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- Is there any limit on information storage capacity 
of physical systems ?

Question:



The (classical) local code bound

• Encode information into ground states of a geometrically 
local Hamiltonian on a D-dim lattice
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The (classical) local code bound

• Encode information into ground states of a geometrically 
local Hamiltonian on a D-dim lattice

Local Code Bound Bravyi, Terhal and Poulin (2009)

undergo phase transitions at zero temperature. A naturally arising question is whether there exists a topo-
logically ordered system which is stable at finite temperature without undergoing a phase transition at zero
temperature.

Interestingly, it has become apparent that, if a system works as a self-correcting quantum memory, it will
also have topological order that is stable even at finite temperature. In this light, by solving this quantum
information theoretical question concerning the feasibility of a self-correcting quantum memory, one can also
address a condensed matter theoretical question concerning the thermal stability of topological order. In my
PhD work, I have proposed a model of quantum codes that may cover a large class of physically realizable
quantum codes, and provided a complete solution and classification of the model. The model covers all the
stabilizer codes with translation and scale symmetries, meaning that the number of ground states does not scale
up with the system size. Solving the model was a very challenging project, as resulted in an 80 page paper [1]
and a 70 page paper [2]. Skipping all the technical details, my result essentially implies that such systems do
not work as self-correcting quantum memory, and thus, do not have topological order at finite temperature.

However, one may get around my result by breaking either translation or scale symmetries imposed by my
model. Breaking translation symmetries and having random potentials may give rise to spin glass orders or
Anderson localizations of anyonic excitations, which may lead to stabilization of quantum memory. Breaking
scale symmetries may give rise to novel quantum phases with slow relaxation dynamics which are beyond the
description of topological quantum field theory. Also, the equivalence between the feasibility of self-correcting
quantum memory and the thermal stability of topological order is rigorous only within my model, and needs to
be further investigated for general spin systems. Exploring these issues will be interesting problems which are
of practical importance for the quantum information science community and are of fundamental importance for
the condensed matter physics community.

3 Information storage capacity of spin systems

I have illustrated that quantum coding theory can provide an answer to a certain problem in studies of many-
body quantum systems. Now, let me shift gears and explain a problem which I hope to address after my PhD.
Instead of listing multiple problems, I will concentrate on a single problem in order to discuss its motivations and
future prospects in detail. The problem I describe concerns classical information theory, but may be generalized
to a quantum setting.

Understanding the limits imposed on the information storage capacity of physical systems is a problem of
fundamental and practical importance. This problem was answered for continuum systems by Bekenstein. In
particular, he derived the following beautiful bound on the number of logical bits which can be stored inside a
finite region [3]:

S � 2�kRE

~c (1)

where S is the amount of information stored, R is the linear length of the region, and E is the total energy. The
most beautiful outcome from this result is that three-dimensional black holes saturate the Bekenstein bound [4].
This surprising connection between information theory and black hole physics provided useful insights on our
understanding of black hole thermodynamics [5].

Recently, a similar bound on the information storage capacity for spin systems, which may be considered as
an analog of the Bekenstein bound for discrete systems, has been found. In particular, for gapped spin systems
defined on a D-dimensional lattice and governed by a local Hamiltonian, the following bound holds [6]:

kd1/D � O(n) (2)

where k is the number of logical bits encoded, d is the code distance, and n is the total number of spins,
and the energy ground space of the Hamiltonian is viewed as the codeword space of an error-correcting code.
Therefore, this bound determines the fundamental limit on information storage capacities of gapped interacting
spin systems defined on a discrete lattice.
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k : number of logical bits

d : code distance

n : total number of spins

Reliability
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Saturation for discrete systems ?
• Previously found systems are far below the bound ...

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.

kd1/2  O(n).
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Bound for D=2

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.

kd1/2  O(n). n = L2
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Saturation for discrete systems ?
• Previously found systems are far below the bound ...

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]
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where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
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However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
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for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.

kd1/2  O(n). n = L2

References

[1] Beni Yoshida. Classification of quantum phases and topology of logical operators in an exactly solved model
of quantum codes. Ann. Phys., 326(1):15–95, 2011.

[2] Beni Yoshida. Feasibility of self-correcting quantum memory and thermal stability of topological order.
Ann. Phys. (NY), 326(10):2566–2633, 10 2011.

[3] Jacob D. Bekenstein. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys.
Rev. D, 23(2):287, 1981.

[4] S. Hawking. Particle creation by black holes. Commun. Math. Phys., 43(3):199–220, 1975.

[5] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7(8):2333, 1973.

[6] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeo�s for reliable quantum information storage in 2d
systems. Phys. Rev. Lett., 104(5):050503, 2010.

[7] Beni Yoshida. Information storage capacity of discrete spin systems. in preparation.

3

theoretical limit

code distance

number of logical bits

d

k

 Repetition code 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

1

k = 1

d = n1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1



Saturation for discrete systems ?
• Previously found systems are far below the bound ...

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.
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Bound for D=2

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]
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2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.
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Saturation for discrete systems ?
• Previously found systems are far below the bound ...

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.
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Bound for D=2

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.
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Saturation for discrete systems ?
• Previously found systems are far below the bound ...

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.

kd1/2  O(n).
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Saturation for discrete systems ?
• Previously found systems are far below the bound ...
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Main Result : Asymptotic saturation

• We give a construction of local codes which “asymptotically” 
saturate the bound. (BY 2011)

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.

H = �
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i,j

Zi,jZi,j+1 �
X

i,j

Zi,jZi+1,j (5)

k ⇠ O(LD�1), d ⇠ O(LD��), (6)
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- Use fractal geometry in the Sierpinski triangle.

Key Idea:

Sierpinski’s triangle



The Sierpinski triangle

However, such a construction gives a family of local codes with kd = n as shown
with a dotted line in Fig. 7-1(b), which is still below the bound. So far, there have
been no example of local codes with provably better coding properties than those of
repetition codes.

In this chapter, we present a construction of local codes, called fractal codes, which
saturate the bound asymptotically as summarized in the following theorem.

Theorem 7.1. There exists a local code which can approach the theoretical limit
arbitrarily close:

k ⇠ O(LD�1), O(LD�✏) < d  O(LD) (7.3)

for D � 2 where ✏ is an arbitrary small positive number, L is the linear length of the
lattice and n = LD.

Therefore, our construction gives the best physically realizable error-correcting
code that is currently known. In this chapter, we illustrate the construction for
D = 2 and present the proof of theorem 7.1.

7.2 Fractal spin configurations

Our construction of local codes borrows an idea from a well-known example of fractal
geometries. The Sierpinski triangle has self-similar properties where the same patterns
appear repeatedly at di↵erent length scales as shown in Fig. 7-2(a). This peculiar
geometric nature of the triangle is reflected in its non-integer dimensionality where the
number of filled elements Llog 3/ log 2 grows as if the spatial dimension is log 3

log 2

⇠ 1.585.
While it had been long thought that the Sierpinski triangle is a mathematical

object, it became apparent that it can be physically realized as a ground state of
interacting spin systems via three-body terms [9]. Fig 7-2(a) shows a physical real-
ization of Sierpinski triangle on a square lattice where interaction terms are minimized
when local constraints a+ b = c (mod 2) on three neighboring spins are satisfied. It
has been pointed out that such a fractal system may be useful as an error-correcting
code with an e�cient decoder [110]. Recently, coding properties of this fractal code
have been predicted as follows [32]

k ⇠ O(L), d ⇠ O(L
log 3

log 2 ) (7.4)

based on numerical simulations. Therefore, this fractal spin system may be signifi-
cantly better than previously found local codes such as repetition codes.

Despite a remarkable idea of constructing a local code based on the Sierpinski
triangle, previous works have two serious drawbacks. First, this fractal code is still
far below the theoretical limit as seen in Fig. 7-1(b). Second, in order to prove the

prediction of d ⇠ O(L
log 3

log 2 ), one needs to analyze Hamming distances between all the
O(2L) ground states and find the minimal Hamming distance, which is a formidable
challenge both from analytical and computational perspectives.
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• Fractal geometry with self-similar properties
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• Physical realization ? (“Window Glass model” by Newman and Moore)
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Sierpinski triangle as a code

However, such a construction gives a family of local codes with kd = n as shown
with a dotted line in Fig. 7-1(b), which is still below the bound. So far, there have
been no example of local codes with provably better coding properties than those of
repetition codes.

In this chapter, we present a construction of local codes, called fractal codes, which
saturate the bound asymptotically as summarized in the following theorem.

Theorem 7.1. There exists a local code which can approach the theoretical limit
arbitrarily close:

k ⇠ O(LD�1), O(LD�✏) < d  O(LD) (7.3)

for D � 2 where ✏ is an arbitrary small positive number, L is the linear length of the
lattice and n = LD.

Therefore, our construction gives the best physically realizable error-correcting
code that is currently known. In this chapter, we illustrate the construction for
D = 2 and present the proof of theorem 7.1.

7.2 Fractal spin configurations

Our construction of local codes borrows an idea from a well-known example of fractal
geometries. The Sierpinski triangle has self-similar properties where the same patterns
appear repeatedly at di↵erent length scales as shown in Fig. 7-2(a). This peculiar
geometric nature of the triangle is reflected in its non-integer dimensionality where the
number of filled elements Llog 3/ log 2 grows as if the spatial dimension is log 3

log 2

⇠ 1.585.
While it had been long thought that the Sierpinski triangle is a mathematical

object, it became apparent that it can be physically realized as a ground state of
interacting spin systems via three-body terms [9]. Fig 7-2(a) shows a physical real-
ization of Sierpinski triangle on a square lattice where interaction terms are minimized
when local constraints a+ b = c (mod 2) on three neighboring spins are satisfied. It
has been pointed out that such a fractal system may be useful as an error-correcting
code with an e�cient decoder [110]. Recently, coding properties of this fractal code
have been predicted as follows [32]

k ⇠ O(L), d ⇠ O(L
log 3

log 2 ) (7.4)

based on numerical simulations. Therefore, this fractal spin system may be signifi-
cantly better than previously found local codes such as repetition codes.

Despite a remarkable idea of constructing a local code based on the Sierpinski
triangle, previous works have two serious drawbacks. First, this fractal code is still
far below the theoretical limit as seen in Fig. 7-1(b). Second, in order to prove the

prediction of d ⇠ O(L
log 3

log 2 ), one needs to analyze Hamming distances between all the
O(2L) ground states and find the minimal Hamming distance, which is a formidable
challenge both from analytical and computational perspectives.
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based on numerical simulations. Therefore, this fractal spin system may be signifi-
cantly better than previously found local codes such as repetition codes.

Despite a remarkable idea of constructing a local code based on the Sierpinski
triangle, previous works have two serious drawbacks. First, this fractal code is still
far below the theoretical limit as seen in Fig. 7-1(b). Second, in order to prove the
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O(2L) ground states and find the minimal Hamming distance, which is a formidable
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with a dotted line in Fig. 7-1(b), which is still below the bound. So far, there have
been no example of local codes with provably better coding properties than those of
repetition codes.

In this chapter, we present a construction of local codes, called fractal codes, which
saturate the bound asymptotically as summarized in the following theorem.

Theorem 7.1. There exists a local code which can approach the theoretical limit
arbitrarily close:

k ⇠ O(LD�1), O(LD�✏) < d  O(LD) (7.3)

for D � 2 where ✏ is an arbitrary small positive number, L is the linear length of the
lattice and n = LD.

Therefore, our construction gives the best physically realizable error-correcting
code that is currently known. In this chapter, we illustrate the construction for
D = 2 and present the proof of theorem 7.1.

7.2 Fractal spin configurations

Our construction of local codes borrows an idea from a well-known example of fractal
geometries. The Sierpinski triangle has self-similar properties where the same patterns
appear repeatedly at di↵erent length scales as shown in Fig. 7-2(a). This peculiar
geometric nature of the triangle is reflected in its non-integer dimensionality where the
number of filled elements Llog 3/ log 2 grows as if the spatial dimension is log 3

log 2

⇠ 1.585.
While it had been long thought that the Sierpinski triangle is a mathematical

object, it became apparent that it can be physically realized as a ground state of
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based on numerical simulations. Therefore, this fractal spin system may be signifi-
cantly better than previously found local codes such as repetition codes.

Despite a remarkable idea of constructing a local code based on the Sierpinski
triangle, previous works have two serious drawbacks. First, this fractal code is still
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The Sierpinski triangle (generalized)

• Fractal geometry with self-similar properties

Figure 7-2: (a) Sierpinski triangle and its physical realization on a square lattice
(p = 2). Filled elements are mapped to 1s while unfilled elements are mapped to
0s. Interaction terms are three-body. (b) A generalization of Sierpinski triangle
(p = 3). Black elements are mapped to 1s, grey elements are mapped to 2s, and
unfilled elements are mapped to 0s.

We start by presenting the resolution of the first challenge. Our construction of
fractal codes utilizes a generalization of the Sierpinski triangle with higher-dimensional
spins. To begin with, let us discuss fractal properties of the Sierpinski triangle with
three-dimensional spins where possible spin values are 0, 1, 2 as shown in Fig. 7-2(b).

The number of non-zero spins in this generalized Sierpinski triangle is L
log 6

log 3 , and its
fractal dimension is log 6

log 3

⇠ 1.631, which is larger than log 3

log 2

⇠ 1.585. Then, one may
naturally expect that this generalization gives a fractal code with k ⇠ O(L) and

d ⇠ O(L
log 6

log 3 ) where k is the number of encodable three-dimensional logical spins.
The key observation here is that the fractal dimension of the Sierpinski triangle

grows as the inner dimension of spins increases. In particular, at the limit where p
goes to infinity, we notice

D(2)

p =
log(p(p+1)

2

)

log p
! 2 for p ! 1. (7.5)

Therefore, by taking su�ciently large p, one can construct a fractal code with k ⇠
O(L) and d � O(L2�✏) for an arbitrary small ✏ > 0 where k is the number of encodable
p-dimensional spins. This family of fractal codes based on generalized Sierpinski
triangle will saturate the bound in Eq. (7.2) asymptotically. While our construction
of fractal codes uses p-dimensional spins with p > 2, one can simulate these fractal
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Generalized Sierpinski triangle as a code

d

k

• This fractal code has ...
larger !

W � O(L
log 3
log 2 ) (12)

k ⇥ L/2 d ⇥ O(L
log 3
log 2 ) (13)

k ⇥ O(L) d ⇥ O(L
log 6
log 3 ) (14)

References

[1] Beni Yoshida. Classification of quantum phases and topology of logical operators in an exactly solved model
of quantum codes. Ann. Phys., 326(1):15–95, 2011.

[2] Beni Yoshida. Feasibility of self-correcting quantum memory and thermal stability of topological order.
Ann. Phys. (NY), 326(10):2566–2633, 10 2011.

[3] Jacob D. Bekenstein. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys.
Rev. D, 23(2):287, 1981.

[4] S. Hawking. Particle creation by black holes. Commun. Math. Phys., 43(3):199–220, 1975.

[5] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7(8):2333, 1973.

[6] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeo�s for reliable quantum information storage in 2d
systems. Phys. Rev. Lett., 104(5):050503, 2010.

[7] Beni Yoshida. Information storage capacity of discrete spin systems. in preparation.

4



Generalized Sierpinski triangle as a code

d

k

• This fractal code has ...
larger !

W � O(L
log 3
log 2 ) (12)

k ⇥ L/2 d ⇥ O(L
log 3
log 2 ) (13)

k ⇥ O(L) d ⇥ O(L
log 6
log 3 ) (14)

References

[1] Beni Yoshida. Classification of quantum phases and topology of logical operators in an exactly solved model
of quantum codes. Ann. Phys., 326(1):15–95, 2011.

[2] Beni Yoshida. Feasibility of self-correcting quantum memory and thermal stability of topological order.
Ann. Phys. (NY), 326(10):2566–2633, 10 2011.

[3] Jacob D. Bekenstein. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys.
Rev. D, 23(2):287, 1981.

[4] S. Hawking. Particle creation by black holes. Commun. Math. Phys., 43(3):199–220, 1975.

[5] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7(8):2333, 1973.

[6] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeo�s for reliable quantum information storage in 2d
systems. Phys. Rev. Lett., 104(5):050503, 2010.

[7] Beni Yoshida. Information storage capacity of discrete spin systems. in preparation.

4

Slightly better than a previous 
fractal code !



Asymptotic saturation (D=2)

•  Sierpinski triangle with p-dim spins (BY 2011)

Figure 7-2: (a) Sierpinski triangle and its physical realization on a square lattice
(p = 2). Filled elements are mapped to 1s while unfilled elements are mapped to
0s. Interaction terms are three-body. (b) A generalization of Sierpinski triangle
(p = 3). Black elements are mapped to 1s, grey elements are mapped to 2s, and
unfilled elements are mapped to 0s.
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grows as the inner dimension of spins increases. In particular, at the limit where p
goes to infinity, we notice
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Therefore, by taking su�ciently large p, one can construct a fractal code with k ⇠
O(L) and d � O(L2�✏) for an arbitrary small ✏ > 0 where k is the number of encodable
p-dimensional spins. This family of fractal codes based on generalized Sierpinski
triangle will saturate the bound in Eq. (7.2) asymptotically. While our construction
of fractal codes uses p-dimensional spins with p > 2, one can simulate these fractal
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However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇤ O(LD�1), d ⇤ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1 ⇥ O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.

H = �
X

i,j

Zi,jZi,j+1

�
X

i,j

Zi,jZi+1,j (5)

k ⇤ O(LD�1), d ⇤ O(LD��), (6)

k ⇤ O(L), d ⇤ O(L2��), (7)

S(i, j) + S(i+ 1, j) + S(i+ 1, j + 1) = 0 (mod 2) (8)

L = 2m (9)

W = 3m = Llog 3/ log 2 (10)

W = L
log 3
log 2 (11)
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• Higher-dimensions ?
codes only through two-dimensional spins.

Then, what about the bound on higher-dimensional systems with D > 2 ? For-
tunately, there exist higher-dimensional generalizations of the Sierpinski triangle
constructed on a D-dimensional hypercubic lattice (see [111] for example). For D-
dimensional Sierpinski triangle with p-dimensional spins, its fractal dimension is given
by

D(D)

p = log

✓
p(p+ 1) · · · (p+D � 1)

D!

◆
/ log(p) (7.6)

which approaches to D as p goes to infinity: D(D)

p ! D for p ! 1. A fractal code

based on D-dimensional Sierpinski triangle has k ⇠ O(LD�1) and d ⇠ O(LD(D)

p ),
and one can construct fractal codes which saturate the bound asymptotically in any
spatial dimension.

Discussion above is valid only if the assumption that the fractal dimension of the
code distance is equal to the fractal dimension of the Sierpinski triangle is true.

Theorem 7.2 (Fractal dimension of code distance). In fractal codes, the fractal di-
mension of the code distance d is equal to the fractal dimension of the Sierpinski
triangle:

k ⇠ O(LD�1) d ⇠ O(LD(D)

p ) (7.7)

where D(D)

p is the fractal dimension of D-dimensional Sierpinski triangle constructed
with p-dimensional spins, and k is the number of encodable logical p-dimensional
spins.

The rest of this chapter is dedicated to the proof of theorem 7.2 for D = 2.

7.3 Two-dimensional fractal code

We begin by giving a precise definition of fractal codes in two-dimensional systems.
Consider a two-dimensional square lattice with n = L ⇥ 2L spins where spins are
p-dimensional and spin values are 0, · · · , p� 1. We assume that p is a prime number,
and L = pm with arbitrary positive integer m. Each spin is labeled by “time” t and
“position” r where t = 0, · · · , L� 1 and t = 0, · · · , 2L� 1. We set periodic boundary
conditions along the time axis, and set open boundary conditions along the position
axis (see Fig. 7-3).

The admissible spin configurations of the system obeys the following local con-
straint:

x(t+ 1)r = x(t)r�1

+ x(t)r (mod p) 0  t  L� 2 (7.8)

where x(t)r = 0, · · · , p � 1 represents the spin value at (t, r). Notice that such spin
configurations can be physically realized as ground states of the following three-body
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The admissible spin configurations of the system obeys the following local con-
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+ x(t)r (mod p) 0  t  L� 2 (7.8)

where x(t)r = 0, · · · , p � 1 represents the spin value at (t, r). Notice that such spin
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Asymptotic saturation (D>2)
• Higher-dimensions ?
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Fractal codes saturate the bound for D > 2 too !

However, the connection between the Bekenstein bound and the above bound in Eq. (2) is currently incom-
plete. In particular, while black holes saturate the Bekenstein bound, spin systems which saturate the bound
in Eq. (2) are currently not known. Therefore, the necessary first step to establish the connection between
these two bounds is to find such a spin systems. This is a problem of practical importance since such a code
is essentially the best error-correcting code which is physically realizable with local Hamiltonians. Also, such a
system will be of fundamental importance since it may be viewed as an analog of black holes for discrete spin
systems.

My recent work in preparation gives a construction of interacting spin systems (error-correcting codes with
local Hamiltonian) which “asymptotically” saturate this bound [7]. In particular, the code has the following
properties:

k ⇠ O(LD�1), d ⇠ O(LD��) (3)

for arbitrary D where � is an arbitrary small positive number, L is the linear length of the system and n = LD.
Unlike other good error-correcting codes such as Shannon’s codes, LDPCs and polar codes, my code does not
use any randomness in its construction. As a result, I expect that the code has an e⇥cient decoding algorithm
which runs in a logarithmic time with respect to the system size.

An interesting future problem is to find a quantum analog of this error-correcting code. The bound on the
information storage capacity for quantum codes with gapped local Hamiltonians is given by [6]

kd
2

D�1  O(n) (4)

where d is the code distance viewed as a quantum code. A construction similar to my code may give quantum
codes which asymptotically saturate this bound.

Currently, it is not clear how the information capacity bound for discrete systems and the Bekenstein
bound for continuum systems are related, even though the two bounds address the same question from di�erent
aspects. Constructions of error-correcting codes which saturate the information storage capacity may further
establish the connection between continuum descriptions of quantum gravity based on string theory and discrete
descriptions based on loop quantum gravity.

H = �
X

i,j

Zi,jZi,j+1 �
X

i,j

Zi,jZi+1,j (5)

k ⇠ O(LD�1), d ⇠ O(LD��), (6)
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undergo phase transitions at zero temperature. A naturally arising question is whether there exists a topo-
logically ordered system which is stable at finite temperature without undergoing a phase transition at zero
temperature.

Interestingly, it has become apparent that, if a system works as a self-correcting quantum memory, it will
also have topological order that is stable even at finite temperature. In this light, by solving this quantum
information theoretical question concerning the feasibility of a self-correcting quantum memory, one can also
address a condensed matter theoretical question concerning the thermal stability of topological order. In my
PhD work, I have proposed a model of quantum codes that may cover a large class of physically realizable
quantum codes, and provided a complete solution and classification of the model. The model covers all the
stabilizer codes with translation and scale symmetries, meaning that the number of ground states does not scale
up with the system size. Solving the model was a very challenging project, as resulted in an 80 page paper [1]
and a 70 page paper [2]. Skipping all the technical details, my result essentially implies that such systems do
not work as self-correcting quantum memory, and thus, do not have topological order at finite temperature.

However, one may get around my result by breaking either translation or scale symmetries imposed by my
model. Breaking translation symmetries and having random potentials may give rise to spin glass orders or
Anderson localizations of anyonic excitations, which may lead to stabilization of quantum memory. Breaking
scale symmetries may give rise to novel quantum phases with slow relaxation dynamics which are beyond the
description of topological quantum field theory. Also, the equivalence between the feasibility of self-correcting
quantum memory and the thermal stability of topological order is rigorous only within my model, and needs to
be further investigated for general spin systems. Exploring these issues will be interesting problems which are
of practical importance for the quantum information science community and are of fundamental importance for
the condensed matter physics community.

3 Information storage capacity of spin systems

I have illustrated that quantum coding theory can provide an answer to a certain problem in studies of many-
body quantum systems. Now, let me shift gears and explain a problem which I hope to address after my PhD.
Instead of listing multiple problems, I will concentrate on a single problem in order to discuss its motivations and
future prospects in detail. The problem I describe concerns classical information theory, but may be generalized
to a quantum setting.

Understanding the limits imposed on the information storage capacity of physical systems is a problem of
fundamental and practical importance. This problem was answered for continuum systems by Bekenstein. In
particular, he derived the following beautiful bound on the number of logical bits which can be stored inside a
finite region [3]:

S � 2�kRE

~c (1)

where S is the amount of information stored, R is the linear length of the region, and E is the total energy. The
most beautiful outcome from this result is that three-dimensional black holes saturate the Bekenstein bound [4].
This surprising connection between information theory and black hole physics provided useful insights on our
understanding of black hole thermodynamics [5].

Recently, a similar bound on the information storage capacity for spin systems, which may be considered as
an analog of the Bekenstein bound for discrete systems, has been found. In particular, for gapped spin systems
defined on a D-dimensional lattice and governed by a local Hamiltonian, the following bound holds [6]:

kd1/D � O(n) (2)

where k is the number of logical bits encoded, d is the code distance, and n is the total number of spins,
and the energy ground space of the Hamiltonian is viewed as the codeword space of an error-correcting code.
Therefore, this bound determines the fundamental limit on information storage capacities of gapped interacting
spin systems defined on a discrete lattice.

2

(classical) local code bound

saturation
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What is topological order ?

• [Def] Ground State Properties are stable against any types of 
small local perturbations. 

The system is a *quantum error-correcting code.

(no local order parameter)

* for non-chiral topological order

Energy

gap

- locally indistinguishable

- no direct coupling between ground states

codeword space of q codes

=



Topological order and TQFT (Wen 90)

(a) The number of ground states depend only on 
the number of genus.

Fractional Quantum Hall effect

(b) Ground state properties are stable against 
small perturbations

(a) Invariant under diffeomorphism (continuous deformations)

Topological Quantum Field Theory

(b) Local deformation of metric leaves the theory invariant.
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(a) Invariant under diffeomorphism (continuous deformations)

Topological Quantum Field Theory
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The Toric code : loop condensation

A ground state is a condensation of fluctuating loops (Z2)

+ +

+ +
a superposition of loops of 
different sizes and shapes

Wavefunction is invariant under diffeomorphism

Fixed-point under RG transformations !
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2dim topological order is within TQFT ? 

Consider a 2D stabilizer Hamiltonian with translation symmetries. 

Theorem

If it is topologically ordered, then it is equivalent to a single or 
multiple copies of the Toric code. 

(BY 2010)

This seems to imply....

In 2D, topological order = TQFT



2dim topological order is within TQFT ? 

Consider a 2D stabilizer Hamiltonian with translation symmetries. 

Theorem

If it is topologically ordered, then it is equivalent to a single or 
multiple copies of the Toric code. 

(BY 2010)

This seems to imply....

In 2D, topological order = TQFT
then, D>2 ??



Main result

Lattice gauge theory

Beni Yoshida

(Dated: November 8, 2013)

A note on discrete, Abelian and non-Abelian lattice gauge theory, based on Kogut’s 1979 review.

| i+ | i+ · · ·

|˜0i |˜1i

kd
2

D�1  O(n)

kd2  O(n)

kd  O(n)

L L2 L3

• Quantum fractal codes (D>2) are topologically ordered, but beyond 
TQFT.

condensation of fractal objects



Quantum code from classical codes

a pair of (D-1)-dim 
classical codes

model A

model B

D-dim quantum code

quantum model (A,B)

• A framework to construct a quantum code from a pair of (cyclic) 
classical codes (BY 2013).

Geometric shapes of condensed objects look like model 
A and model B. 



Quantum code from classical codes

1dim repetition

1dim repetition
2dim Toric
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X
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Quantum code from classical codes

2dim fractal

2dim fractal
3dim quantum fractal

9

romagnet. It possesses continuous scale symmetries with finite ground state degeneracy, and its ground states
correspond to fixed points of RG transformations. Translation symmetries are not strongly broken.

• Classical fractal phase has zero-dimensional logical operators and fractal logical operators as in classical
fractal liquids. It possesses discrete scale symmetries with increasing ground state degeneracy, and its ground
states correspond to limit cycles of RG transformations. Translation symmetries are strongly broken.

• Topological phase has m-dimensional logical operators and (D � m)-dimensional logical operators where
m > 0 is an integer as in Z

2

spin liquid. It is topologically ordered with stability against local perturbations. It
possesses continuous scale symmetries with finite ground state degeneracy, and its ground states correspond to
fixed-points of RG transformations. Translation symmetries are not strongly broken in the ground state space.

• Quantum fractal phase has pairs of fractal logical operators as in quantum fractal liquids. It is topologically
ordered with stability against local perturbations. It possesses discrete scale symmetries with increasing ground
state degeneracy, and its ground states correspond to limit cycles of RG transformations. Translation symmetries
are strongly broken.

III. CLASSICAL FRACTAL LIQUID

A. Fractal and algebraic symmetry

FIG. 4: Examples of fractal geometries generated by polynomials. Unfilled elements represent zero, gray elements represent one,
and red elements represent two. (a) The Sierpinski triangle from f = 1 + x over F2 with the fractal dimension D = log 3/ log 2.
(b) The Fibonacci model from f = 1 + x + x

2 over F2 with the fractal dimension D = log(1 +
p

5)/ log 2. (c) The generalized
Sierpinski triangle from f = 1 + x over F3 with the fractal dimension D = log 6/ log 3.

In this section, we present a theoretical framework to construct a family of classical fractal liquids. It is well known
that a variety of fractal geometries can be generated by polynomials over finite fields. We begin with polynomial
representation of the Sierpinski triangle (Fig. 4(a)). Consider a polynomial f = 1 + x over F

2

and its j-th powers:

f0 = 1

f1 = 1 + x

f2 = 1 + x2

f3 = 1 + x + x2 + x3

f4 = 1 + x4

f5 = 1 + x + x4 + x5

eg) Fractal A

Fractal B

Fractal A

Fractal B



Why are they beyond TQFT?

(a)  A large (diverging) number of ground states: k ~ L

(c)  Ground states correspond to limit cycles of (Kadanoff-type) real-
space RG transformations with imaginary scaling dimensions.

TQFT has O(1) ground states by its definition...

(b)  Fractal objects are not continuously deformable.

Only discrete scale symmetries.

*Details can be found in Phys. Rev. B 88, 125122
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Application 1: (Marginally) Self-Correcting 
Quantum Memory

Does self-correcting quantum memory exist in 3d ?

• Cubic code (Haah 2011)

- No string-like logical operator. 
- Log(L) energy barrier

“marginally” self-correcting with TC=0
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Application 1: (Marginally) Self-Correcting 
Quantum Memory

Does self-correcting quantum memory exist in 3d ?

The model is free from string-like logical operators if and only if 
model A and model B are “algebraically different”.

model A model B

Z Z Z
Z

Z Z Z
Z Z

Z

Theorem (BY2013)

different fractals



Application 2: (asymptotically) good 
quantum LDPC code

Conjecture (BY2013)

Universal quantum phases in stabilizer codes

Beni Yoshida

Center for Theoretical Physics, Massachusetts Institute of Technology

January 29, 2014
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Quantum local code bound (Bravyi et al 2009)

Quantum fractal codes asymptotically saturate the bound 
with

•  (                ) - dim logical operators exist.
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Application 2: (asymptotically) good 
quantum LDPC code

infinite dimensional limit (              )

• Asymptotically good quantum LDPC code?
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Center for Theoretical Physics, Massachusetts Institute of Technology

January 25, 2014
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current best quantum LDPC code
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