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Question:

- Is there any limit on information storage capacity
of physical systems 7




The (classical) local code bound

e Encode information into ground states of a geometrically
local Hamiltonian on a D-dim lattice

local interactions
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The (classical) local code bound

e Encode information into ground states of a geometrically
local Hamiltonian on a D-dim lattice

L ocal Code Bound Bravyi, Terhal and Poulin (2009)

local interactions

kdYP < O(n)
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K : number of logical bits

d : code distance Reliability

n : total number of spins




Saturation for discrete systems ?

e Previously found systems are far below the bound ...

Bound for D=2

kd'/? <O(n)  n=1L7
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Saturation for discrete systems ?

e Previously found systems are far below the bound ...
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Saturation for discrete systems ?

e Previously found systems are far below the bound ...

Bound for D=2 Copies of repetition codes

kd'/? < O(n) n =L
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Saturation for discrete systems ?

e Previously found systems are far below the bound ...

Bound for D=2 Copies of repetition codes
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Saturation for discrete systems 7

e Previously found systems are far below the bound ...

Bound for D=2 Copies of repetition codes

kd'/? < O(n) n = L2

A ih/eoretical limit
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Main Result : Asymptotic saturation

e \We give a construction of local codes which “asymptotically”
saturate the bound. (BY 2011)
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Beni Yoshida, Annals of Physics 338, 134 (2013)



Key ldea:

- Use fractal geometry in the Sierpinski triangle.
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Sierpinski’s triangle



The Sierpinski triangle

e Fractal geometry with self-similar properties

Fractal dimension ?ﬁ ~ 1.585
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The Sierpinski triangle

° Physical realization ? (“Window Glass model” by Newman and Moore)
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The Sierpinski triangle

° Physical realization ? (“Window Glass model” by Newman and Moore)
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The Sierpinski triangle

° Physical realization ? (“Window Glass model” by Newman and Moore)
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The Sierpinski triangle
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The Sierpinski triangle
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The Sierpinski triangle

° Physical realization ? (“Window Glass model” by Newman and Moore)
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Sierpinski triangle as a code

e This system is a good error-correcting code ! (BY 2011)

Fractal dimension !

f~O(L),  dn~ OBz




Sierpinski triangle as a code

e This system is a good error-correcting code ! (BY 2011)

Fractal dimension !
log 34

kNO(L), dNO(lo?

Better than repetition codes !




Sierpinski triangle as a code

e This system is a good error-correcting code ! (BY 2011)

Fractal dimension !

f~O(L),  dn~ OBz

Better than repetition codes !

Still below a theoretical limit ...




The Sierpinski triangle (generalized)

e Fractal geometry with self-similar properties
Larger!

\

285 ~(1.631)

Fractal dimension

A
VAV AVVA VAV AVVA AV AV VAN VAV AVVA VAV



Generalized Sierpinski triangle as a code

e This fractal code has ...
larger !
log 6

k~O(L)  de~ O(LEES




Generalized Sierpinski triangle as a code

e This fractal code has ...
larger !

k~O(L)  d~O(LE:S

Slightly better than a previous
fractal code !




Asymptotic saturation (D=2)

e Sierpinski triangle with p-dim spins By 2011)
Fractal dimension

log(p(p;l))
log p




Asymptotic saturation (D=2)

e Sierpinski triangle with p-dim spins By 2011)
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Asymptotic saturation (D=2)

e Sierpinski triangle with p-dim spins By 2011)

Fractal dimension

1o p(p+1)
3 2 ) — 2 for p— 0.
log p
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Asymptotically saturate the bound !




Asymptotic saturation (D>2)

e Higher-dimensions ?



Asymptotic saturation (D>2)

e Higher-dimensions ?

Fractal dimension
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Asymptotic saturation (D>2)

e Higher-dimensions ?

Fractal dimension
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Asymptotic saturation (D>2)

e Higher-dimensions ?

Fractal dimension

log (p(p+ 1)--b(fo+D—1)>

log(p)

> D

p — OO

Fractal codes saturate the bound for D > 2 too !
kNO(LD_l), dNO(LD_e),



(classical) local code bound

/{dl/D S O(’I”L) ) saturation




Quantum generalizations ?
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(classical) local code bound
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Quantum generalizations ?

~—

(classical) local code bound

kdl/D < O(n) ) saturation ﬁf‘k ﬁfi&

Physical properties ?




Question:

- Is Topological Quantum Field Theory a universal
theory of topological order?




What is topological order ?

e [Def] Ground State Properties are stable against any types of
small local perturbations.

Energy
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What is topological order “?

e [Def] Ground State Properties are stable against any types of
small local perturbations.

5, Ihesystem is a *quantum error-correcting code.

(no local order parameter)

Energy

G 1gap )

* for non-chiral topological order



What is topological order ?

e [Def] Ground State Properties are stable against any types of
small local perturbations.

5, Ihesystem is a *quantum error-correcting code.

(no local order parameter)

Energy

codeword space of q codes

4 )
- locally indistinguishable

- no direct coupling between ground states
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* for non-chiral topological order
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Topological order and TQFT (wen 90)

Fractional Quantum Hall effect

(a) The number of ground states depend only on
the number of genus.

(b) Ground state properties are stable against
small perturbations

Topological Quantum Field Theory k\//"’

(a) Invariant under diffeomorphism (continuous deformations)

(b) Local deformation of metric leaves the theory invariant.



Topological order and TQFT (wen 90)

Fractional Quantum Hall effect

(a) The number of ground states depend only on
the number of genus.

(b) Ground state properties are stable against definition of
: - :
small perturbations topological order

Topological Quantum Field Theory k\/":
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Topological order and TQFT (wen 90)

Fractional Quantum Hall effect

(@) The number of ground states depend only on «—— extra property !
the number of genus.

(b) Ground state properties are stable against definition of
: - :
small perturbations topological order

Topological Quantum Field Theory K_\/j

(a) Invariant under diffeomorphism (continuous deformations) R

(b) Local deformation of metric leaves the theory invariant.



The Toric code : loop condensation

A ground state is a condensation of fluctuating loops (Z2)
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Wavefunction is invariant under diffeomorphism

> Fixed-point under RG transformations !

1] graphical representation




The Toric code : loop condensation

A ground state is a condensation of fluctuating loops (Z2)

1] graphical representation

v L + o
1 >
1 a superposition of loops of
+ 1} + different sizes and shapes
1—4—1 —
| > TQFT ~N
Levin-Wen model
Wavefunction is invariant under diffeomorphism =Turaev-Viro TQFB

> Fixed-point under RG transformations !



2dim topological order is within TQFT ?

-

Theorem (BY 2010)

Consider a 2D stabilizer Hamiltonian with translation symmetries.

If it is topologically ordered, then it is equivalent to a single or
multiple copies of the Toric code.

This seems to imply....

In 2D, topological order = TQFT




2dim topological order is within TQFT ?

-

Theorem (BY 2010)

Consider a 2D stabilizer Hamiltonian with translation symmetries.

If it is topologically ordered, then it is equivalent to a single or
multiple copies of the Toric code.

This seems to imply....

In 2D, topological order = TQFT
then, D>2 7?7




Main result

e Quantum fractal codes (D>2) are topologically ordered, but beyond
TQFT.

BEEAEEVEa

condensation of fractal objects



Quantum code from classical codes

e A framework to construct a quantum code from a pair of (cyclic)
classical codes (BY 2013).

r

a pair of (D-1)-dim

_ D-dim quantum code
classical codes

model A

> quantum model (A,B)
model B

\_

Geometric shapes of condensed objects look like model
A and model B.
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Quantum code from classical codes

1dim repetition

1dim repetition

2dim Toric
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eg)

Quantum code from classical codes

N
2dim fractal
> 3dim quantum fractal
2dim fractal
J
Fractal A
FractalN

Fractal B / E
---------------- 4

Fractal B




Why are they beyond TQFT?

(a) Alarge (diverging) number of ground states: k ~ L

TQFT has O(1) ground states by its definition...

(b) Fractal objects are not continuously deformable.

Only discrete scale symmetries.

(c) Ground states correspond to limit cycles of (Kadanoff-type) real-
space RG transformations with imaginary scaling dimensions.

*Details can be found in Phys. Rev. B 88, 125122
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)
d
O
@
©
e
O
©
| -
LL
&
-
e
C
©
)
C

eg : Toric code

FQHE




Application to quantum
topological order information processing ?

Quantum Fractal code !
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FQHE




Application 1: (Marginally) Self-Correcting
Quantum Memory

Does self-correcting quantum memory exist in 3d ?

e Cubic code (Haah 2011) “marginally” self-correcting with Tc=0

- No string-like logical operator.
- Log(L) energy barrier



Application 1: (Marginally) Self-Correcting
Quantum Memory

Does self-correcting quantum memory exist in 3d ?

e Cubic code (Haah 2011) “marginally” self-correcting with Tc=0

- No string-like logical operator.

- Log(L) energy barrier
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Z Z|z
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Application 1: (Marginally) Self-Correcting
Quantum Memory

Does self-correcting quantum memory exist in 3d ?

-

Theorem ( )

The model is free from string-like logical operators if and only if
model A and model B are "algebraically different”.

Zlz|z Zlz|z
7 Z\|z
V4
< >
model A model B

different fractals




Application 2: (asymptotically) good
quantum LDPC code

Quantum local code bound (Bravyi et al 2009)

kdD—1 < O(n).

i Conjecture (BY2013)

Quantum fractal codes asymptotically saturate the bound
with

L~ O(LD_2) d ~ O(LD—l—e)
?

e (D—1—¢€)-dimlogical operators exist.



Application 2: (asymptotically) good
quantum LDPC code

e Asymptotically good quantum LDPC code?

infinite dimensional limit ( D — oo )

k~O(n' ¢ d > O(n'~°)

current best quantum LDPC code

k~ O(n) d ~ O(n"®)
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asymptotically good quantum LDPC code

[1] Beni Yoshida, Annals of Physics 338, 134 (2013)
[2] Beni Yoshida, Phys. Rev. B 88, 125122 (2013)

Beni Yoshida
Caltech, IQIM

Feb 2014 @ QIP, Barcelona



