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Kochen-Specker Theorem. There is a Kochen-Specker
BCS that has quantum satisfying assignment but no
classical satisfying assignment.

First construction: 117 variables,
recently reduced to 31.
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b-SAT* Quantum 3-SAT

Each constraint is a disjunction of k literals

r1 V X9 \/_wg

1-in-3-SAT* KOCHEN-S
One and only one out of three variab

r1+x0+x4=1

INDEPENDENCE*, CLIQUE*
Quantum Graph Homomorphisms
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Theorem. 3-SAT* is Karp reducible to 3-COLORING*.
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Theorem. 3-SAT* is Karp reducible to 1-in-3-SAT*.

Commutativity Gadget

X u1 + uy = 1,

Y U + Uy = 1,

U1 + uo + uz = 1.




RESUL

S NO

COVERED



RESULTS NOT COVERED

NP-Hardness



RESULTS NOT COVERED

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE*
are all NP-hard.



RESULTS NOT COVERED

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE*
are all NP-hard.

Easy x-problems



RESULTS NOT COVERED

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE*
are all NP-hard.

Easy x-problems

Theorem. 2-SAT* and HORN-SAT* are in P.



RESULTS NOT COVERED

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE*
are all NP-hard.

Easy x-problems

Theorem. 2-SAT* and HORN-SAT* are in P.

Bound on the game value of the four-line game



RESULTS NOT COVERED

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE*
are all NP-hard.

Easy x-problems

Theorem. 2-SAT* and HORN-SAT* are in P.

Bound on the game value of the four-line game

An example of parity BCS game that requires a large amount of
entanglement



RESULTS NOT COVERED

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE*
are all NP-hard.

Easy x-problems

Theorem. 2-SAT* and HORN-SAT* are in P.

Bound on the game value of the four-line game

An example of parity BCS game that requires a large amount of
entanglement

Anti-commutativity gadget + Clifford algebra
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Why binary?
Simple
Projective Measurement

Versatile

Schaefer's dichotomy theorem?
2-SAT*, HORN-SAT* and AFFINE-SAT*. Parity BCSs

Hardness of 3-SAT*?

Not even known to be decidable!

Exact case vs. approximate case.



"CONNECTING THE DOTS”

wl/mQ-”xS
| \ \ INDEPENDENCE *
g5 —T6
T4 mf | CLIQUE
r7 — T8 — L9

- uan
Magic 59 & 21V 2o V s




Magic squar@l

IN G

HE

DO




"CONNECTING

SINARY (LONS

HE

RAIN

DO

YS

EM GAMES







