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A common formulation of Landauer’s Principle

Suppose a computer “erases” 1 bit of information.

Then: The amount of “heat” “dissipated” into the environment
is at least kpTlog2:

AQ > kgTlog?2 ,

where T = temperature of the environment of the computer.

BAQ > AS “Landauer bound”
where kg =1, 8 = 1/T

Why erasure? E.g. to re-initialize error correcting mechanism.



Existing derivations of Landauer’s Principle

@ based on 2"/ Law of Thermodyn: e.g. Landauer '61, ...
— mix-up of notions (cf. Earman/Norton, Bennett)

@ in specific models: e.g. 1-particle gas in box
— need to accept thermodyn formalism (e.g. “quasistatic”)

@ recently: (more) microscopic
e Shizume (1995): effective dissipative force (Fokker-Planck)
e Piechocinska (2000): Jarzynski equality
— assumes: final product state ps ® pr — p§ ® pi
— assumes: p§ pure
— assumes: pj diagonal in energy eigenbasis — quantum?
e Sagawa/Ueda (2009): need system Hamiltonian H, ...

@ claimed “violations” of LP:
— Nieuwenhuizen '01, Orlov ’12, ...

our work: rigorous and minimal formulation & proof of LP



Overview

0 Minimal formulation & proof
® BAQ = AS + I(S': R') + D(pkllor)

Q Finite-size effects

2
@ BAQ > AS + ;ﬁ:z)d

@ entropy inequalities

e Applications
@ energy—time tradeoff in achieving SAQ — AS

@ Carnot bound



Minimal setup for Landauer’s Principle

initial state final state

(0) system S, reservoir R: Hsg = Hs @ Hpg
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initial state final state

(0) system S, reservoir R: Hsg = Hs @ Hr
(1) initially uncorrelated: psgr = ps ® pr

Otherwise: e.g. psg = >, pili)s(il ® |i)r{il .
and U: |i)s|i)gr — |0)s|i)r

= UpsrUT = [0)5(0] ® =, pili)r(il
= pspure, pg = pr = BAQ Z AS




Minimal setup for Landauer’s Principle

initial state final state

(0) system S, reservoir R: Hsg = Hs @ Hr
(1) initially uncorrelated: psgr = ps ® pr
(2) pr = % (R-Hamiltonian H, R-temperature T = 1/5)

@ parameter g3 in Landauer’s bound J

o “cheaply available” states




Minimal setup for Landauer’s Principle

initial state final state

(0) system S, reservoir R: Hsg = Hs @ Hpg
(1) initially uncorrelated: psgr = ps ® pr
2) p
(3)

eBH

2 TP (R-Hamiltonian H, R-temperature T = 1/5)

3 unltary evolution: pl, = UpsgUT

@ microscopic laws of nature
@ no hidden entropy sinks




Minimal setup for Landauer’s Principle

initial state final state
AS = S(ps) — S(p})
AQ := Tr[Hpk] — Tr[Hpg]

A= S(pr) — S(pr)

(0) system S, reservoir R: Hsg = Hs @ Hpg
(1) initially uncorrelated: psgr = ps ® pr
2) p
(3)

2 7/3,,] (R-Hamiltonian H, R-temperature T = 1/5)

3) unitary evolution: pp = UpsgU'*




Minimal setup for Landauer’s Principle

initial state final state

AS = S(ps) — S(pb)
AQ := Tr[Hpk] — Tr[Hpg]
A= S(px) — S(er)

(0) system S, reservoir R: Hsg = Hs @ Hpg
(1

(2
(3

)

) initially uncorrelated: psg = ps ® pr

) pr = 7”?;’;,] (R-Hamiltonian H, R-temperature T = 1/0)
)

unitary evolution: pf, = UpsgUT

no Hamiltonian, no temperature for S needed
psr May be correlated, pg need not be pure
AS positive or negative

classical and quantum ([H, pg] # 0)



Equality form of Landauer’s Principle

Theorem 1

Let psrk = ps ® pr be a product state,
with pg = e PH /Tr [e=PH] thermal state of Hamiltonian A,
and let p, := UpsgU' with a unitary U.

Then: BAQ = AS + I(S': R') + D(pkllpr)
> AS.

Proof:
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Equality form of Landauer’s Principle

Theorem 1

Let psr = ps ® pr be a product state,
with pg = e PH /Tr [e=PH] thermal state of Hamiltonian A,

and let p, := UpsgU' with a unitary U.

Then: BAQ = AS + I(S': R') + D(pgllpr)
> AS.
Proof:
step 1: A = S(pf) — S(or) 22 AS + (S : R)

step2: BAQ = Tr[BH(py — pr)] 2= A + D(pkllor) O



Extensions of SAQ = AS + I(S' : R') + D(pkllpr)

e additional memory system M [del Rio et al. 2011]
— use ASonq := S(S|M) — S(S'|M"),
— extraterm +[S(M) — S(M')]

e initial S—R correlations [“violations of LP”]
— extraterm —I(S:R)

e deviations from thermal pr
— extraterm —D(pglle=" /Trle=PH])

e non-increasing entropy in psg — pi, (€.9. positive unital map)
— inequality SAQ > AS + ...



Equality cases in Landauer’s bound
Recall: BAQ = AS + I(S": R") + D(pkllpr)

® D(pgllpr) =0 = pp = pr
@ I(S':R)=0 = plg = ps@pg = Ulps @ pr)U'

Thus: BAQ=AS & AS=A0 =0
& process is trivial




Equality cases in Landauer’s bound
Recall: BAQ = AS + I(S": R") + D(pkllpr)

® D(pgllpr) =0 = pp = pr
@ I(S':R)=0 = plg = ps@pg = Ulps @ pr)U'

Thus: BAQ=AS & AS = A0 =0
< process is trivial

= explicitly improve Landauer’s bound for AS # 0

But have to assume finite reservoir size d = dim(Hg) < oo:
@ e.g. small error-correcting mechanism
@ e.g. shortinteraction time S—R — effectively small d



Finite-size effects

Recall: BAQ > AS + D(pkllpr)
Lemma Al Do) = —oa (A= S()—-S(ow)
' R = 3log?d K

(AS)?
3log?d

v

if AS>0.



Finite-size effects

Recall: BAQ > AS + D(pkllpr)
Lemma Al Do) = —oa (A= S()—-S(ow)
' R = 3log?d K
2
G if AS>0.
3logd
AQ)? :
stat mech: D(prllpr) > (820) if BAQ <0

~ 2maxy Cy(T')



Finite-size effects

Recall: BAQ > AS + D(pkllpr)
Lemma Al Do) = —oa (A= S()—-S(ow)
~ 3log’d
2
> (ASQ if AS>0.
3logd
AQ)? :
: / > _ (A0 f BAQ <
stat mech D(prllpr) > 3 maxy Cu(T) if BAQ <0
A 2
Lemma B: > M
2log“d
AS)?
re-insert: BAQ > AS + (A5)

7log? d



Relative entropy vs. entropy difference

Lemma A
Let o, p on C¢. Denote A := S(o) — S(p).

AZ
Then: D > M(A,d) > ———,
Ollo) = MAd) = 3om
where
M(A,d) ::ogms,irngl{Dz(er) ’Hz(s)—Hz(r)—F(s—r) log(d—1) = A} J

e M(A,d): tight bound, effectively computable, strictly convex



Relative entropy vs. entropy difference

Lemma A
Let o, p on C¢. Denote A := S(o) — S(p).

AZ
Then: D > M(A,d) > ———,
Clo) 2 MAd) 2 5o
where
M(A,d) ::ogms,irngl{Dz(er) ’Hz(s)—Hz(r)—F(s—r) log(d—1) = A} J

e M(A,d): tight bound, effectively computable, strictly convex

Proof:
step 1: D(o|p) = Tr[(—logp)o] — S(o) atfixed p, fixed S(o)
= o=p"/Tr[p?] — commuting

step 2: Lagrange multipliers, discrete optimization O



Intermission: Further QI applications

e hypothesis testing, universal source coding:

. . (R—S(p)*
dist(E = f D > 7
'S ( 7p) O':SI(I;)>R (CT”,O) o 310g2d

e Shannon capacity of Ty)y = (y] y,,) e RIYIXIXI:

N - 2
(SGv) = SGw))
1210g? |Y|

C(1) = minmax DY) >
y X

e better than Pinsker + Fannes-Audenaert

D(ollp) > M(A,d=10)
e tight bound
e asymmetric A < (—A)
e O(A?) for|Al =0




Maximum heat capacity in dimension d < o
—H/T

Cull) = jTtr[Htrfe—H/Tﬂ = [or (10g pr + S(pr))’]

~~

=: pr =: varp; [log pr]



Maximum heat capacity in dimension d < oo

d e—H/T )
Cu(T) = = tr[Htr[e—H/T]} = Tr [,OT (log pr + S(pr)) }
=: pr =: varp; [log pr]

For any state p on C¢:

varyllogp] < N(d) < log’d.

e N(d): tight bound, effectively computable
e “super-extensive”: log>d ~ (#particles)?

e tight for: H = diag(—1,0,...,0) — strongly interacting



Finite-size effects in Landauer’s Principle

Let the reservoir R have dimension d = dim(Hg).

A 2
Then: BAQ > AS + ( S; .
7log“d
“1BaQ . .
ol 4-(qu)bit reservoir: d = 16
1 red curve = our best bound
2 (tight for AS > 0)
7 AS [bits] .
D . Example: erase AS =1 bit
= at least 14% more
heat production




Tradeoff in attaining the bound SAQ > AS
S

ps, P given.

Want SAQ — AS

Ry Ry R, Ry
@iN @R
Hk H3 HZ Hl



Tradeoff in attaining the bound SAQ > AS

s
ps, P given. /@

Want SAQ — AS g

Ry Rs R, /
wioe @3 () (D
Hk H3 HZ Hl

BAQ = [S(ps) — S(p))] + D(pslp}’)



Tradeoff in attaining the bound SAQ > AS
S

ps. s given.

Want SAQ — AS R,
(aS k—>OO) pg‘)zp's . s

BAQ = [S(ps) — S(p))] + D(pslp}’)
+[S(ok)) = S + Do 1p%)



Tradeoff in attaining the bound SAQ > AS
S

ps: v given.
Want SAQ — AS R R, R,
(as k — o0) o0
3 H2 1

BAQ = [S(ps) — S(p))] + D(pslp}’)
+[S(ok)) = S + Do 1p%)

_l’_



Tradeoff in attaining the bound SAQ > AS
S

ps. s given.

Want SAQ — AS
(as k — )

BAQ = [S(ps) — S(p))] + D(pslp}’)
+[S(ok)) = S + Do 1p%)

_l’_

+ [S(os ™) = S(0%)] + DoV 110k)

(AS)?
k - 31og? dg

= AS+ > D(pi Vlloy)) = AS +



Tradeoff in attaining the bound SAQ > AS
S

ps: s given.
Want SAQ — AS R, R, R,
e £ 0 ) &
3 HZ Hl
(AS)° D(ps|lps) + D(psllps)
AS+ ———— < BAQ < AS +
k-3log*ds ~ AL < k
previous slide [Anders et al.][Skrzypczyk et al.]

e thermodyn reversibility in the limit k — oo (note: d = d¥)

e k ~ time duration of process
= “degree of irreversibility” ~ 1/time

e — energy—time tradeoff



Carnot bound

[Rl]E>[C]:>[R2] P = pws @ PR, @ pr, — IOIEP;)VSRIRZ
He T iy He,

e S(p') > S(p),

”W o Tr((Hw + He, + Hg,) (0’ = p)] < 0.

Then: AW < (1 — —) AQy — Ty (S(pwe) — S(pwe) )

where AW := Tr[Hw(py — pw)],
Tr [HRI PR, — pR1 :|

>
S
li

Proof: SH := [31Hg, + 2Hg, [Pusz/Woronowicz] O

unitary — equality version: — D(pg g, |lPr,r,) — I(W' C'|RiR2)

(S(pwe) = S(piye))?
7log(dd>)

— finite-size corrections: —



Conclusion

@ minimal assumptions: ps ® e %1 s Psr
@ LP equality: BAQ = AS + I(S': R') + D(pkllpr)

(As)?
7log? d

@ finite-size effects: SAQ > AS+

— 14% for reservoir of 4 (qu-)bits
— model for energy-time tradeoff

@ finite-size bounds in other thermodynamic situations ?

@ BAQ > F(ps,ps,d) > S(ps) — S(ps) ?

@ tight bound for AS < 07?



Conclusion

@ minimal assumptions: ps ® e %1 s Psr
@ LP equality: BAQ = AS + I(S': R') + D(pkllpr)

(As)?
7log? d

@ finite-size effects: SAQ > AS+

— 14% for reservoir of 4 (qu-)bits
— model for energy-time tradeoff

@ finite-size bounds in other thermodynamic situations ?

@ BAQ > Fl(ps, ps.d) > S(ps) — S(ps) ?

@ tight bound for AS < 07?

Thank you!



Appendix: “pureness” of final state

d d
Amm(ﬂ{s‘) > Z )\;T (p./S'R) = Z )‘lT (pS & PR) 2 d)\min (PS) )\min (pR)
i=1

i=1
—,BHmax _6Hm‘”
e e
AI’I’lll’l(pR) = TI' [e—ﬁH] 2 d e—BHmin

Amzn(pls) > e—ﬁ(Hmw[—Hmm) > e—ZBHH“
)\min(pS)

— “To erase 1 qubit”, need:
@ zero-temperature reservoir (5 = oo)
o formally H,,, = +oo (= AQ = )

Analogous: lower bounds on “pureness” S(pf) via majorization.
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