ, Tt = etL. We define the contraction of Tt relative to A the
quantity

ηA(Tt) =
1

2
sup
ρ
‖trAc [Tt(ρ)− T∞(ρ)]‖1 .

We say that L satisfies local rapid mixing if for all A ⊂ Λ

ηA(Tt) 6 poly(|A|)e−γt .

Remark

ηA in general depends on the whole system, but we are asking for the
prefactor to be independent of global system size.
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Long times

Proof

By local rapid mixing:

∞∫
t0

‖OA(s)− OA(∞)‖ ds 6 poly |A|
∞∫
t0

e−γs ds

Putting short and long times toghether yields:

t∫
0

‖E ∗u (r)OA(s)‖ ds 6 εe(r) poly |A|
(
evt0e−µd + e−γt0

)
We are left to choose t0 = t0(d) such that the r.h.s. is summable over Λ.

A. Lucia (UCM) Stability of dissipative systems qip 2014 16 / 19



Proving local rapid mixing

unique
fix point

rapid mixing

LTQO
closeness

fixed points

local
rapid mixing

exponential
decay of

correlations

stability
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Application: classical Glauber dynamics

Glauber dynamics is a classical Markov process sampling from the Gibbs
distribution of a finite-range, translationally-invariant classical Hamiltonian
on a lattice.

It is the equivalent of the Metropolis-Hastings algorithm in continuous time

It is generated by the following:

Qf (σ) =
∑
x∈Λ

c(x , σ)[f (σx)− f (σ)].

c(x , σ) are called transition rates, and are chosen to satisfy detailed balance.

We can embed classical Glauber dynamics into a quantum dissipative
system, having the same mixing time and fixed points.
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The end!

Thank you for your attention

For further reading: arXiv:1303.4744
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