A tight Landauer Principle with finite-size improvements

<u>David Reeb</u>, Michael Wolf Technical University Munich

> QIP Barcelona February 3, 2014

arXiv:1306.4352 (Landauer's principle) arXiv:1304.0036 (entropy inequalities)

A common formulation of Landauer's Principle

Suppose a computer "erases" 1 bit of information.

Then: The amount of "heat" "dissipated" into the environment is at least $k_B T \log 2$:

$$\Delta Q \geq k_B T \log 2$$
,

where T = temperature of the environment of the computer.

$$eta \Delta Q \geq \Delta S$$
 "Landauer bound" where $k_B \equiv 1\,,\;\; eta \equiv 1/T$

Why erasure? E.g. to re-initialize error correcting mechanism.

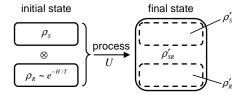
Existing derivations of Landauer's Principle

- based on 2nd Law of Thermodyn: e.g. Landauer '61, ...
 - → mix-up of notions (cf. Earman/Norton, Bennett)
- in specific models: e.g. 1-particle gas in box
 - → need to accept thermodyn formalism (e.g. "quasistatic")
- recently: (more) microscopic
 - Shizume (1995): effective dissipative force (Fokker-Planck)
 - Piechocinska (2000): Jarzynski equality
 - assumes: final product state $\rho_S \otimes \rho_R \longmapsto \rho_S' \otimes \rho_R'$
 - assumes: ρ'_S pure
 - assumes: ρ'_R diagonal in energy eigenbasis \rightarrow *quantum?*
 - Sagawa/Ueda (2009): need system Hamiltonian H_S, . . .
- claimed "violations" of LP:
 - → Nieuwenhuizen '01, Orlov '12, ...

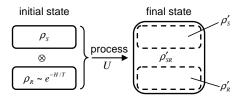
our work: rigorous and minimal formulation & proof of LP

Overview

- Minimal formulation & proof
 - $\bullet \ \beta \Delta Q = \Delta S + I(S':R') + D(\rho_R' \| \rho_R)$
- Pinite-size effects
 - $\beta \Delta Q \geq \Delta S + \frac{(\Delta S)^2}{7 \log^2 d}$
 - entropy inequalities
- 3 Applications
 - ullet energy-time tradeoff in achieving $eta\Delta Q o \Delta S$
 - Carnot bound



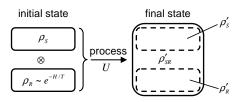
(0) system S, reservoir R: $\mathcal{H}_{SR} = \mathcal{H}_S \otimes \mathcal{H}_R$



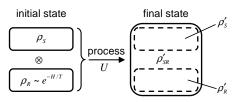
- (0) system S, reservoir R: $\mathcal{H}_{SR} = \mathcal{H}_S \otimes \mathcal{H}_R$
- (1) initially uncorrelated: $\rho_{SR} = \rho_S \otimes \rho_R$

Otherwise: e.g.
$$ho_{SR} = \sum_i p_i |i\rangle_S \langle i| \otimes |i\rangle_R \langle i|$$
 and $U: |i\rangle_S |i\rangle_R \mapsto |0\rangle_S |i\rangle_R$
$$\Rightarrow U \rho_{SR} U^\dagger = |0\rangle_S \langle 0| \otimes \sum_i p_i |i\rangle_R \langle i|$$

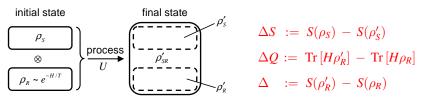
$$\Rightarrow \rho_S \text{ pure, } \rho_R' = \rho_R \qquad \Rightarrow \beta \Delta Q \not\geq \Delta S$$



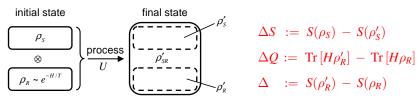
- (0) system S, reservoir R: $\mathcal{H}_{SR} = \mathcal{H}_S \otimes \mathcal{H}_R$
- (1) initially uncorrelated: $\rho_{SR} = \rho_S \otimes \rho_R$
- (2) $\rho_R = \frac{e^{-\beta H}}{\text{tr}[e^{-\beta H}]}$ (*R*-Hamiltonian *H*, *R*-temperature $T \equiv 1/\beta$)
 - parameter β in Landauer's bound
 - "cheaply available" states



- (0) system S, reservoir R: $\mathcal{H}_{SR} = \mathcal{H}_S \otimes \mathcal{H}_R$
- (1) initially uncorrelated: $\rho_{SR} = \rho_S \otimes \rho_R$
- (2) $\rho_R = \frac{e^{-\beta H}}{\text{tr}[e^{-\beta H}]}$ (*R*-Hamiltonian *H*, *R*-temperature $T \equiv 1/\beta$)
- (3) unitary evolution: $\rho'_{SR} = U \rho_{SR} U^{\dagger}$
 - microscopic laws of nature
 - no hidden entropy sinks



- (0) system S, reservoir R: $\mathcal{H}_{SR} = \mathcal{H}_S \otimes \mathcal{H}_R$
- (1) initially uncorrelated: $\rho_{SR} = \rho_S \otimes \rho_R$
- (2) $\rho_R = \frac{e^{-\beta H}}{\text{tr}[e^{-\beta H}]}$ (*R*-Hamiltonian *H*, *R*-temperature $T \equiv 1/\beta$)
- (3) unitary evolution: $\rho'_{SR} = U \rho_{SR} U^{\dagger}$



- (0) system *S*, reservoir *R*: $\mathcal{H}_{SR} = \mathcal{H}_S \otimes \mathcal{H}_R$
- (1) initially uncorrelated: $\rho_{SR} = \rho_S \otimes \rho_R$
- (2) $\rho_R = \frac{e^{-\beta H}}{\text{tr}[e^{-\beta H}]}$ (*R*-Hamiltonian *H*, *R*-temperature $T \equiv 1/\beta$)
- (3) unitary evolution: $\rho'_{SR} = U \rho_{SR} U^{\dagger}$
 - ono Hamiltonian, no temperature for S needed
 - \bullet ρ'_{SR} may be correlated, ρ'_{S} need not be pure
 - lacktriangle ΔS positive or negative
 - classical and quantum $([H, \rho'_R] \neq 0)$

Equality form of Landauer's Principle

Theorem 1

Let $ho_{SR}=
ho_S\otimes
ho_R$ be a product state, with $ho_R=e^{-\beta H}/{
m Tr}\left[e^{-\beta H}
ight]$ thermal state of Hamiltonian H, and let $ho_{SR}':=U
ho_{SR}U^\dagger$ with a unitary U.

Then:
$$\beta \Delta Q = \Delta S + I(S':R') + D(\rho_R' \| \rho_R)$$

 $\geq \Delta S$.

Proof:

Equality form of Landauer's Principle

Theorem 1

Let $ho_{SR}=
ho_S\otimes
ho_R$ be a product state, with $ho_R=e^{-\beta H}/{
m Tr}\left[e^{-\beta H}
ight]$ thermal state of Hamiltonian H, and let $ho_{SR}':=U
ho_{SR}U^\dagger$ with a unitary U.

Then:
$$\beta \Delta Q = \Delta S + I(S':R') + D(\rho_R' \| \rho_R)$$

 $\geq \Delta S$.

Proof:

step 1:
$$\Delta \equiv S(\rho_R') - S(\rho_R) \stackrel{(1),(3)}{=} \Delta S + I(S':R')$$

Equality form of Landauer's Principle

Theorem 1

Let $ho_{SR}=
ho_S\otimes
ho_R$ be a product state, with $ho_R=e^{-\beta H}/{
m Tr}\left[e^{-\beta H}
ight]$ thermal state of Hamiltonian H, and let $ho_{SR}':=U
ho_{SR}U^\dagger$ with a unitary U.

Then:
$$\beta \Delta Q = \Delta S + I(S':R') + D(\rho_R' \| \rho_R)$$

 $\geq \Delta S$.

Proof:

step 1:
$$\Delta \equiv S(\rho_R') - S(\rho_R) \stackrel{(1),(3)}{=} \Delta S + I(S':R')$$

step 2: $\beta \Delta Q \equiv \text{Tr}[\beta H(\rho_R' - \rho_R)] \stackrel{(2)}{=} \Delta + D(\rho_R' \| \rho_R)$

Extensions of $\beta \Delta Q = \Delta S + I(S':R') + D(\rho'_R || \rho_R)$

- additional memory system M [del Rio et al. 2011]
 - \rightarrow use $\Delta S_{cond} := S(S|M) S(S'|M')$,
 - \rightarrow extra term +[S(M) S(M')]
- initial S—R correlations ["violations of LP"]
 - \rightarrow extra term -I(S:R)
- deviations from thermal ρ_R
 - \rightarrow extra term $-D(\rho_R \| e^{-\beta H}/\mathrm{Tr}[e^{-\beta H}])$
- non-increasing entropy in $\rho_{SR} \mapsto \rho'_{SR}$ (e.g. positive unital map)
 - \rightarrow inequality $\beta \Delta Q > \Delta S + \dots$

Equality cases in Landauer's bound

Recall:
$$\beta \Delta Q = \Delta S + I(S':R') + D(\rho'_R || \rho_R)$$

•
$$I(S':R') = 0$$
 \Rightarrow $\rho'_{SR} = \rho'_{S} \otimes \rho'_{R} = U(\rho_{S} \otimes \rho_{R})U^{\dagger}$

Thus:
$$\beta \Delta Q = \Delta S \Leftrightarrow \Delta S = \Delta Q = 0$$

 \Leftrightarrow process is trivial

Equality cases in Landauer's bound

Recall:
$$\beta \Delta Q = \Delta S + I(S':R') + D(\rho'_R || \rho_R)$$

- $D(\rho_R' \| \rho_R) = 0 \Rightarrow \rho_R' = \rho_R$
- I(S':R') = 0 \Rightarrow $\rho'_{SR} = \rho'_{S} \otimes \rho'_{R} = U(\rho_{S} \otimes \rho_{R})U^{\dagger}$

Thus:
$$\beta \Delta Q = \Delta S \Leftrightarrow \Delta S = \Delta Q = 0$$

 \Leftrightarrow process is trivial

 \Rightarrow explicitly improve Landauer's bound for $\Delta S \neq 0$

But have to assume finite reservoir size $d \equiv \dim(\mathcal{H}_R) < \infty$:

- e.g. small error-correcting mechanism
- e.g. *short* interaction time $S-R \rightarrow$ effectively small d

Finite-size effects

Recall:
$$\beta \Delta Q \geq \Delta S + D(\rho_R' \| \rho_R)$$

Lemma A:
$$D(
ho_R'\|
ho_R) \,\geq\, rac{\Delta^2}{3\log^2 d} \qquad \qquad \left(\Delta \equiv S(
ho_R') - S(
ho_R)
ight) \ \geq rac{(\Delta S)^2}{3\log^2 d} \qquad \qquad \text{if } \Delta S \geq 0 \,.$$

Finite-size effects

Recall:
$$\beta \Delta Q \geq \Delta S + D(\rho_R' \| \rho_R)$$

Lemma A:
$$D(\rho_R'\|\rho_R) \ \geq \ \frac{\Delta^2}{3\log^2 d} \qquad \qquad \left(\Delta \equiv S(\rho_R') - S(\rho_R)\right)$$

$$\geq \frac{(\Delta S)^2}{3\log^2 d} \qquad \qquad \text{if } \Delta S \geq 0 \, .$$

stat mech:
$$D(\rho_R' \| \rho_R) \geq \frac{(\beta \Delta Q)^2}{2 \max_{T'} C_H(T')}$$
 if $\beta \Delta Q \leq 0$

Finite-size effects

Recall:
$$\beta \Delta Q \geq \Delta S + D(\rho_R' \| \rho_R)$$

Lemma A:
$$D(\rho_R'\|\rho_R) \, \geq \, \frac{\Delta^2}{3\log^2 d} \qquad \qquad \left(\Delta \equiv S(\rho_R') - S(\rho_R)\right) \\ \geq \, \frac{(\Delta S)^2}{3\log^2 d} \qquad \qquad \text{if } \Delta S \geq 0 \, .$$

stat mech:
$$D(\rho_R'\|\rho_R) \ \geq \ \frac{(\beta\Delta Q)^2}{2\max_{T'} C_H(T')} \qquad \text{if } \beta\Delta Q \leq 0$$
 Lemma B:
$$\geq \ \frac{(\beta\Delta Q)^2}{2\log^2 d}$$
 re-insert:
$$\beta\Delta Q \ \geq \ \Delta S \ + \frac{(\Delta S)^2}{7\log^2 d}$$

Relative entropy vs. entropy difference

Lemma A

Let σ, ρ on \mathbb{C}^d . Denote $\Delta := S(\sigma) - S(\rho)$.

Then:
$$D(\sigma \| \rho) \geq M(\Delta, d) \geq \frac{\Delta^2}{3 \log^2 d}$$
,

where

$$M(\Delta, d) := \min_{0 \le s, r \le 1} \left\{ D_2(s||r) \mid H_2(s) - H_2(r) + (s - r) \log(d - 1) = \Delta \right\}.$$

• $M(\Delta, d)$: tight bound, effectively computable, strictly convex

Relative entropy vs. entropy difference

Lemma A

Let σ, ρ on \mathbb{C}^d . Denote $\Delta := S(\sigma) - S(\rho)$.

Then:
$$D(\sigma \| \rho) \geq M(\Delta, d) \geq \frac{\Delta^2}{3 \log^2 d}$$
,

where

$$M(\Delta, d) := \min_{0 \le s, r \le 1} \left\{ D_2(s||r) \mid H_2(s) - H_2(r) + (s - r) \log(d - 1) = \Delta \right\}.$$

• $M(\Delta, d)$: tight bound, effectively computable, strictly convex

Proof:

step 1:
$$D(\sigma \| \rho) = \text{Tr}\left[(-\log \rho)\sigma\right] - S(\sigma)$$
 at fixed ρ , fixed $S(\sigma)$ $\Rightarrow \sigma = \rho^{\gamma}/\text{Tr}\left[\rho^{\gamma}\right] \rightarrow commuting$

step 2: Lagrange multipliers, discrete optimization

Intermission: Further QI applications

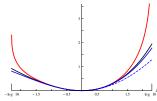
hypothesis testing, universal source coding:

$$\operatorname{dist}(E, \rho) := \inf_{\sigma: S(\sigma) > R} D(\sigma \| \rho) \ge \frac{(R - S(\rho))^2}{3 \log^2 d}$$

• Shannon capacity of $T_{Y|X} = \left(\vec{y}_1 \ \dots \ \vec{y}_n \right) \in \mathbb{R}^{|Y| \times |X|}$:

$$C(T) = \min_{\vec{y}} \max_{x} D(\vec{y}_{x} || \vec{y}) \ge \frac{\left(S(\vec{y}_{x'}) - S(\vec{y}_{x''})\right)^{2}}{12 \log^{2} |Y|}$$

better than Pinsker + Fannes-Audenaert



$$D(\sigma \| \rho) \geq M(\Delta, d=10)$$

- tight bound
 - asymmetric $\Delta \leftrightarrow (-\Delta)$
 - $\mathcal{O}(\Delta^2)$ for $|\Delta| \to 0$

Maximum heat capacity in dimension $d < \infty$

$$C_{H}(T) = \frac{d}{dT} \operatorname{tr} \left[H \underbrace{\frac{e^{-H/T}}{\operatorname{tr}[e^{-H/T}]}}_{=: \ \sigma_{T}} \right] = \underbrace{\operatorname{Tr} \left[\rho_{T} \left(\log \rho_{T} + S(\rho_{T}) \right)^{2} \right]}_{=: \ \operatorname{var}_{\rho_{T}} [\log \rho_{T}]}$$

Maximum heat capacity in dimension $d < \infty$

$$C_H(T) = \frac{d}{dT} \operatorname{tr} \left[H \underbrace{\frac{e^{-H/T}}{\operatorname{tr}[e^{-H/T}]}}_{=: \rho_T} \right] = \underbrace{\operatorname{Tr} \left[\rho_T \left(\log \rho_T + S(\rho_T) \right)^2 \right]}_{=: \operatorname{var}_{\rho_T}[\log \rho_T]}$$

Lemma B

For any state ρ on \mathbb{C}^d :

$$\operatorname{var}_{\rho}[\log \rho] \leq N(d) \leq \log^2 d$$
.

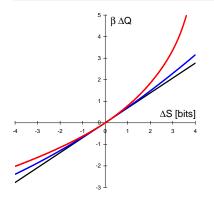
- N(d): tight bound, effectively computable
- "super-extensive": $\log^2 d \simeq (\# particles)^2$
- tight for: $H = diag(-1, 0, ..., 0) \rightarrow strongly interacting$

Finite-size effects in Landauer's Principle

Theorem 2

Let the reservoir R have dimension $d = \dim(\mathcal{H}_R)$.

$$\beta \Delta Q \geq \Delta S + \frac{(\Delta S)^2}{7 \log^2 d}$$
.



4-(qu)bit reservoir: d = 16

red curve = our best bound (tight for $\Delta S \ge 0$)

Example: erase $\Delta S = 1$ bit

⇒ at least 14% more heat production

 ρ_s

Want
$$\beta \Delta Q \rightarrow \Delta S$$
 (as $k \rightarrow \infty$)

$$\frac{R_k}{R_k} = \rho_S'$$

$$\frac{R_3}{H_k} \cdot \cdot \cdot \left[\begin{array}{c} R_3 \\ \rho_R^{(3)} \end{array} \right] \cdot \left[\begin{array}{c} R_2 \\ \rho_R^{(2)} \end{array} \right] \cdot \left[\begin{array}{c} R_1 \\ \rho_R^{(1)} \end{array} \right]$$

.

$$\rho_S$$
, ρ_S' given.

Want
$$\beta \Delta Q \rightarrow \Delta S$$
 (as $k \rightarrow \infty$)

$$\beta \Delta Q = [S(\rho_S) - S(\rho_R^{(1)})] + D(\rho_S || \rho_R^{(1)})$$

Want
$$\beta \Delta Q \rightarrow \Delta S$$
 (as $k \rightarrow \infty$)

$$\begin{array}{c|c}
R_k & R_3 \\
\hline
\rho_R^{(k)} \equiv \rho_S' & \cdots & \rho_R^{(3)}
\end{array}$$

$$\beta \Delta Q = \left[S(\rho_S) - S(\rho_R^{(1)}) \right] + D(\rho_S \| \rho_R^{(1)})
+ \left[S(\rho_R^{(1)}) - S(\rho_R^{(2)}) \right] + D(\rho_R^{(1)} \| \rho_R^{(2)})$$

Want
$$\beta \Delta Q \rightarrow \Delta S$$
 (as $k \rightarrow \infty$)

$$R_k$$
 R_k
 R_k

$$\beta \Delta Q = \left[S(\rho_S) - S(\rho_R^{(1)}) \right] + D(\rho_S \| \rho_R^{(1)})
+ \left[S(\rho_R^{(1)}) - S(\rho_R^{(2)}) \right] + D(\rho_R^{(1)} \| \rho_R^{(2)})
+ \dots
+ \left[S(\rho_R^{(k-1)}) - S(\rho_S') \right] + D(\rho_R^{(k-1)} \| \rho_S')
= \Delta S + \sum_{i=1}^{k} D(\rho_R^{(i-1)} \| \rho_R^{(i)})$$

Want
$$\beta \Delta Q \rightarrow \Delta S$$
 (as $k \rightarrow \infty$)

$$R_k$$
 R_k
 R_k

$$\begin{split} \beta \Delta Q &= \left[S(\rho_S) - S(\rho_R^{(1)}) \right] + D(\rho_S \| \rho_R^{(1)}) \\ &+ \left[S(\rho_R^{(1)}) - S(\rho_R^{(2)}) \right] + D(\rho_R^{(1)} \| \rho_R^{(2)}) \\ &+ \dots \\ &+ \left[S(\rho_R^{(k-1)}) - S(\rho_S') \right] + D(\rho_R^{(k-1)} \| \rho_S') \\ &= \Delta S + \sum_{i=1}^k D(\rho_R^{(i-1)} \| \rho_R^{(i)}) \ge \Delta S + \frac{(\Delta S)^2}{k \cdot 3 \log^2 d_S} \end{split}$$

$$\rho_S$$
, ρ_S' given.

Want
$$\beta \Delta Q \rightarrow \Delta S$$
 (as $k \rightarrow \infty$)

$$R_k$$
 R_k
 R_3
 R_2
 R_1
 R_2
 R_2
 R_1
 R_2
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_3
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_7
 R_8

$$\Delta S + \underbrace{\frac{(\Delta S)^2}{k \cdot 3 \log^2 d_S}}_{\text{previous slide}} \leq \beta \Delta Q \leq \Delta S \underbrace{+ \frac{D(\rho_S \| \rho_S') + D(\rho_S' \| \rho_S)}{k}}_{\text{[Anders et al.][Skrzypczyk et al.]}}$$

- thermodyn reversibility in the limit $k \to \infty$ (note: $d = d_S^k$)
- k ≃ time duration of process
 ⇒ "degree of irreversibility" ≃ 1/time
- → energy-time tradeoff

Carnot bound

$$\rho \equiv \rho_{WS} \otimes \rho_{R_1} \otimes \rho_{R_2} \quad \longmapsto \quad \rho' \equiv \rho'_{WSR_1R_2}$$

- $S(\rho') \geq S(\rho)$,
- $\operatorname{Tr}[(H_W + H_{R_1} + H_{R_2})(\rho' \rho)] \leq 0$.

Then:
$$\Delta W \leq \left(1 - \frac{T_2}{T_1}\right) \Delta Q_1 - T_2 \left(S(\rho_{WC}) - S(\rho_{WC}')\right)$$
, where $\Delta W := \operatorname{Tr}\left[H_W(\rho_W' - \rho_W)\right]$.

 $\Delta Q_1 := \text{Tr} \left[H_{R_1} (\rho_{R_1} - \rho'_{R_1}) \right].$

$$\begin{aligned} \textbf{Proof:} \;\; \beta H := \beta_1 H_{R_1} + \beta_2 H_{R_2} \quad & [\text{Pusz/Woronowicz}] \\ \text{unitary} \;\; & \to \text{equality version:} \;\; & -D(\rho'_{R_1R_2} \| \rho_{R_1R_2}) - I(W'C' | R_1R_2) \\ & \to \text{finite-size corrections:} \;\; & -\frac{\left(S(\rho_{WC}) - S(\rho'_{WC})\right)^2}{7\log(d_1d_2)} \end{aligned}$$

Conclusion

- ullet minimal assumptions: $ho_S \otimes e^{-eta H} \ \stackrel{U}{\longmapsto} \
 ho_{SR}'$
- LP equality: $\beta \Delta Q = \Delta S + I(S':R') + D(\rho_R' \| \rho_R)$
- finite-size effects: $\beta \Delta Q \geq \Delta S + \frac{(\Delta S)^2}{7 \log^2 d}$
 - -14% for reservoir of 4 (qu-)bits
 - model for energy-time tradeoff

- finite-size bounds in other thermodynamic situations?
- $\beta \Delta Q \geq F(\rho_S, \rho_S', d) \geq S(\rho_S) S(\rho_S')$?
- tight bound for $\Delta S < 0$?

Conclusion

- minimal assumptions: $ho_S \otimes e^{-eta H} \ \stackrel{U}{\longmapsto} \
 ho_{SR}'$
- LP equality: $\beta \Delta Q = \Delta S + I(S':R') + D(\rho'_R || \rho_R)$
- finite-size effects: $\beta \Delta Q \geq \Delta S + \frac{(\Delta S)^2}{7 \log^2 d}$
 - -14% for reservoir of 4 (qu-)bits
 - model for energy-time tradeoff

- finite-size bounds in other thermodynamic situations?
- $\beta \Delta Q \geq F(\rho_S, \rho_S', d) \geq S(\rho_S) S(\rho_S')$?
- tight bound for $\Delta S < 0$?

Thank you!

Appendix: "pureness" of final state

$$\lambda_{min}(\rho_S') \geq \sum_{i=1}^d \lambda_i^{\uparrow}(\rho_{SR}') = \sum_{i=1}^d \lambda_i^{\uparrow}(\rho_S \otimes \rho_R) \geq d \lambda_{min}(\rho_S) \lambda_{min}(\rho_R)$$
$$\lambda_{min}(\rho_R) = \frac{e^{-\beta H_{max}}}{\text{Tr}\left[e^{-\beta H}\right]} \geq \frac{e^{-\beta H_{max}}}{d e^{-\beta H_{min}}}$$

$$\Rightarrow \frac{\lambda_{min}(
ho_S')}{\lambda_{min}(
ho_S)} \geq e^{-eta(H_{max}-H_{min})} \geq e^{-2eta\|H\|}$$

- \rightarrow "To erase 1 qubit", need:
 - zero-temperature reservoir ($\beta = \infty$)
 - formally $H_{max} = +\infty \quad (\Rightarrow \Delta Q = \infty)$

Analogous: lower bounds on "pureness" $S(\rho_S')$ via majorization.