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Ontic?




Epistemic?




“There is no quantum world.
There is only an abstract
guantum physical description.
It is wrong to think that the
task of physics is to find out
how nature is. Physics
concerns what we can say
about nature...” — Niels Bohr



Arguments for () being epistemic

* Non-orthogonal gquantum states cannot reliably be distinguished
— just like probability distributions.

* The information required to specify a quantum state is
exponential in the number of systems — just like probability
distributions.

* Quantum states cannot be cloned, can be teleported etc — just
like probability distributions.

* R. W. Spekkens, Phys. Rev. A 75, 032110 (2007).



But our present QM formalism is not
purely epistemological; it is a peculiar
mixture describing in part realities of
Nature, in part incomplete human
information about Nature --- all
scrambled up by Heisenberg and Bohr
into an omelette that nobody has seen
how to unscramble. Yet we think that
the unscrambling is a prerequisite for
any further advance in basic physical
theory. For, if we cannot separate the
subjective and objective aspects of the
formalism, we cannot know what we
are talking about; it is just that simple.

E. T. Jaynes



Ontological models*
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*a la Harrigan, Rudolph, Spekkens



Ontological models
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Preparation Measurement
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Ontological models

A physical system has an ontic state -- an objective physical state,
independent of the experimenter, and independent of which

measurement is performed. Call this state A, and the set in which
it lives, A.

k/‘\




Ontological models

Measurement responds to the physical state. The probability for
outcome k of a measurement M is determined by A through a

response function €.

k/‘\

Enr (K|A)

Pr(k|\, M) = s (k|\)



Ontological models

/
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A quantum state ¢ is associated to a preparation procedure.
Given knowledge of ), the experimenter’s information about the
ontic states is represented as a probability distribution .

k/‘\

Enr (K|A)



Ontological models
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Recover quantum predictions:
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Enr (K|A)
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(J-ontic models

Suppose that for every pair /
of distinct quantum states
and ¢, the distributions u,, AL -
and p, do not overlap: ¢ QQR
N\
Mg

* The quantum state can be inferred from the ontic state.
 The quantum state is a physical property of the system, and is not
mere information.



Y-epistemic models

/\

Ng

* Uy and p, can overlap.
* Given the ontic state A, above, cannot infer whether the quantum

state Y or @ was prepared.



The PBR theorem

* Pusey, Barrett, Rudolph, Nature Physics (2012).

* Given an assumption about independent
preparations, no psi-epistemic model can reproduce
the predictions of quantum theory.



However...

* The theorem requires two systems and requires an
assumption that independent preparations are associated
with independent distributions.

1 (M) Hap, (A1, A2) = oy (A1) g (A2)
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However...

Independence = locality?

Schlosshauer and Fine, arxiv:1306.5805
Emerson et al, arXiv:1312.1345;

* Since, given Bell’s theorem, any ontological model of quantum theory
violates (some form of) locality, we cannot dismiss psi-epistemic
theories on that basis.

What can we say about psi-epistemic models without the
independence assumption?



Results for single systems



There exist psi-epistemic models

* Explicit psi-epistemic construction: Lewis, Jennings, Barrett
and Rudolph, PRL (2012).

* But u, and u, only overlap only for some pairs of quantum
states. It is a rather trivial psi-epistemic model.



Aaronson et al. (arXiv:1303.2834)

* Maximal non-triviality: i, overlaps with u ,for any pair of non-orthogonal
state vectors |Y>and |P>.

* Symmetry: the ontic states A are quantum states and p,(A) is symmetric
under unitaries that fix | >, i.e. it depends only on [<y|A>].

Results:
* Provide an explicit construction of a maximally non-trivial model, but;

* Prove that there are no maximally non-trivial symmetric models for d>3.



Hardy, arXiv:1205.1439

* Ontic indifference: “Any quantum transformation on a system which
leaves unchanged any given pure state, | (>, can be performed in such a
way that it does not affect the underlying ontic statesA € A, in the ontic
support of that pure state.”

Results:
* Spekkens’ toy model violates ontic indifference;

 Theorem: ontic indifference must be violated by any psi-epistemic model
of quantum theory.



Patra, Pironio and Massar, PRL 111, 090402 (2013)

» &-continuity: “states that are close to each other (|<@|¢Y>]| 21 - 6) all
share common ontic states.”

6-Continuous

Ontic Model Epistemic Model
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Theorem: “There are no 6-continuous models with 0 > 1 — \/(d —1)/d
reproducing the measurement statistics of quantum states in a Hilbert space of
dimension d.”



Patra, Pironio and Massar, PRL 111, 090402 (2013)

Definition (Continuity) . A Y-epistemic model is continuous if
there exists a non-zero & > 0 such that it is 6-continuous.

Definition (Separability) . Let Q be the preparation of a
physical system yielding with non-zero probability P(A|Q) > 0
the real state A. A model is separable if n independent copies
Qn =(Q, ...,Q) of the preparation devices yield with non-zero
probability P(A = An|Qn) > 0 a system in the joint real state An
=(A,...,A), for any positive integer n.

Theorem 2. Separable continuous y-epistemic models cannot
reproduce the measurement statistics of quantum states in a
Hilbert space of dimension d > 3.



What have we learned so far?

Psi-epistemic models can be constructed, but they must
violate a number of different assumptions.

What can be said about psi-epistemic models without any
extra assumptions?

Since psi-epistemic models can be constructed, the best one
can do is put a bound on how much the epistemic

distributions overlap.



Arguments for () being epistemic

* Non-orthogonal quantum states cannot reliably be distinguished
— just like probability distributions.

* The information required to specify a quantum state is
exponential in the number of systems — just like probability
distributions.

* Quantum states cannot be cloned, can be teleported etc — just
like probability distributions.

* R. W. Spekkens, Phys. Rev. A 75, 032110 (2007).



Distinguishing probability distributions

Consider two preparations of a classical system, corresponding to distributions:

P=(Py, Py, Pyg)
q=(d,,d;,..,0d4)

A priori probability for each preparation is %.

With a single-shot measurement on the system, must guess which preparation
method was used.

1
Prob(guess correctly) = 5(1 + D(p, q))

where D(p,q) is the classical trace distance between p and q,

D(p,q) = Z pi — ai



Distinguishing quantum states

Consider two preparations of a quantum system, corresponding to state vectors:

| >
| P>

A priori probability for each preparation is %.

With a single-shot measurement on the system, must guess which preparation
method was used. With an optimal measurement:

Prob(guess correctly) = %(1 + Do (|Y), |6)))

where Dy(| >, |¢$>) is the quantum trace distance between > and |¢>,

Dq(|9), ) = /1 = [(d])]?



A simple Lemma

In any ontological model that reproduces the predictions for a
d dimensional quantum system:

D(pg, ) 2 Do), [4)) V@),

)

Proof sketch

Since the measurement device only has access to A, distinguishing
between | > and | > must be at least as hard as distinguishing between

Hyand [, .



A simple Lemma

In any ontological model that reproduces the predictions for a
d dimensional quantum system:

D(pg, ) = D(l9), [¥))  Y[9), [¥)

An ontological model is maximally psi-epistemic iff

D(pg, ) = Dq(l9), [¥))  Y[9), [¥)




Maximally ¢-epistemic models

An ontological model is maximally psi-epistemic iff

D(pg, py) = Dq(|9), ) Vo),

)

Why is this natural?

* |n a maximally psi-epistemic model, failure to distinguish | > and |¢>
is entirely due to the ordinary classical difficulty in distinguishing the
probability distributions i, and p, . No other limitations or uniquely
guantum effects need be invoked.




Maximally (-epistemic models

* Prior work:

OJE Maroney, arXiv:1207.6906
MS Leifer, OJE Maroney, Physical Review Letters (2013)

* The definition of maximally epistemic used in those results,
however, suffers from a finite precision problem.

* With our improved definition, maximally epistemic models can
be experimentally ruled out for all d>3, and the gap between
maximally epistemic theories and quantum theory grows with
the dimension of the Hilbert space.



This will be useful in the following:
Define the classical overlap Wty pg) =1 — D(phop, )
Similarly the quantum overlap ~ wq(|¥), |1y) =1 — Dg(|¥), |¢))

In any ontological model that reproduces the predictions for a d
dimensional quantum system:

Wy, g) < w@([¥), @) ¥ [¥),|9)

An ontological model is maximally psi-epistemic iff

Wy, pg) = wo(|¥),|9)) ¥ [¥), )




Our main results
Theorem 1

No maximally psi-epistemic model can recover the quantum
predictionsind = 3.

Theorem 2

Consider an ontological model that reproduces quantum predictions
in power prime dimension d and satisfies:

) Vi),

w(:uqbnuw) > o LUQ<‘(]5>, 1/)>

Then a< 2/d.



Simple proof of theorem 1 (d>4)

M
Suppose for some three el o) e
states ¢, ¢,, ¢, there exists 0, (0 ) rla:lo,) PE%N’a;

. 0, P 0,10, 0 plgslo,
a measurement M 0.) plglo.) plgle.) 0

Caves, Fuchs, Schack (2002): such a basis exists whenever

xab+xbc+xca<1 (xab-l_xbc-l_xca_1)2>4xabxbcxca xab:‘<q)a|q)b>‘2

If ¢, ¢,, ¢, are drawn from three Mutually Unbiased Bases x=1/d
3 d—3 4
(——)

2
=<1 >—
d

> d=4

In any prime power dimension Hilbert space there are d+1 such MUB's



Simple proof of theorem 1 (d>4)

Suppose ¢, ¢,, ¢, are from any three MUBs in a Hilbert space
of dimension d>3.

There exists a measurement M:

M

e e e
0, 0 plgle,) plasle,)
0, plado,) 0 plgslo,)
|0, ) P(%I(PC) P(qzld)c) 0

VYA€ Ag,, Pr(qi|M,\) =0
VA € Ay, Pr(q|M,\) =0 VA,ZPr(q|M, N =1 Aq)am\q)bm\q)c:ﬂ
\V/)\EA(pC,PT(q?, M,)\):O q




Simple proof of theorem 1 (d>4)

Suppose ¢, ¢,, ¢, are from any three MUBs in a Hilbert space
of dimension d>3.

Aq)amA%mAq)c:ff

It is also easy to show that for izj, A%Z_ M A¢aj =0

And for any pair of distributions,




Simple proof of theorem 1 (d>4)

Suppose ¢, ¢,, ¢, are from any three MUBs in a Hilbert space
of dimension d>3.

Ay NA,NA, =8 Ag,, NAg,, =0

[ ) A = s (), 16 (3)

Hence / ,Uc()\) dA Z Z W(,uai ()\>7 MC(A»
A¢a1U"'UA¢>ad 7

And assuming maximally epistemic model W(Mai , /LC) — WQ ( ‘ Cbai >, |§bc>)

/ (N A > d(1 — /T =1/d) > 0.5
A¢a1U"'UA¢ad



Simple proof of theorem 1 (d>4)

A similar argument shows that / te(A)dA > 0.5
A¢b1 U...UA¢bd

And thus / the(N) dX + / fe(AN)dA > 1
A¢a1U"‘UA¢ad

A¢b1 U...UA¢bd

But since we established that V1, j, A%i N A¢bj NAy, =0
/ nedh+ [ W< [ pear =1
A¢a1 U“’UA¢ad A¢b1 U...UA¢bd A

=» contradiction



Additionally

A slightly more involved proof gives a noise-tolerant version of both
Theorems 1 and 2 for d > 4. Maximally psi-epistemic models cannot
approximately recover quantum predictions.

A (messier) proof covers the d=3 case, and is also noise tolerant.

An explicit maximally psi-epistemic model exists in d=2 (constructed by
Kochen and Specker).



What have we learned?

No (-epistemic model can fully explain the
indistinguishability of quantum states — one of the main
motivations for those theories.

In the limit of large Hilbert spaces, the explanation becomes
arbitrarily bad, as a < 2/d.

(Leifer, arXiv:1401.7996: exponentially bad. a < 2d =)



NOT(psi-epistemic) # psi-ontic

* An analogy: Bell's theorem shows that local causality is violated. If
there are no hidden variables it is violated trivially. However, this
does not mean that there is anything going faster than light, and

there is an operational notion of locality (signal locality) that is still
true.

* In PBR and here, if there are no ontic variables, then also trivially
the quantum state cannot be a state of knowledge about them.

e But to conclude (with PBR) that the quantum state is ontic requires

an assumption that the A’s do exist (and thus by the theorem,
include ).



“Whose information? Information about what?”
— John Bell

Two epistemic camps:

1) About measurement outcomes.
2) About ontic variables.



“Whose information? Information about what?”
— John Bell

Two epistemic camps:

But: anti-realism, measurement problem...

1) About measurement outcomes.
2) Abou ie-variables.



A common ground?

* Whether or not the quantum state corresponds to any
type of observation-independent reality, it undeniably
encodes information about measurement outcomes.

* Thinking operationally has been leading to progress in
foundations.
— e.g. reconstructions, generalised probabilistic theories.

* Hopefully these insights will lead to a better
understanding of the type of reality underlying the
theory, and progress in going beyond QM.



Why is Spekkens’ toy theory (partially) succesfull?

* Qur theorem implies that some limitation on the measurability of A is
necessary for any ontological model that reproduces quantum theory.

* Analogue of “knowledge balance principle” of Spekkens’ toy theory.

 |ftheAis “carried by the system”, this limitation is mysterious.

* QOperational analogues of this principle have been proposed [Rovelli
(1996), Zeilinger (1999), Masanes & Mueller (2012)...].

“We can ask more questions about a qguantum system than it can encode”.

* Success of toy theory due to knowledge balance rather than psi-
epistemicity?



Finally...

* |s this any use for anything?

* Apart from the foundational implications, these results are
about the (im)possibilities of simulating quantum
mechanics with certain classical models.

* Like Bell inequalities, is there any information-theoretic
application of this new theorem?

* Montina (PRL, 2012): guantum communication complexity?

Thank you!



