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The channel coding problem
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Goal: y = x with zero probability of error and maximize m
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The confusability graph of a noisy channel has as vertices the
channel’s inputs, which are adjacent if they are confusable

51 s

S

Sp So
3 I::>

S4

S4 3
S5

An independent set is a set of pairwise non-adjacent vertices

The independence number «(H) of a graph H is the size of a
largest possible independent set

a(H) is the maximum number of distinct messages Alice can send to
Bob
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Encoding x into a sequence of channel inputs can be more efficient

The Shannon capacity of H
. 1 Xn
c(H) = n||_>ngo - log al( H=")
gives the maximum average number of bits that can be sent per

channel use

The Shannon capacity lead to many interesting developments in
combinatorics: e.g., perfect graphs, semidefinite optimization
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Goal: y = x with zero probability of error and minimize n



The characteristic graph of a dual source

The characteristic graph of a dual source has as vertices Alice’s
inputs, which are adjacent if they are confusable to Bob

X1 X1

X2 2

X5 X2
X3 I:>

X4

X4 X3
X5



The characteristic graph of a dual source

The characteristic graph of a dual source has as vertices Alice’s
inputs, which are adjacent if they are confusable to Bob

X1 X1

X2 2

X5 X2
X3 I::>

X4

X4 X3
X5



The characteristic graph of a dual source

The characteristic graph of a dual source has as vertices Alice’s
inputs, which are adjacent if they are confusable to Bob

X1 v

X2

X5 2
X3

X4

4 3
X5

A proper coloring assigns different colors to adjacent vertices



The characteristic graph of a dual source

The characteristic graph of a dual source has as vertices Alice’s
inputs, which are adjacent if they are confusable to Bob

X1 X

X2

X5 2
X3

X4

4 3
X5

A proper coloring assigns different colors to adjacent vertices

The chromatic number x(G) of a graph G is the minimum number
of colors needed for a proper coloring



The characteristic graph of a dual source

The characteristic graph of a dual source has as vertices Alice’s
inputs, which are adjacent if they are confusable to Bob
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A proper coloring assigns different colors to adjacent vertices

The chromatic number x(G) of a graph G is the minimum number
of colors needed for a proper coloring

X(G) is the minimum size of the message set that Alice must use
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Block coding and the Witsenhausen rate

X

.
A 5

X™ 5 {0,1}" U™ x {0,117 — X™

Jointly coloring input sequences can be more efficient
The Witsenhausen rate of G

R(G) = lim B log x(G®™)

m—oo m

gives the minimum average number of bits needed per source input
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As for the classical case, the goal is to have y = x with zero
probability of error and minimize n

The entangled Witsenhausen rate R* depends on the characteristic
graph G and can be defined by simple constraints on o, { A3}



Entangled Shannon capacity

The entangled Shannon capacity ¢* of a graph H is defined as

c*(H) = lim E log a*(HX™)

n—oco n

[Cubitt et al. '10] introduced o*, c* and showed that entanglement
can increase that number of possible messages that can be sent with
one use of the channel (i.e. a < a*)

[Leung et al. '12] and [Briét et al. '12] showed that entanglement
can increase the capacity of a channel (i.e. ¢ < ¢* by a constant
factor)
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Z(u,v) = —1forall {u,v} & E

Introduced by Lovdsz ['79] to compute ¢(Cs)
¥ can be computed efficiently (up to any approximation)

c(G) < log¥(G) < R(G) ([Lovasz '79] and [Nayak et al. '06])
[Beigi '10] and [Duan et al. '13] proved c¢*(H) < log9¥(H)



¥ bound on the entangled Witsenhausen rate

Theorem

Thus
c(G) < ¢*(G) < log #(G) < R*(G) < R(G)
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Theorem
There exists an infinite family of graphs Hy such that

i;((/-zk)) = O(loi k)'

The orthogonality graph (a.k.a. Hadamard graph) has vertex set
{£1}* and two vertices are adjacent if and only if they are
orthogonal

The quarter orthogonality graph Hj is a subgraph of the
orthogonality graph induced by the vertices x € {+1} with
x1 = +1 and an even number of —1's
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Theorem
Let k = 4p® — 1 where p is an odd prime and ¢ € N, then

'Z*((,-'Zk)) = O(%)'

The lower bound on R(Hy) is derived from a technique that upper
bounds c(Hx). It is obtained using an instance of the linear algebra
method due to [Alon '98] with a construction of certain low-degree
polynomials over finite field due to [Barrington et al. '94]

The upper bound on R*(Hy) relies on the construction of a
orthogonal representation of the graph Hj (similar idea as used by
[Cameron et al. '07])
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Separation between the classical and entangled
Shannon capacity

Theorem
Let k = 4p’ — 1 where p is an odd prime and ¢ € N, then
*
(He)
C(Hk)

The upper bound on c(Hy) is obtained using an instance of the
linear algebra method due to [Alon '98] (as before)

The lower bound on c¢*(Hy) uses a new method based on the
teleportation scheme of [Bennet et al. '93]



Lower bound on entangled Shannon capacity

 —
§> ”

Main idea: Teleport a state of an orthonormal representation to Bob




Lower bound on entangled Shannon capacity
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Main idea: Teleport a state of an orthonormal representation to Bob
Send |V/|* messages in t + 1 steps if log a(H) > 2t log orthdim(H)
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Further results

We study the zero-error source-channel coding problem with
entanglement, a generalization of the zero-error channel coding and
of the source coding with entanglement

We present an infinite family of source and channels combinations
for which entanglement allows an exponential saving in
communication in zero-error source-channel coding
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