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[Feynman '‘81] Exponential description of quantum
states poses challenge to classical simulation.

Classical: O(n) parameters.
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n particles Quantum: 2°(M parameters.

Use a quantum computer.

What do we do until we have quantum computers?



Numerical techniques have been remarkably
successful in practice for 1D systems:

« Good Ansatz for Ground state: MPS
« DMRG algorithm[White ‘92] very successful for 1D

 Doesn’t always work. Artificial hard examples known.



Numerical techniques have been remarkably
successful in practice for 1D systems:

« Good Ansatz for Ground state: MPS
« DMRG algorithm[White ‘92] very successful for 1D

 Doesn’t always work. Artificial hard examples known.

1. Is there a theoretical justification?
Are 1D systems easy?
2. 2D systems?



1D Ground States

H=H +---+H

m

Qudits
Each H. is d?xd?, positive, norm <1

Wish to compute ground state |GS>,
state that minimizes energy E = <GS|H|GS>

Given the H, as input (to some precision), calculate
a classical description of |GS> (to some precision).
The classical description must allow efficient
evaluation of local observables.



Matrix Product States (MPS)

= -
“/’>=21‘Ai>®‘3i>

Bond dimension = Schmidt rank across cut



Quantum Complexity Theory Perspective

[Kitaev "99]:

Introduction of QMA - quantum analogue of NP.

Finding ground states of general local Hamiltonians
is QMA complete.

Conjecture: no sub-exponential size classical witness
for QMA-complete problems.

[Aharonov, et. al. ‘'04][Oliveira, Terhal ‘05]:
Finding solutions to 2D systems is QMA hard.
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[Kitaev "99]:

Introduction of QMA - quantum analogue of NP.

Finding ground states of general local Hamiltonians
is QMA complete.

Conjecture: no sub-exponential size classical witness
for QMA-complete problems.

[Aharonov, et. al. ‘'04][Oliveira, Terhal ‘05]:
Finding solutions to 2D systems is QMA hard.

[Aharonov, Gottesman, Irani, Kempe 07]
QMA-complete for 1D Hamiltonians

[Gottesman, Irani 09] Hard even for translation
invariant 1D Hamiltonians
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Area Law

For gapped local Hamiltonians
H=H:+ ..+ Hm entanglement
entropy of the ground state scales
like surface area, rather than
volume.

Gapped local Hamiltonians
spectral gap = € = E; - E; = constant. |IH| <1



Area Law

For gapped local Hamiltonians
H=H:+ ...+ Hm entanglement
entropy of the ground state scales
like surface area, rather than
volume.

Related to Holographic Principle: Black hole entropy scales like surface area.

[Vidal, Latorre, Rico, Kitaev '02]



1D Area Law

[Hastings ‘07]: Rigorous proof for 1D systems:
S,p = O(exp(logd/g))
d = dimension of particle, € = spectral gap.

« Implies 1D ground states in NP.
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1D Area Law

[Hastings ‘07]: Rigorous proof for 1D systems:
S,p = O(exp(logd/g))
d = dimension of particle, € = spectral gap.

« Implies 1D ground states in NP: poly(n) bond dimension
1D Solutions

[Schuch, Cirac, Verstraete '08] Hard even when GS has poly size MPS.
€= satisfies area law up to log correction



[Arad, Kitaev, Landau, Vazirani '12] Exponential
improvement in parameters of the 1D area law:

S:p = O(log3d/g)
« Implies sublinear bond dimension MPS approximation.

« Sub-exponential time classical algorithm for finding
MPS approximation to ground state.

Today: Algorithm that on input H4, ..., H, outputs
an MPS that has 1-n fidelity with |GS>.

0]
Running time: n<d.&poly(n1), where c(d,e)=2
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[Arad, Kitaev, Landau, Vazirani '12] Exponential
improvement in parameters of the 1D area law:

S:p = O(log3d/g)
« Implies sublinear bond dimension MPS approximation.

« Sub-exponential time classical algorithm for finding
MPS approximation to ground state.

Today: Algorithm that on input H4, ..., H, outputs
an MPS that has 1-n fidelity with |GS>.

0]
Running time: n<d.&poly(n1), where c(d,e)=2

How to reconcile these +ve results with the -ve
results from Quantum Complexity Theory?

log3 d
£




H=H +---+H

m

spectral gap = € = E; - E,

[Hi| =1

« Gapped Hamiltonians: € = E; - E; = constant

« QMA-complete instances: 1/poly(m) gap



H=H +---+H

m

spectral gap = € = E; - E,

[Hi| =1

« Gapped Hamiltonians: € = E; - E; = constant

« QMA-complete instances: 1/poly(m) gap

[Schuch, Cirac, Verstraete '08]

X

_ _ Succinct description of

\ AGSP /

1D algorithm




AGSP: Approximate Ground State Projector

(ONONONONONONONONONONCN NONCNONONONONONONONONGC) Ground State

An AGSP is an operator K that is not
“too complex” and approximately
projects onto the ground state:




AGSP: Approximate Ground State Projector

(ONONONONONONONONONONCN NONCNONONONONONONONONGC) Ground State

An AGSP is an operator K that is not
“too complex” and approximately
projects onto the ground state:

« K|GS> = |GS>

« Shrinks orthogonal space by A < 1

- Has low entanglement rank.

An operator on H; @ Hz of the form 3°{ A; @ B; will be said to have entanglement
rank C.




1D Solutions

B 1D Simulation

.S AGsPs
Hard - Area Exist

\ Area Law

Gap = AGSP




1D Problems
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Decoupling: Once you fix x; can decouple left and
right subproblems.



1D Problems

® 6 6 ¢ 6 ¢ ¢
e 201
Classical @ @ @ ¢ ¢ ¢ o
e 1 2
® 6 6 6 6 ¢ ¢

Decoupling: Once you fix x; can decouple left and
right subproblems.

Quantum: Fixing i-th qubit does not decouple.

Problem: Entanglement. Schmidt rank could grow
with n.
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Decoupling: Once you fix x; can decouple left and
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Quantum: Boundary contraction. Density matrix
on qubit + bond
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1D Problems
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Quantum: Boundary contraction. Density matrix
on qubit + bond

= -

[Hastings ‘07] Bond dimension is poly(n).
To discretize, need an e-net of size exp(n).

log2/3 n)

0
[Arad, Kitaev, Landau, Vazirani '12] Sublinear 2 (
bond dimension = subexponential time algorithm



Two Ideas

1. For any given cut, and constant 0, there is a
d-approximation to |GS> with constant bond

dimension By across that cut (and poly(n) across
other cuts).

Pros:
Can use a nP0)-net for the boundary contractions

across this cut to perform the extension step.

Cons:
Need to repeat this process across n cuts, and the

error will blow up.



Two Ideas

1. For any given cut, and constant 9, there is a
d-approximation to |GS> with constant bond
dimension By across that cut (and poly(n) across
other cuts).

2. Use an AGSP to reduce the error to 1/poly(n).
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Upon Closer Examination
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1. After the i-th iteration, the algorithm constructs
an approximation to the left-half of |GS>.

Can measure bond to decompose into a mixture
of pure states on the first i qudits.

2. How do we apply an AGSP to a state on i qudits?



Upon Closer Examination

AR AR AR A &

1. After the i-th iteration, the algorithm constructs
an approximation to the left-half of |GS>.

Can measure bond to decompose into a mixture
of pure states on the first i qudits.

2. How do we apply an AGSP to a state on i qudits?
An operator on Hy @ Hz of the form 3¢ A; @ B; will be said to have entanglement
rank C'.

|1 o L]

| L
To get 1/poly(n) approximation, need C=poly(n).



Major Problem
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« What we wanted: A poly(n) cardinality set of
left-states on first i qudits, such that one of them
of cardinality poly(n), such that one of them is
(close to) the left-half of |GS>.

« What we obtained: a set of poly(n) states on first
I qudits such that their span contains the left-half

of (approx. to) |GS>.



Major Problem

AR AR AR A &

« What we wanted: A poly(n) cardinality set of
left-states on first i qudits, such that one of them
of cardinality poly(n), such that one of them is
(close to) the left-half of |GS>.

« What we obtained: a set of poly(n) states on first
I qudits such that their span contains the left-half

of (approx. to) |GS>.

Idea: For a given boundary contraction on i+1-st
qudit, finding a left-state which lies in the span of
these poly(n) states on first i qudits, and with close

to the specified boundary contraction can be expressed
as a poly-sized convex program.



Convex Programming Framework for 1D Algorithm

Ce 9 f o9

v=2/\zaz®bz

min Tr[Hp]
Trip]=1
p=0

 But SDP is over an exponential dimensional space.

« Create a polynomial dimensional envelope that is
guaranteed to contain a close approximation to
ground state.



Viable Set

A set S of pure states on i-qudits is (i, s, b, 0) viable if:

 There is a 0-approx to |GS> whose left Schmidt
vectors are in the span of S.

« Each element of S has an MPS representation with
bond dimension < B.

* |S| =s



| 21+1: Four steps
Extension: Append a qudit. s = sd

Cardinality Reduction:
Fix a 8/n-net over the space of boundary contractions
of constant dimension By at i+1-st boundary.

i—1
min Z tr(H; o)
j=1

,,,,,

tr(c))=1, o >0.

Error reduction: Apply AGSP to each element of S.
I

C

| NN
Bond Trimming: Truncate MPS representations.



Analysis

i S B J
Start i—1 pn)p1(n) pn)pa(n) ce/n
Extension: — dp(n)p1(n) p(n)pa(n) ce/n
Size Trimming: — p1(n) p'(n)p2(n) 1/12
Bond Trimming: — i p1(n) pa(n) 1/2
Error reduction: — i p(n) pi(n) pn)pa(n) c./n



Uniform AGSP

Assume frustration-free.
I - H/n stabilizes |GS> and |H|perp>| <1 - €/n

So (I - H/n)"shrinks |perp> by constant factor
1

n

n

1
=yEHi1"'Hin

iy,

K = Sample poly(n) terms.

(I-H,)(I-H,)--(I-H,)

By matrix Chernoff bounds good approximation.



Conclusions

e A more local algorithm?
« AGSP
e 2D systems?

 Dependence on €



