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Quantum Spin System

Stability of the Area Law

m Total Hilbert space dimension is d"V
m Dimension of smallest subsystem (A) is D
m Interest is in both A, B big
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Entanglement in Gapped Ground States

Stability of the Area Law

A random state of a quantum system has entropy
S(Tra () <¥|)) ~ log D = Nlog(d) Hayden, Leung, Winter (2004)

For many body systems: volume scaling of entropy
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Entanglement in Gapped Ground States

Stability of the Area Law

A random state of a quantum system has entropy
S(Tra(J¢)<¥|)) ~ log D = Nlog(d) Hayden, Leung, Winter (2004)

For many body systems: volume scaling of entropy
Ground states of gapped, local Hamiltonians are different!

The area law is the motivation behind variational classes: MPS and PEPS

m Hastings: in 1D, these states have an area law behaviour

m Arad, Kitaev, Landau, Vazirani: improved version



Entanglement in Gapped Ground States

Stability of the Area Law

In more than 1 dimension, no rigorous results
Is entanglement a meaningful quantity for many body systems?

|S(p) —S(0)| < Tlog(D—1)+ H({T,1—T}) (Fannes-Audenaert)

< volume scaling
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Entanglement in Gapped Ground States

Stability of the Area Law

In more than 1 dimension, no rigorous results
Is entanglement a meaningful quantity for many body systems?

|S(p) —S(0)| < Tlog(D—1)+ H({T,1—T}) (Fannes-Audenaert)

< volume scaling

Take N qubits and p pure and

o= (1=e)p+ p—(1—p) = IS(p) = S(o)| ~ N

In quantum many body theory, important concept of a phase: states in the
same phase have similar properties (not expectation values)



Gapped Quantum Phase

Stability of the Area Law

When are two ground states of gapped Hamiltonians in the same phase?

Definition (X.G. Wen, Hastings et al.)

m Hp and Hj local gapped Hamiltonians with ground states [¢g), |[t)1)

m The states |¢)g), [1)1) are in the same phase if there exists a v > 0 and
a smooth path of gapped, local Hs interpolating between Hp, Hy



Gapped Quantum Phase

Stability of the Area Law
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Gapped Quantum Phase

Stability of the Area Law

When are two ground states of gapped Hamiltonians in the same phase?

Definition (X.G. Wen, Hastings et al.)

m Hp and H; local gapped Hamiltonians with ground states |¢g), |[¢)1)

m The states [¢)g), [t)1) are in the same phase if there exists a ¥ > 0 and
a smooth path of gapped, local H; interpolating between Hy, H;

(Almost) equivalent intuitive definition:

m The states |¢g), [1)1) are in the same phase if there exists a constant
depth local quantum circuit that connects them.

With this intuitive picture in mind:
|1bo) obeys an area law iff [1)1) does = make this rigorous



Gapped Quantum Phase

Stability of the Area Law
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AS < O(Depth.Area)



Quasi-Adiabatic Evolution

Stability of the Area Law

Given a gapped path, how can we go from |¢g) to |11)7
Answer % [P (s)) = iK(s) |1(s)) with

K(s) = =i | Flan)e™ (@) e ™t
R

The function F:

m is odd
m decays super polynomially in ¢
m Flw)y=-1 jw =1

m exists, classic result in Fourier analysis



Quasi-Adiabatic Evolution

Stability of the Area Law

The existence of K is an exact version of the adiabatic theorem by Kato.

Hastings proved that K itself is a quasi-local Hamiltonian!
m Use Lieb-Robinson bounds
m K can be written as >}, >, - ki(r) and | k(r)| < cF(r)
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Hastings proved that K itself is a quasi-local Hamiltonian!
m Use Lieb-Robinson bounds
m K can be written as >}, >, - ki(r) and | k(r)| < cF(r)

Conclusion: K(s) is generator we need
Brings [¢) to [11) in short 'time’ s € [0, 1]

K(s) is a quasi local Hamiltonian, decays like e with oo < 1



Quasi-Adiabatic Evolution

Stability of the Area Law

The existence of K is an exact version of the adiabatic theorem by Kato.

Hastings proved that K itself is a quasi-local Hamiltonian!
m Use Lieb-Robinson bounds
m K can be written as >}, >, - ki(r) and | k(r)| < cF(r)

Conclusion: K(s) is generator we need
Brings [¢) to [11) in short 'time’ s € [0, 1]
K(s) is a quasi local Hamiltonian, decays like e with oo < 1

Michalakis (2012):

Extra condition on spectrum of reduced density matrices (decay): use the
quasi-adiabatic theorem and techniques from Hasting's proof to find that
entanglement changes ~ Alog A



Quasi-Adiabatic Evolution

Stability of the Area Law

The existence of K is an exact version of the adiabatic theorem by Kato.

Hastings proved that K itself is a quasi-local Hamiltonian!
m Use Lieb-Robinson bounds
m K can be written as >}, >, - ki(r) and | k(r)| < cF(r)

Conclusion: K(s) is generator we need
Brings [¢) to |11) in short 'time’ s € [0, 1]
K(s) is a quasi local Hamiltonian, decays like e with o < 1

Extra assumption (proof in second part talk):

The maximal rate at which a Hamiltonian H acting on system of dimension
D can generate entanglement is '(H) < |H| log D independently of
ancillas.



Stability of the Area Law

Stability of the Area Law

Divide a regular 2D lattice in a left and right part with straight cut
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Stability of the Area Law

Stability of the Area Law

Divide a regular 2D lattice in a left and right part with straight cut
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Stability of the Area Law

Stability of the Area Law

Divide a regular 2D lattice in a left and right part with straight cut

‘dSL (1%s)) ‘ 2 Z Z ‘Tr 7y) Mws) sl , IOgPL®]lR])‘

r=0 y x<r

< 2, 00 2, Tk (r

r=0 y x<r

< cAL Z r|k(r)| log (dP(r)> logis crucial!

r=0

= cAL ) P|k(r)] P(r) ~ r? in 2D

Since k(r) decays super polynomially, the sum converges in any dimensions
for regular lattices and all partitions.
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Part |l: Entanglement Rate



Entanglement Rate

Entanglement Rate

How fast can a Hamiltonian generate entanglement between two
subsystems?

m Interaction Hapg between two subsystems: straightforward (Bravyi)
I(H) < c|H| log D

m What if we allow for ancillas?

Do we really expect ancillas to have an influence on this rate for a local
Hamiltonian?



The Swap Operator

Entanglement Rate

Look at unitary gates instead of Hamiltonian evolution

m Can the total change of entanglement change by adding ancillas?
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The Swap Operator

Entanglement Rate

Look at unitary gates instead of Hamiltonian evolution
m Can the total change of entanglement change by adding ancillas?

m Yes! Look at the swap operator between two qubits
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The Swap Operator

Entanglement Rate

Look at unitary gates instead of Hamiltonian evolution
m Can the total change of entanglement change by adding ancillas?

m Yes! Look at the swap operator between two qubits

A B

K
Y




Influence of Ancillas

Entanglement Rate

m The swap operator is the worst case scenario
m In general, the upper bound changes by factor (Bennett et al. 2003),

log D = 2log D



Influence of Ancillas

Entanglement Rate

m The swap operator is the worst case scenario

m In general, the upper bound changes by factor (Bennett et al. 2003),

log D = 2log D

m How about the (infinitesimal) rate at which entanglement can be
created?

m Kitaev conjectured the analogous bound

.= I—dS(CZAa) < c|H|log D

this conjecture is the Small Incremental Entangling (SIE)



History of the Problem

Entanglement Rate

m Example were ancillas increase the entanglement rate given by Diir et
al. (2001)
m Several authors obtained partial results,

Diir, et al. (2001): qubits without ancillas

Childs, et al. (2002): Ising and anisotropic Heisenberg interaction
Wang, et al. (2002): Self-inverse product Hamiltonians

Childs, et al. (2004): Simulation of product Hamiltonians

m Bennett, Harrow, Leung, Smolin: first general bound independent of
ancillas

The last authors found an upper bound of the form

< O(|H|D*)



History of the Problem

Entanglement Rate

The last bound is a polynomial in the system’s dimension, further
refinements:
m Bravyi (2007): obtained several results,
I < O(|H||D?)
general case without ancillas: T < ¢|H| log D (tight, ¢ ~ 2)
rewrote the problem to make it tractable (see later)

m Lieb, Vershynina (2013): corollary I' < O(||H||D) ~ O(|H|d")

Numerical evidence suggests that Kitaev was right,

I < 2||H||log D ~ 2|H|Nlog d SIE-Conjecture



Bravyi's Trick

Entanglement Rate

Suppose D = Dg, we replace A= AQ® a.

m The entanglement rate reads

= —iTr(Hag[pas,log(pa) ® 15])



Bravyi's Trick

Entanglement Rate

Suppose D = Dg, we replace A= AQ® a.

m The entanglement rate reads
= —iTr(Haglpas;log(pa) ® 15])

m Find an ensemble {(1 — p, po), (P, pag)} such that
1g
p=—5 and (1—p)po+ ppas =,0A®D—B

Look at Small Incremental Mixing (SIM)

ds

N(p) = r

((1 —p)po + Pe_thpABeth>
~ 1t=0

(1)



Bravyi's Trick

Entanglement Rate

We see that for this ensemble

If we proof that
A(p) < c|H||plog(1/p) SIM-Conjecture
we conclude that

[ < c|H| log(D3) = 2¢|H]| log Dg



Bravyi's Trick

Entanglement Rate

We now bound A(p) under the restrictions |H| =1 and p < e™2

It suffices to proof that

IAGR)| < max (X log(¥)]l; < —cplogp

with
TrX=p, TrY=1 0<X<KY

We use variational characterization of the trace norm

I1X.log(V)ll, <2 max, [Tr (PLX, log(¥)))



Proof

Entanglement Rate

Use the eigenbasis of Y,

2

2 log 1" (X;Psi = X;iP)
Yj

i<j

k—l)

Order its eigenvalues y;, € [p*, p and the summation

Z = (Zi1<j1 + Ziz,jz + Zi2<j2> + <Zi2<j2 + Zizj;; + Zi3<j3) +...
i<j
a <2i2<j2> a (Zi3<j3) S oo (Zilyik>2 + Z:l'zﬂ'k>3 * )




Reordering the Summations

Entanglement Rate

ais Qi Aa17 alS\
a5 Q26 A27 G428
ass\ a3 a3y ass
Q45 | Q46 A47 Q48
as5 /) A56) Q57 A58
\d65_(@6e) do7 ases
ars | Gre Qr7  A78
ags \dse Aag7r Aasgs




Reordering the Summations

Entanglement Rate
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Reordering the Summations

Entanglement Rate

a5 Qie aiy alS\\
agzs Q26 A27 428
ass\| a3 Q37 ass
Qg5 || Q46  A47 Q48
(Gs5) Gs56)| as7  Gsg
aes (A66) A67 68
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Reordering the Summations

Entanglement Rate

ajj = log }y7' (XiiPji — XjiPi)

J

a44
as54

ai4a Q15 Q16 a17 aﬁ\
az4 Q25 Q26 A27 A28
a34 a35\| a3 AaA37 Q38

ae4
a4
ag4




Cauchy-Schwarz

Entanglement Rate

Last braces has summations over pairs of eigenvalues far from each other:

i
Yj < pyi = /Yj/yilog (}7) < —/plog(p)
J

We use Cauchy-Schwarz and X = Y/2ZY1/2 with 0 < Z < 1,

Summations = 2 ‘Eiq IOgj/Ti- (XiiPji — XiiPy)
j

. 12 /. 1/2
Yi Yi
s <Z log Z\/}TyJZ’JZJ') (Z log ZWPUR[I)

< 4,/plog(1/p) (ZYiZiij;) 1/2 (ZYiPiiji> 1/2
< 4plog(1/p)



Restricted Subspaces

Entanglement Rate

First braces: matrices restricted to small subspaces spanned by eigenvectors
with close eigenvalues

n2 n2

D> log }y%' (Xij Pji — Xii Pij)

i j>i

First term = 2

<

‘[X’ log V]Hl
<X log ¥/l

< o ()

1
[ 1X1




Restricted Subspaces

Entanglement Rate

We continue:

First term = log 22 Tr X
Ymin

ny
< 2log(1/p) D Xii

The first line in the decomposition is bounded by 4plog(1/p), the last
contribution is bounded by plog(1/p)

We obtain the final bound

A(p) < 9plog(1/p) = T < 18|H]log D



Quantum Skew Divergence

Entanglement Rate

The quantum relative entropy

S(pllo) = Trp(log p — log o)

has the well known problem of divergence if supp(p) & supp(o)



Quantum Skew Divergence

Entanglement Rate

The quantum relative entropy
S(pllo) = Trp(log p — log o)
has the well known problem of divergence if supp(p) & supp(o)

One solution is:

SDa(pllo) = S(pllep + (1 - a)o)

—log «



Quantum Skew Divergence

Entanglement Rate

Is the Quantum Skew Divergence SD,, useful?

Closed formula, linear and operator monotonous, jointly convex,
contractivity, ...

m0<SD,<1land SD,=1iffp Lo, SD,=0iff p=0c

m 5Da(pllo) < llp—of1/2

m Continuity in first and second argument
H gy a—itH.

Special case 0o = 0 and 01 = e"oe™

11—«

—— A
—aloga

15Da(pllo1) = SDa(pllo2)| <



Holevo Chi

Entanglement Rate

Consider an ensemble of states £ = {(p, p), (1 — p,0)}.

The Holevo-Chi quantity is given by

X =S(pp+ (1—p)o)—pS(p) — (1= p)S(o)
= —plog pSD,(pl|o) — (1 — p) log(1 — p)SD1—p(c||p)
< h({p,1=p})lp —of1/2

Improvement of both x < h({p,1 — p}) and x < |p — o|1/2.



Small Incremental Mixing

Entanglement Rate

Remember the small incremental mixing from Bravyi's trick:

dS —A h ng
Me) = 5 (1= p)or + pe~ " pae™) = (€)

We obtain
S(7(t)) — S(7(0)) = x(E(t)) — x(£(0))
< t|H]|

by rewriting x and using continuity of SD,,

The factor h({p,1 — p}) is missing.



Differential Skew Divergence

Entanglement Rate

Improve the continuity inequality to give us the correct bound

We need to look at Differential Skew Divergence

DSD. (pll) = S(ellap + (1 - a)o)

4
d(—log(a))

d
= —a_~5(pllap + (1 - a)o)



Differential Skew Divergence

Entanglement Rate
Improve the continuity inequality to give us the correct bound

We need to look at Differential Skew Divergence

DDA (pllr) = Gjpgragy Stellen + (1 =)o)
= —aS(pllap + (1~ a)o)

Same nice properties as Skew Divergence itself, similar proofs, stronger
bounds.

Relation is given by averaging procedure:

1 —log o
S.(pllr) = <o | DSPalpllo)d(~log)




Conclusion

Conclusion

m We considered the rate at which entanglement can be generated by a
Hamiltonian Hapg in the most general case with ancillas.

m We used Bravyi's trick to rewrite the problem

m Two different methods to proof the upper bound: direct calculation
and quantum skew divergence

ds(pAa)
dt

< c|H| log D

m The log and quasi-adiabatic evolution gives the stability of the area law

m Area law is property of phase: suffices to find one state in each phase
(fixed point, string net models, .. .)

m Details in Arxiv:1304.5931 and Arxiv:1304.5935

THANK YOU
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