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What is the optimal rate of information storage
in a quantum memory?

Noise channel Tt : Md →Md is Markovian, i.e. Tt = etL.

Tt

Quantum subdivision capacity: QC (tL)

Different choices of C lead to different capacities!
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Definition (MH, Reeb, Wolf 2013)

The C−quantum subdivision capacity of tL is then defined as the supremum
of asymptotical achievable rates

QC (tL) := sup{R ∈ R+ : R = lim sup
ν→∞

nν
mν
}.

such that the asymptotic communication error vanishes

inf
k,E,D,C1,...,Ck

∥∥∥∥∥id⊗nν
2 −D ◦

k∏
l=1

(
Cl ◦

(
e

t
k
L
)⊗mν

)
◦ E

∥∥∥∥∥
�

→ 0 as ν →∞.

Infimum goes over:

• k ∈ N number of subdivisions

• E : M⊗nν
2 →M⊗mν

d and D : M⊗mν
d →M⊗nν

2 quantum channels

• Cl ∈ C channels from the subset C
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Infinitesimal divisible coding maps

1. Example: Let C be the set of infinitesimal divisible quantum channels

• Cl =
∏N

i=1 e
Ll

i for some coding Liouvillians Ll
i

•  Denote this set by ID.
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Theorem (MH, Reeb, Wolf 2013)

For any noise Liouvillian L : Md →Md and any t ∈ R+ we have

QID (tL) = log(d)



Proof of QID (tL) = log(d)

Continuity of quantum capacity:

Q
(
e

t
k
L
)
→ log(d), k →∞

Coding scheme achieving maximal subdivision capacity log(d):
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But the channel D ◦ E is not necessarily infinitesimal divisible!



Proof of QID (tL) = log(d)

Implement intermediate coding via unitaries and pure ancillas

Almost pure ancillas from the infinitely divisible channel:

ρ 7→ (1− e−rt)tr (ρ) |0〉 〈0|+ e−rtρ , for large rate r

...E
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How many pure ancillas are sufficient?



Proof of QID (tL) = log(d)

Decoupling approach to the quantum capacity:

1

4
inf
D

∥∥∥∥id−D ◦ T ⊗m ◦ E
∥∥∥∥2
�
≤
∥∥∥∥(T ⊗m ◦ E

)c

− tr (•)σE

∥∥∥∥
�

• Random isometry E leads to asymptotically vanishing r.h.s.

• Then D has the form

D (ρ) = trE
(
V ρV †

)
for isometry V , where |E | = rank

(
σE
)
.

ED

Schumacher Compression:

rank
(
σE
)
' 2mS(σE )

 number of qubit ancillas sublinear in m
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Unitary coding maps

2. Example: C = U, i.e. unitary coding maps.

Maximal entropy of ancilla states never reached in finite time!

Theorem (MH, Reeb, Wolf 2013)

For any noise Liouvillian L : Md →Md and any t ∈ R+ we have

QU (tL) > 0

 Better bounds possible. Depending on the entropy of the fixed points.
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Is QU (tL) also log(d)?

Answer: No!

Liouvillian depolarizing onto state ρ0 ∈Md :

Ldep (ρ) := tr (ρ) ρ0 − ρ

 Generates depolarizing channel: etL
dep

(ρ) =
(
1− e−t

)
tr (ρ) ρ0 + e−tρ

Theorem (MH, Reeb, Wolf 2013)

For the noise Liouvillian Ldep : Md →Md and t ∈ R+ we have

QU

(
tLdep

)
≤ log(d)−

(
1− e−t)S (ρ0)



Proof of QU

(
tLdep

)
≤ log(d)− (1− e−t)S (ρ0)

Consider subdivision coding scheme achieving rate R:

inf
k,E,D,C1,...,Ck

∥∥∥∥∥id⊗Rm
2 −D ◦

k∏
l=1

(
Ul ◦

(
e

t
k
L
)⊗m

)
◦ E

∥∥∥∥∥
�

→ 0

Entropy growth for depolarizing channels [Aharonov, et al.]:

S

((
etL

dep
)⊗m

(ρ)

)
≥
(
1− e−t)mS (ρ0) ∀ρ

m log(d) ≥ S

 1

2Rm

2Rm∑
i=1

T̃m (|i〉 〈i |)


' H

(
{ 1

2Rm
}
)

+
2Rm∑
i=1

1

2Rm
S
(
T̃m (|i〉 〈i |)

)
≥ Rm +

(
1− e−t)mS (ρ0)
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Continuous quantum capacity

Definition (MH, Reeb, Wolf 2013)

The C−continuous quantum capacity of noise Liouvillian tL is then defined
as the supremum of asymptotical achievable rates

Qcont
C (tL) := sup{R ∈ R+ : R = lim sup

ν→∞

nν
mν
}.

such that the asymptotic communication error vanishes

inf
E,D,Lc

∥∥∥∥id⊗nν
2 −D ◦ T exp

(∫ t

0

L⊕mν + Lc

(
t′
)
dt′
)
◦ E
∥∥∥∥
�
→ 0 .

as ν →∞. Infimum goes over:

• E : M⊗nν
2 →M⊗mν

d and D : M⊗mν
d →M⊗nν

2 quantum channels

• Lc ∈ C time-dependent coding Liouvillians from the subset C



Can dissipation improve quantum capacity?

Answer: Yes

Even for usual quantum capacity we have:

Theorem (MH, Reeb, Wolf 2013)

There exist time-independent Liouvillians L : Md →Md and L′ : Md →Md

where L′ is purely dissipative such that

Q
(
eL
)
< Q

(
eL+L

′)
.



Some riddles...

To what extend can Q
(
eL+L

′
)

differ from Q
(
eL
)
?

What are good choices for C in the various capacities?

Is there a closed formula for QU (tL)?

Thank you for your attention.

For more information see: arXiv:1310.2856
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