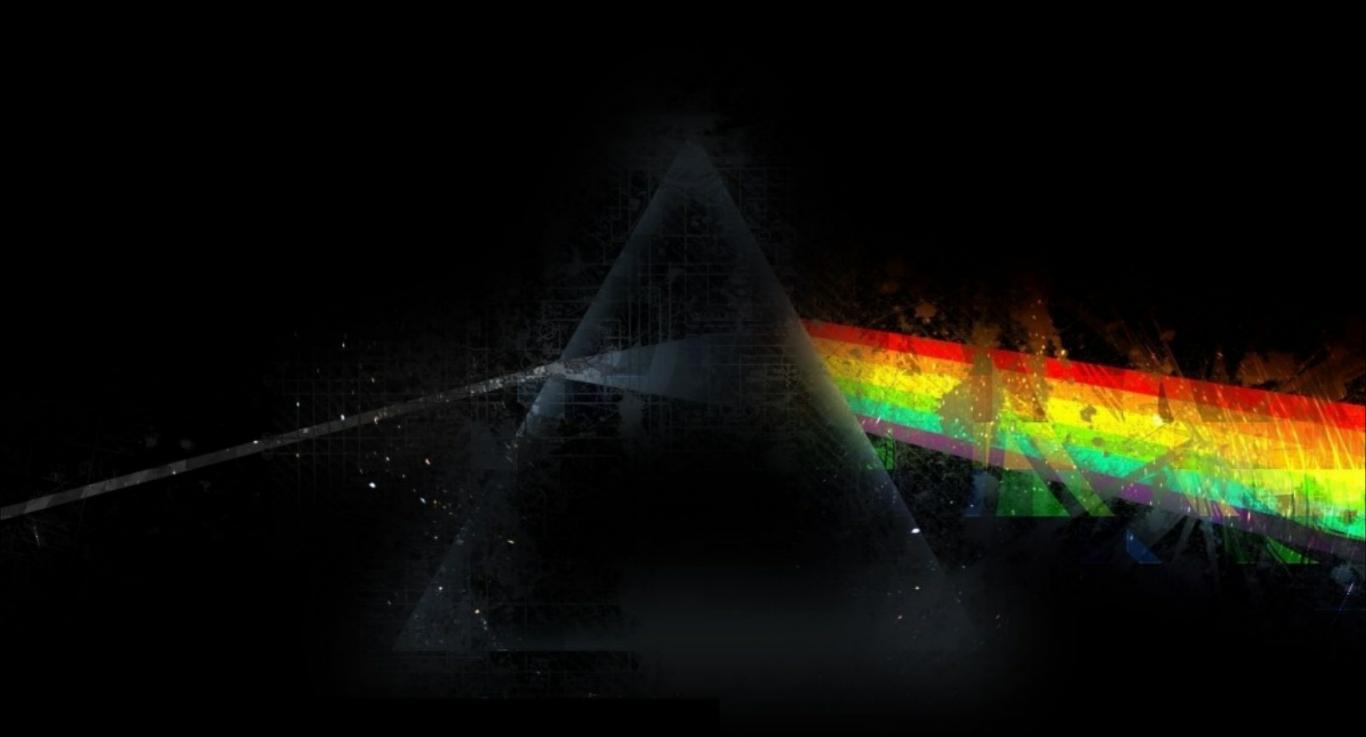
ZHENGFENG JI, IQC, U. WATERLOO

BINARY CONSTRAINT SYSTEM GAMES: CHARACTERIZATION AND REDUCTIONS



ZHENGFENG JI, IQC, U. WATERLOO

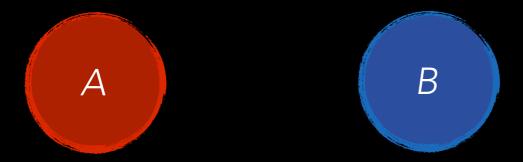
BINARY CONSTRAINT SYSTEM GAMES: CHARACTERIZATION AND REDUCTIONS

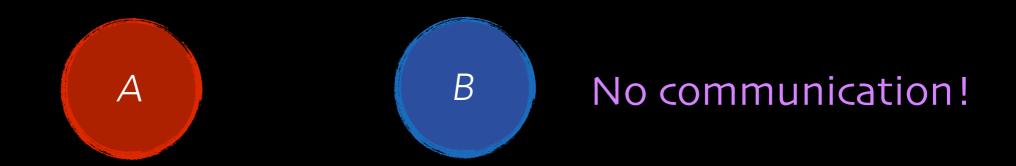
RICHARD CLEVE AND RAJAT MITTAL

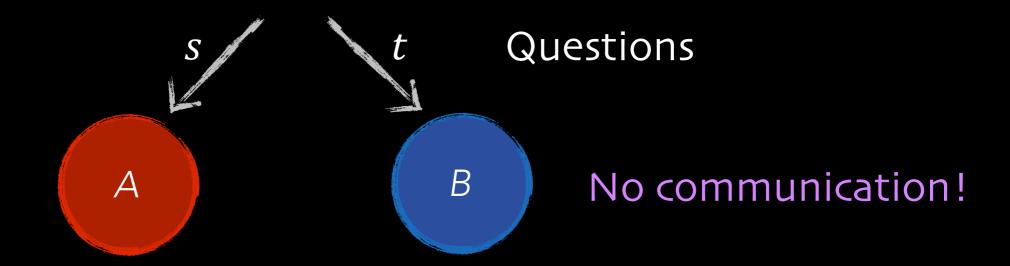
ARXIV:1209.2729

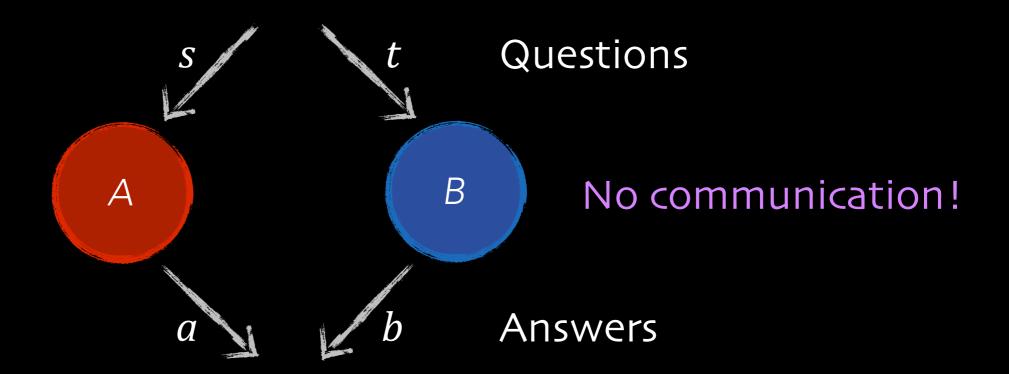
ZHENGFENG JI

INTRODUCTION

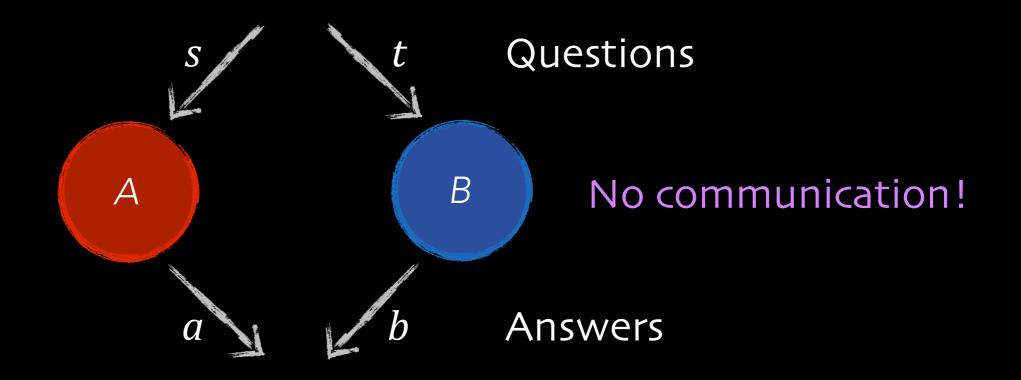




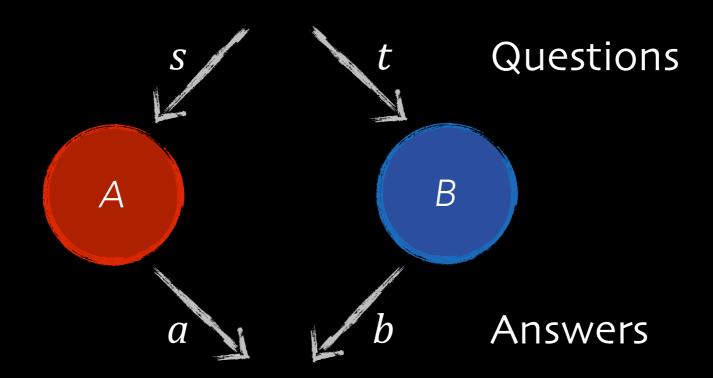




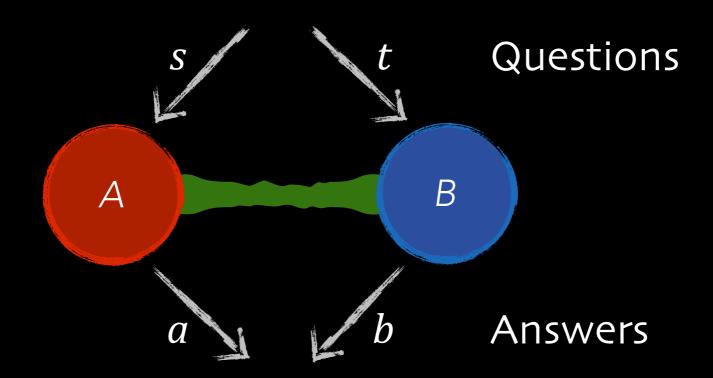
Two-player one-round games (classical)



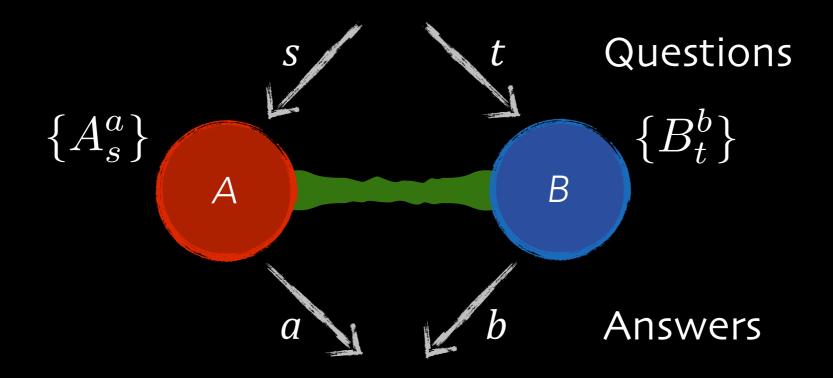
Two-player one-round games (nonlocal)



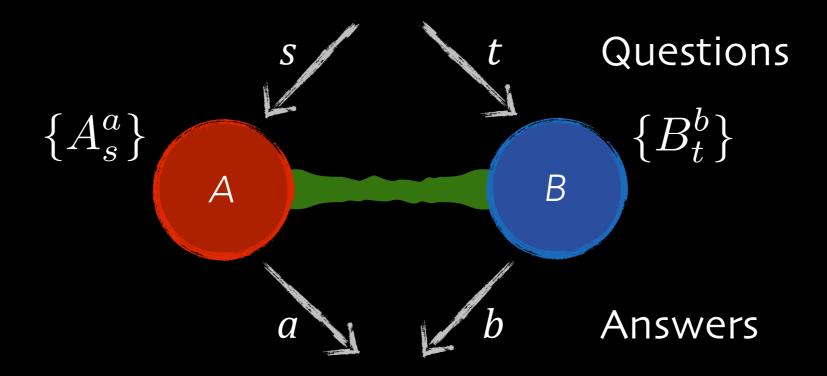
Two-player one-round games (nonlocal)



Two-player one-round games (nonlocal)



Two-player one-round games (nonlocal)



Accept / Reject (a, b, s, t)

Perfect Quantum Strategy

Variables: x_1, x_2, \ldots, x_n

Constraints: $C_1, C_2, \ldots, \overline{C_m}$

Variables: $x_1, x_2, ..., x_n \in \{0, 1\}$

Constraints: C_1, C_2, \ldots, C_m

Variables: $x_1, x_2, ..., x_n \in \{0, 1\}$

Constraints: C_1, C_2, \ldots, C_m

$$x_1 \oplus x_2 = 0$$
,

$$x_1 \oplus x_2 = 1$$
.

$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

Variables: $x_1, x_2, ..., x_n \in \{0, 1\}$

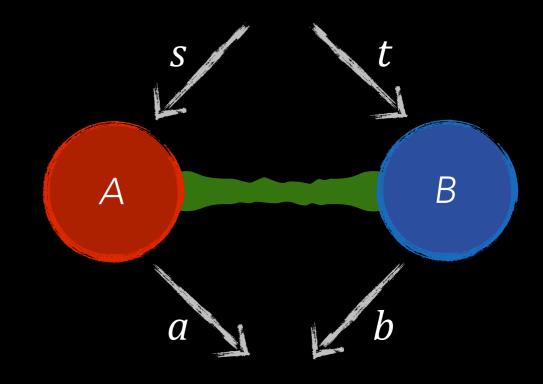
Constraints: C_1, C_2, \ldots, C_m

$$x_1 \oplus x_2 = 0$$
,

$$x_1 \oplus x_2 = 1.$$

$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

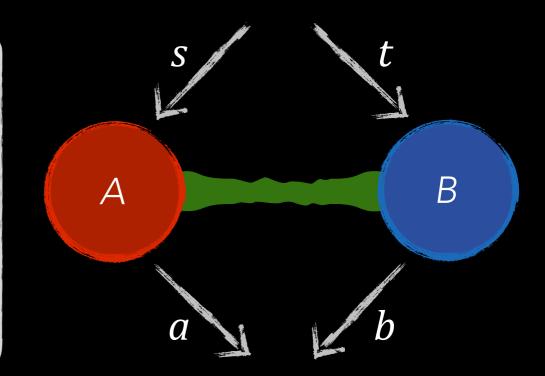
$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$



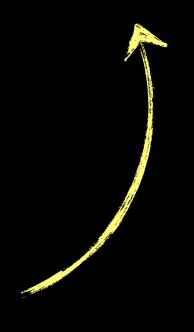
$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$



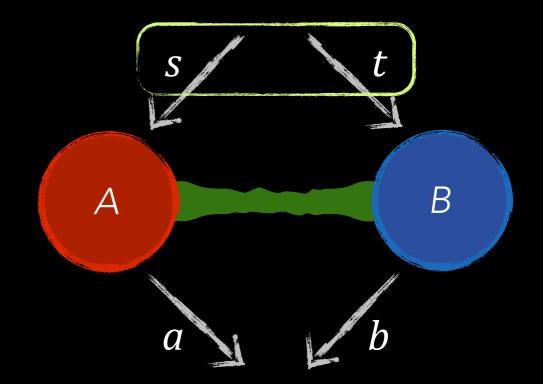
- I. Choose a random C_s and a random x_t from C_s .
- II. Accept if
 - 1. a satisfies C_s , and
 - 2. *a* and *b* are consistent.



$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

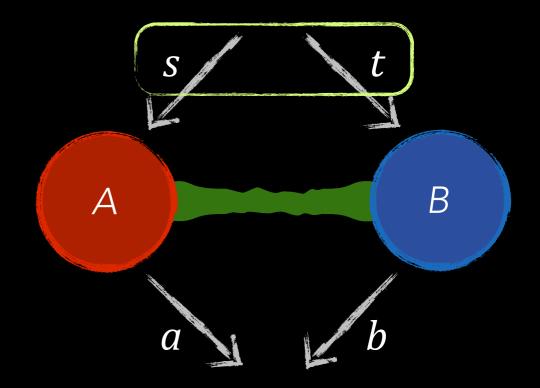


- I. Choose a random C_s and a random x_t from C_s .
- II. Accept if
 - 1. a satisfies C_s , and
 - 2. *a* and *b* are consistent.



$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

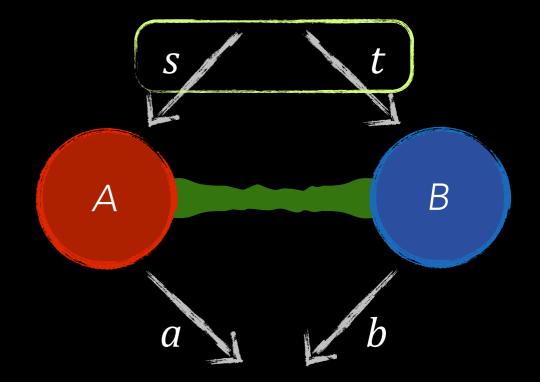
- I. Choose a random C_s and a random x_t from C_s .
- II. Accept if
 - 1. a satisfies C_s , and
 - 2. *a* and *b* are consistent.



$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

$$s = 5$$

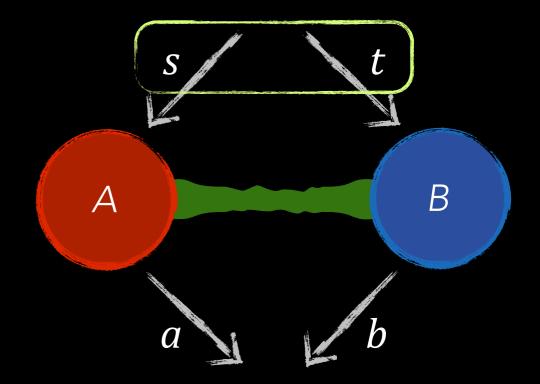
- I. Choose a random C_s and a random x_t from C_s .
- II. Accept if
 - 1. a satisfies C_s , and
 - 2. *a* and *b* are consistent.



$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

$$s = 5$$
 $t = 8$

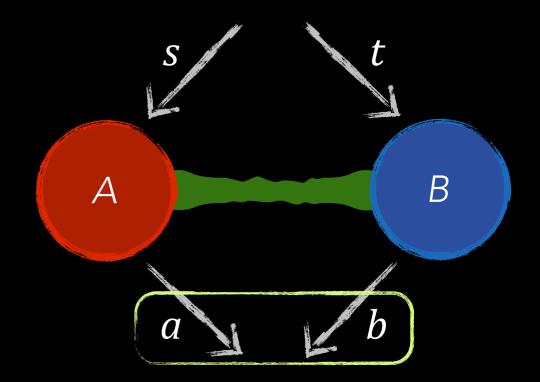
- I. Choose a random C_s and a random x_t from C_s .
- II. Accept if
 - 1. a satisfies C_s , and
 - 2. *a* and *b* are consistent.



$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

$$s = 5$$
 $t = 8$

- I. Choose a random C_s and a random x_t from C_s .
- II. Accept if
 - 1. a satisfies C_s , and
 - 2. *a* and *b* are consistent.



$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

$$s = 5$$
 $t = 8$

$$x_1 \oplus x_2 = 0,$$

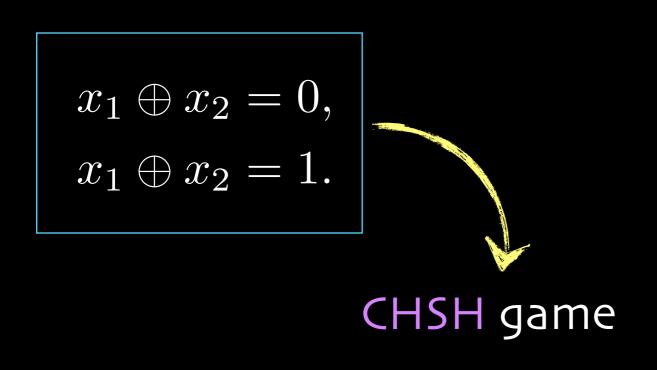
 $x_1 \oplus x_2 = 1$.

$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

$$x_1 \oplus x_2 = 0$$
,

$$x_1 \oplus x_2 = 1$$
.

$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$



$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$



Magic square game

$$x_1 \oplus x_2 \oplus x_3 = 0,$$
 $x_1 \oplus x_4 \oplus x_7 = 0,$ $x_4 \oplus x_5 \oplus x_6 = 0,$ $x_2 \oplus x_5 \oplus x_8 = 0,$ $x_7 \oplus x_8 \oplus x_9 = 0,$ $x_3 \oplus x_6 \oplus x_9 = 1.$

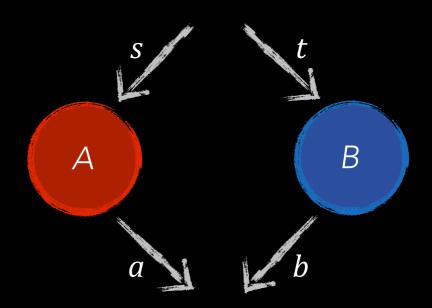
CHARACTERIZATION

Classical version

A BCS game has a perfect classical strategy

if and only if

the corresponding BCS has a satisfying assignment



$$x_1 \oplus x_2 = 0,$$

$$x_1 \oplus x_2 = 1.$$

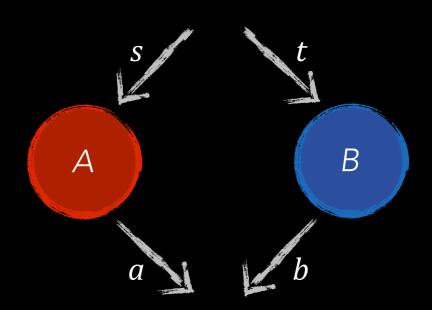
$$x_i \mapsto \nu(x_i) \in \{0, 1\}$$

Classical version

A BCS game has a perfect classical strategy

if and only if

the corresponding BCS has a satisfying assignment



$$x_1 \oplus x_2 = 0,$$

$$x_1 \oplus x_2 = 1.$$

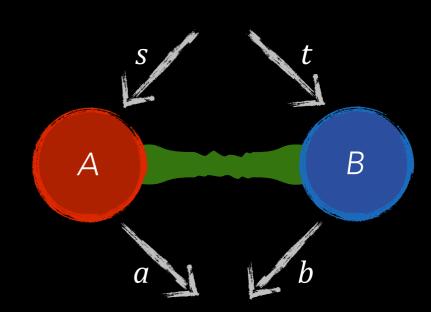
$$x_i \mapsto \nu(x_i) \in \{0, 1\}$$

Quantum version

A BCS game has a perfect quantum strategy

if and only if

the corresponding BCS has a quantum satisfying assignment



$$x_1 \oplus x_2 = 0,$$

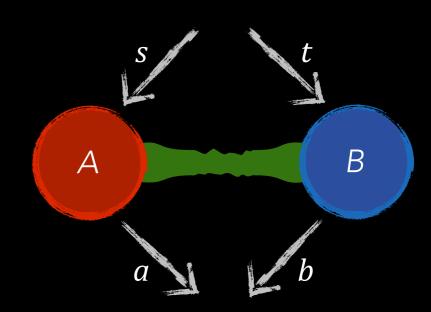
$$x_1 \oplus x_2 = 1$$
.

Quantum version

A BCS game has a perfect quantum strategy

if and only if

the corresponding BCS has a quantum satisfying assignment



$$x_1 \oplus x_2 = 0,$$

$$x_1 \oplus x_2 = 1.$$

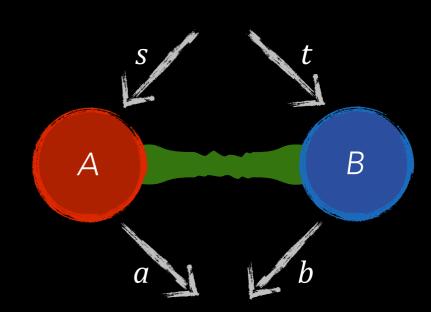
???

Quantum version

A BCS game has a perfect quantum strategy

if and only if

the corresponding BCS has a quantum satisfying assignment



$$x_1 \oplus x_2 = 0,$$

$$x_1 \oplus x_2 = 1.$$

[CLEVE AND MITTAL, ARXIV:1209.2729]

QUANTUM SATISFYING ASSIGNMENT

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0, x_1 \oplus x_2 = 1.$$

$$x_1 + x_2 - 2x_1x_2 = 0, x_1 + x_2 - 1 = 0.$$

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$

 $x_1 \oplus x_2 = 1.$ $x_1 + x_2 - 2x_1x_2 = 0,$
 $x_1 + x_2 - 1 = 0.$

Quantum Satisfying Assignment $x_j \mapsto X_j$

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$

 $x_1 \oplus x_2 = 1.$ $x_1 + x_2 - 2x_1x_2 = 0,$
 $x_1 + x_2 - 1 = 0.$

Quantum Satisfying Assignment $x_j\mapsto X_j$

- (a) Satisfy every polynomial constraints.
- (b) For all j, $X_j^2 = X_j$.
- (c) Each pair of operators X_j , X_k appearing in the same constraint commute.

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$

 $x_1 \oplus x_2 = 1.$ $x_1 + x_2 - 2x_1x_2 = 0,$
 $x_1 + x_2 - 1 = 0.$

Quantum Satisfying Assignment $x_j\mapsto X_j$

- (a) Satisfy every polynomial constraints.
- (b) For all j, $X_j^2 = X_j$.
- (c) Each pair of operators X_j , X_k appearing in the same constraint commute.

Locally Commutative Condition

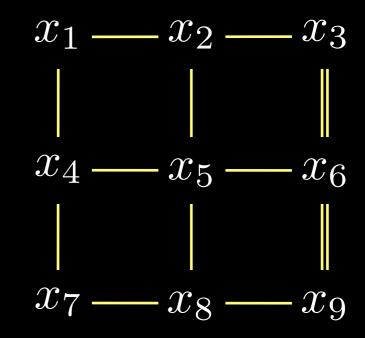
Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$
 $x_1 + x_2 - 2x_1x_2 = 0,$ $x_1 + x_2 - 1 = 0.$ Quantum

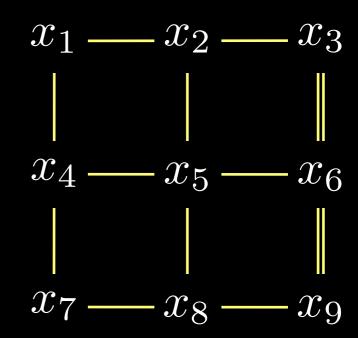
Quantum Satisfying Assignment $x_j \mapsto X_j$

- (a) Satisfy every polynomial constraints.
- (b) For all $j, X_j^2 = X_j$.
- (c) Each pair of operators X_j , X_k appearing in the same constraint commute.

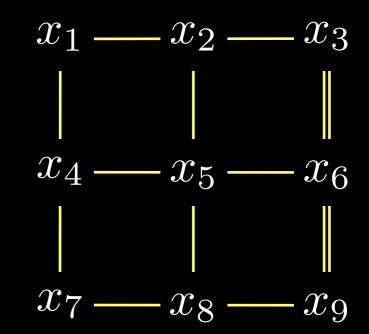
Locally Commutative Condition



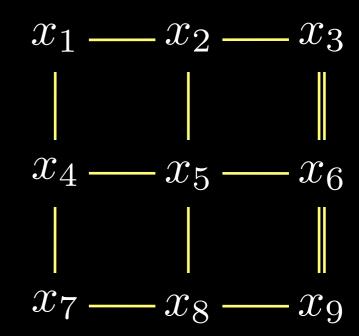
Proof sketch



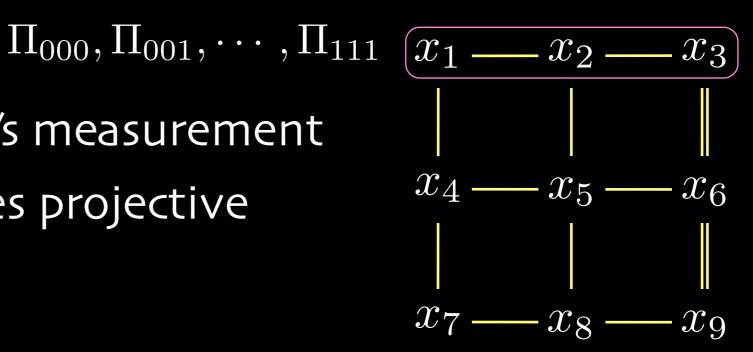
Proof sketch
 The structure of A's measurement



Proof sketch
 The structure of A's measurement
 Assume that A uses projective measurements



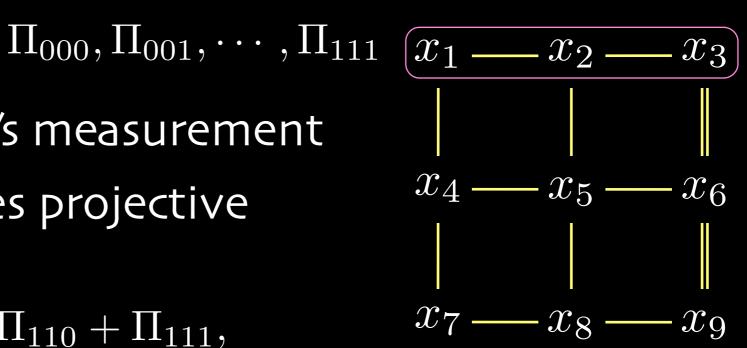
Proof sketch
 ^{II}
 ^{II}
 ^{II}
 The structure of A's measurement
 Assume that A uses projective
 measurements



Proof sketch
 ¹¹000, 11001, ..., 11
 The structure of A's measurement
 Assume that A uses projective
 measurements

$$A_1 = \Pi_{100} + \Pi_{101} + \Pi_{110} + \Pi_{111},$$

 $A_2 = \Pi_{010} + \Pi_{011} + \Pi_{110} + \Pi_{111},$
 $A_3 = \Pi_{001} + \Pi_{011} + \Pi_{101} + \Pi_{111}.$

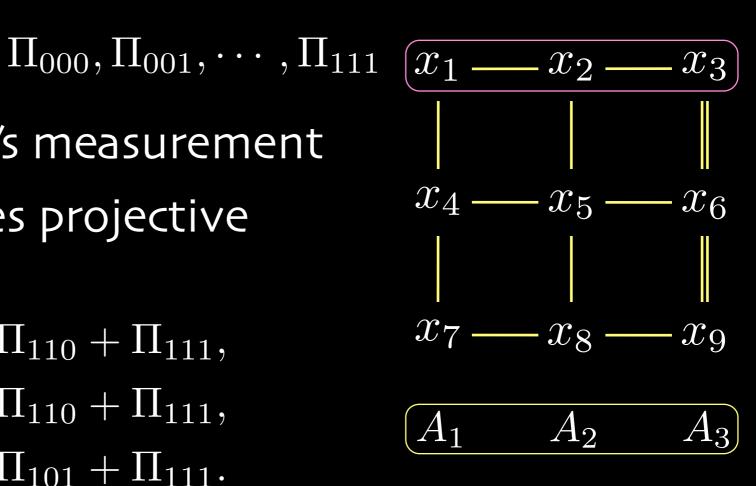


Proof sketch
 ¹¹000, 11001, ..., 11
 The structure of A's measurement
 Assume that A uses projective
 measurements

$$A_1 = \Pi_{100} + \Pi_{101} + \Pi_{110} + \Pi_{111},$$

$$A_2 = \Pi_{010} + \Pi_{011} + \Pi_{110} + \Pi_{111},$$

$$A_3 = \Pi_{001} + \Pi_{011} + \Pi_{101} + \Pi_{111}.$$



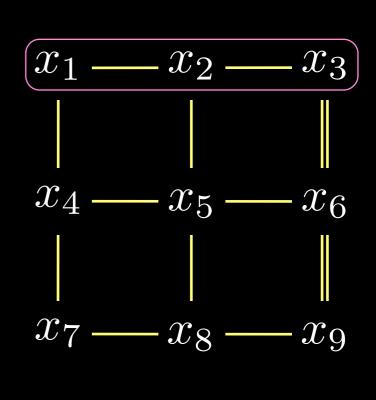
$$A_4 A_5 A_6$$

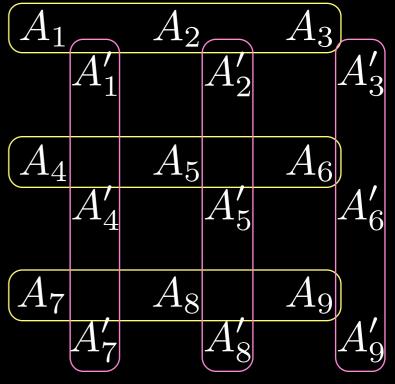
$$\overline{(A_7 \quad A_8 \quad A_9)}$$

• Proof sketch $\Pi_{000}, \Pi_{001}, \cdots, \Pi_{111}$ The structure of A's measurement Assume that A uses projective measurements

$$A_1 = \Pi_{100} + \Pi_{101} + \Pi_{110} + \Pi_{111},$$

 $A_2 = \Pi_{010} + \Pi_{011} + \Pi_{110} + \Pi_{111},$
 $A_3 = \Pi_{001} + \Pi_{011} + \Pi_{101} + \Pi_{111}.$



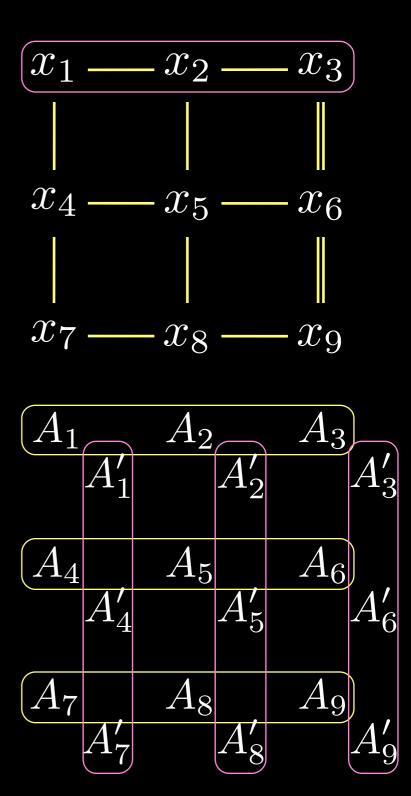


• Proof sketch $\Pi_{000}, \Pi_{001}, \cdots, \Pi_{111}$ The structure of A's measurement Assume that A uses projective measurements

$$A_1 = \Pi_{100} + \Pi_{101} + \Pi_{110} + \Pi_{111},$$

 $A_2 = \Pi_{010} + \Pi_{011} + \Pi_{110} + \Pi_{111},$
 $A_3 = \Pi_{001} + \Pi_{011} + \Pi_{101} + \Pi_{111}.$

Consistency check implies $A_j = A_j'$

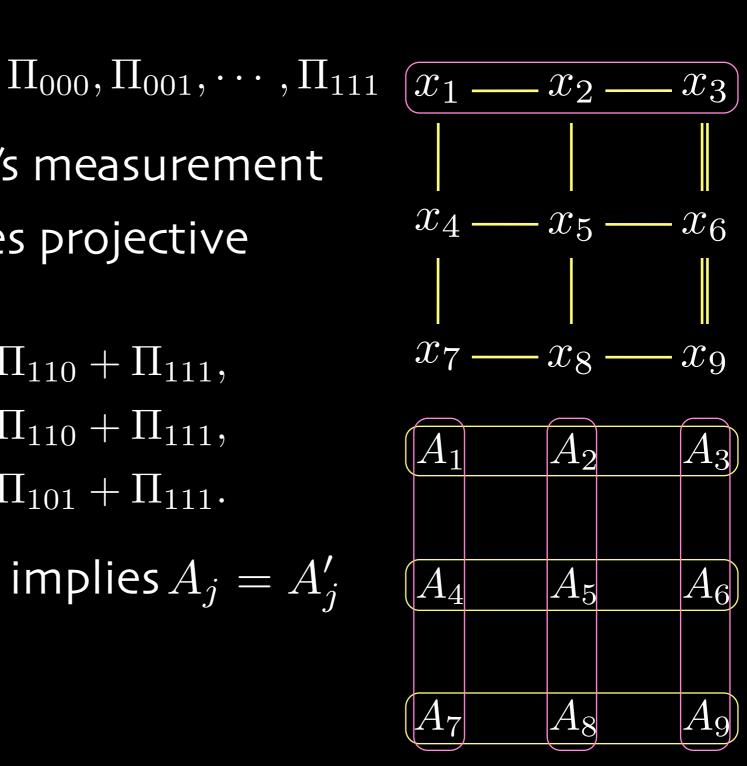


Proof sketch
 ¹¹000, 11001, ..., 11
 The structure of A's measurement
 Assume that A uses projective
 measurements

$$A_1 = \Pi_{100} + \Pi_{101} + \Pi_{110} + \Pi_{111},$$

 $A_2 = \Pi_{010} + \Pi_{011} + \Pi_{110} + \Pi_{111},$
 $A_3 = \Pi_{001} + \Pi_{011} + \Pi_{101} + \Pi_{111}.$

Consistency check implies $A_j = A_j'$

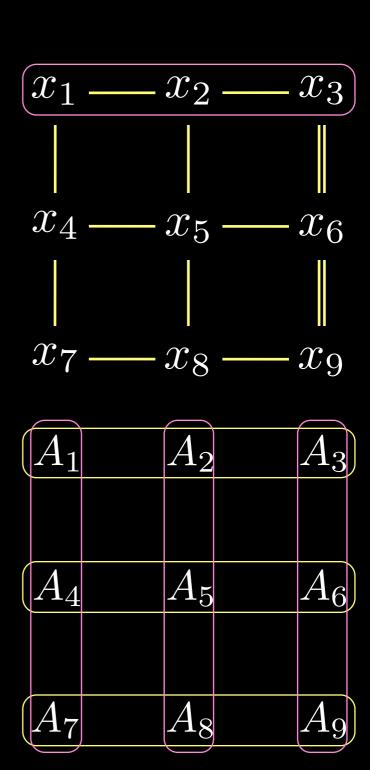


• Proof sketch $\Pi_{000}, \Pi_{001}, \cdots, \Pi_{111}$ The structure of A's measurement Assume that A uses projective measurements

$$A_1 = \Pi_{100} + \Pi_{101} + \Pi_{110} + \Pi_{111},$$

 $A_2 = \Pi_{010} + \Pi_{011} + \Pi_{110} + \Pi_{111},$
 $A_3 = \Pi_{001} + \Pi_{011} + \Pi_{101} + \Pi_{111}.$

- Consistency check implies $A_j = A_j'$
- Quantum satisfying assignment from the A operators

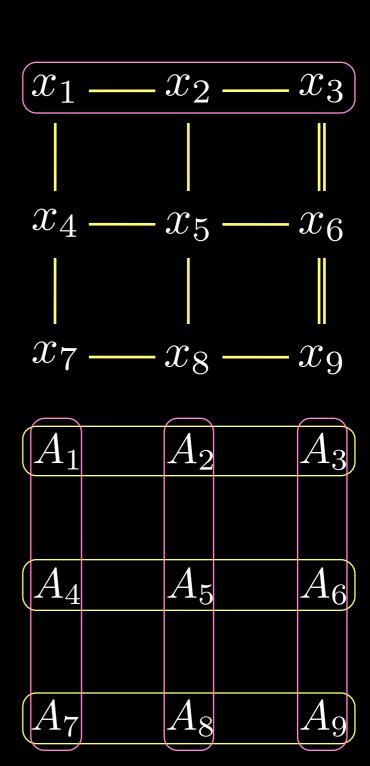


• Proof sketch $\Pi_{000}, \Pi_{001}, \cdots, \Pi_{111}$ The structure of A's measurement Assume that A uses projective measurements

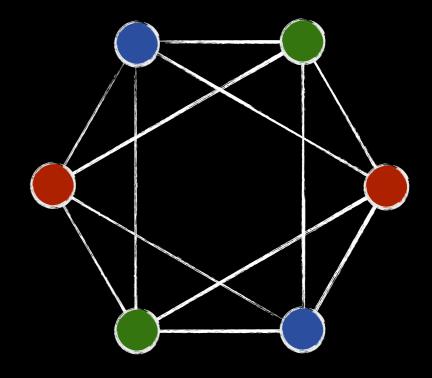
$$A_1 = \Pi_{100} + \Pi_{101} + \Pi_{110} + \Pi_{111},$$

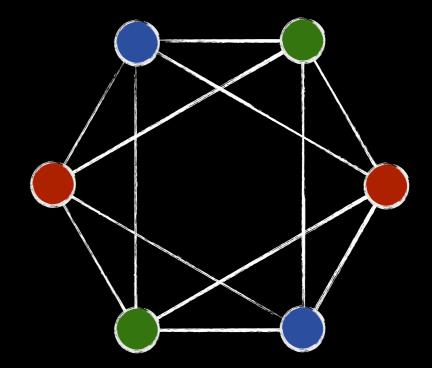
 $A_2 = \Pi_{010} + \Pi_{011} + \Pi_{110} + \Pi_{111},$
 $A_3 = \Pi_{001} + \Pi_{011} + \Pi_{101} + \Pi_{111}.$

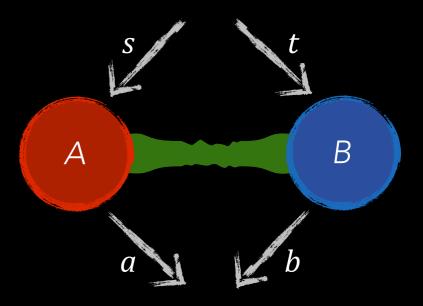
- Consistency check implies $A_j = A_j'$
- Quantum satisfying assignment from the A operators



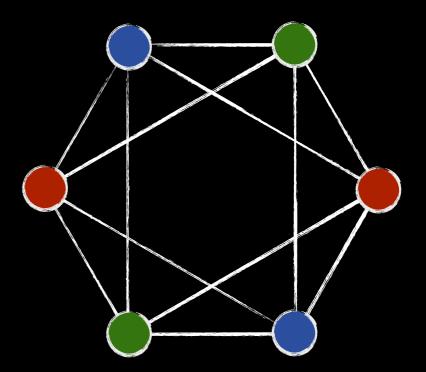
MORE EXAMPLES

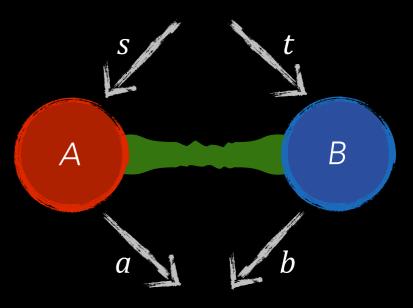




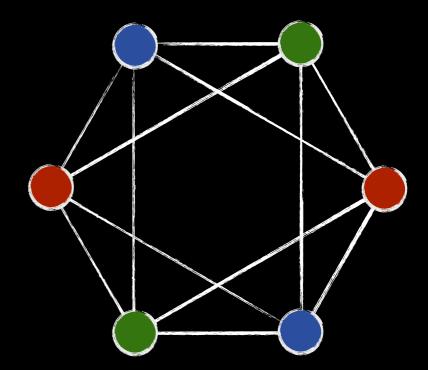


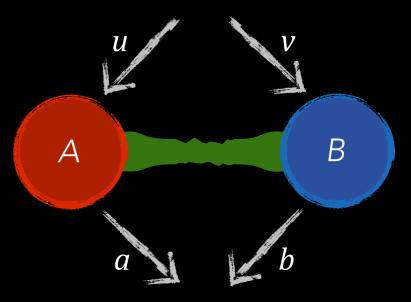
- I. Choose two vertices u, v and send them to A, B respectively.
- II.A, B replies with the colors of u, v.
- III.Accept if
 - A, B give the same color if u=v,
 - 2. A, B give different colors if u, v are adjacent.



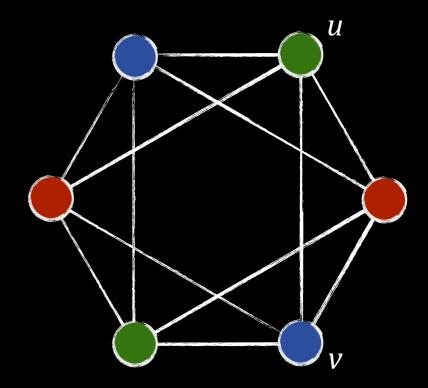


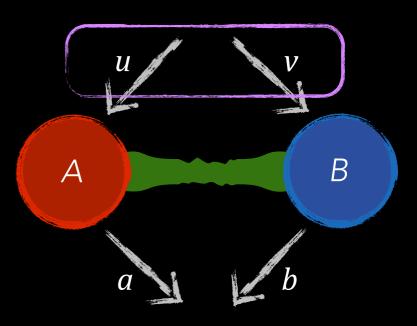
- I. Choose two vertices u, v and send them to A, B respectively.
- II.A, B replies with the colors of u, v.
- III.Accept if
 - A, B give the same color if u=v,
 - 2. A, B give different colors if u, v are adjacent.



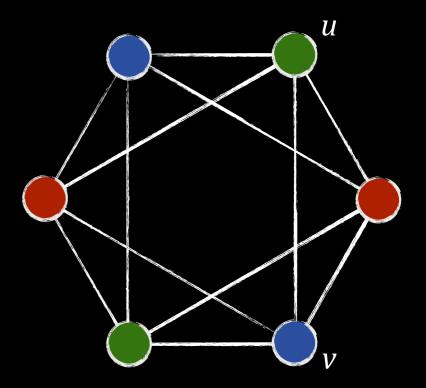


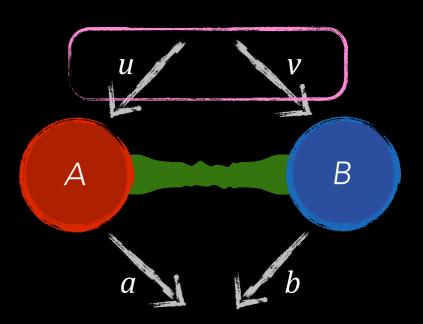
- I. Choose two vertices u, v and send them to A, B respectively.
- II.A, B replies with the colors of u, v.
- III.Accept if
 - A, B give the same color if u=v,
 - 2. A, B give different colors if u, v are adjacent.



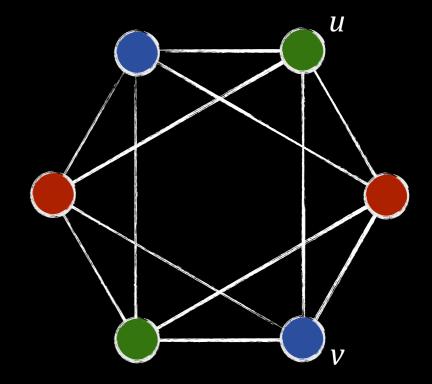


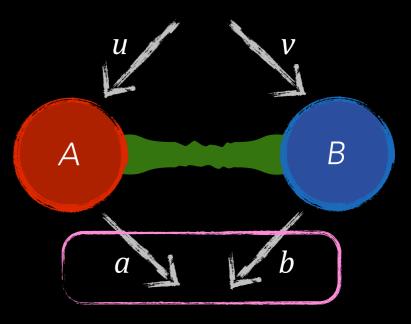
- I. Choose two vertices u, v and send them to A, B respectively.
- II.A, B replies with the colors of u, v.
- III.Accept if
 - A, B give the same color if u=v,
 - 2. A, B give different colors if u, v are adjacent.





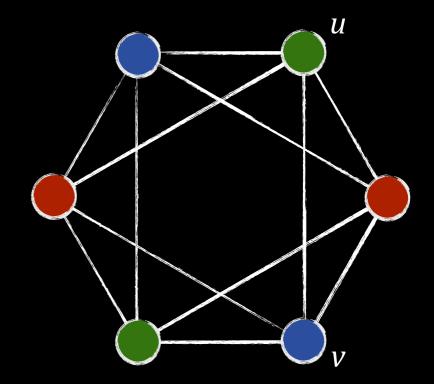
- I. Choose two vertices u, v and send them to A, B respectively.
- II.A, B replies with the colors of u, v.
- III.Accept if
 - A, B give the same color if u=v,
 - 2. A, B give different colors if u, v are adjacent.

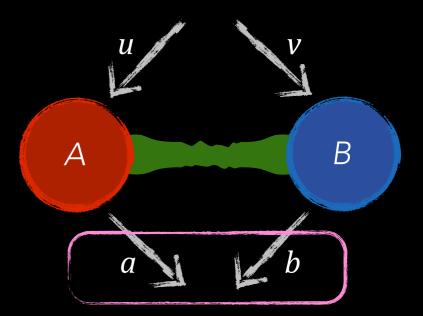




• Graph G=(V,E), Number of colors k

- I. Choose two vertices u, v and send them to A, B respectively.
- II.A, B replies with the colors of u, v.
- III.Accept if
 - A, B give the same color if u=v,
 - 2. A, B give different colors if u, v are adjacent.





k-COLORING*

For each vertex v, define k binary variables: $x_{v,0}, x_{v,1}, \ldots, x_{v,k-1}$.

For each vertex v, define k binary Indicator variables variables: $x_{v,0}, x_{v,1}, \ldots, x_{v,k-1}$.

For each vertex v, define k binary Indicator variables variables: $x_{v,0}, x_{v,1}, \ldots, x_{v,k-1}$.

$$x_{v,0} + x_{v,1} + \cdots + x_{v,k-1} = 1$$
, for $v \in V(G)$, $x_{v,\alpha} x_{w,\alpha} = 0$, for adjacent v, w .

For each vertex v, define k binary Indicator variables variables: $x_{v,0}, x_{v,1}, \ldots, x_{v,k-1}$.

$$x_{v,0} + x_{v,1} + \dots + x_{v,k-1} = 1$$
, for $v \in V(G)$,
$$x_{v,\alpha} x_{w,\alpha} = 0$$
, for adjacent v, w .

Lemma. Graph G has a quantum k-coloring iff the above BCS has a quantum satisfying assignment.

For each vertex v, define k binary Indicator variables variables: $x_{v,0}, x_{v,1}, \ldots, \overline{x_{v,k-1}}$

$$x_{v,0} + x_{v,1} + \cdots + x_{v,k-1} = 1$$
, for $v \in V(G)$,
$$x_{v,\alpha} x_{w,\alpha} = 0$$
, for adjacent v, w .

Lemma. Graph G has a quantum k-coloring iff the above BCS has a quantum satisfying assignment.

[CAMERON, MONTANARO, NEWMAN, SEVERINI AND WINTER, ARXIV:QUANT-PH/0608016]

For each vertex v, define k binary variables: $x_{v,0}, x_{v,1}, \ldots, x_{v,k-1}$.

Indicator variables
Coloring operators

$$x_{v,0} + x_{v,1} + \cdots + x_{v,k-1} = 1$$
, for $v \in V(G)$,
$$x_{v,\alpha} x_{w,\alpha} = 0$$
, for adjacent v, w .

Lemma. Graph G has a quantum k-coloring iff the above BCS has a quantum satisfying assignment.

[CAMERON, MONTANARO, NEWMAN, SEVERINI AND WINTER, ARXIV:QUANT-PH/0608016]

Definition. A set S of projections P_j is a Kochen-Specker set if there is no 0,1-valued function h on S satisfying the condition:

$$\sum_{P_j \in B} h(P_j) = 1$$

for any subset B such that $\sum_{P_j \in B} P_j = I$.

Definition. A set S of projections P_j is a Kochen-Specker set if there is no 0,1-valued function h on S satisfying the condition:

$$\sum_{P_j \in B} h(P_j) = 1$$

for any subset B such that $\sum_{P_j \in B} P_j = I$.

Definition. A set S of projections P_j is a Kochen-Specker set if there is no 0,1-valued function h on S satisfying the condition:

$$\sum_{P_j \in B} h(P_j) = 1$$

for any subset B such that $\sum_{P_j \in B} P_j = I$.

$$\sum_{x_j \in B_k} x_j = 1, \text{ for some } B_1, B_2, \dots, B_m \subset S.$$

Definition. A set S of projections P_j is a Kochen-Specker set if there is no 0,1-valued function h on S satisfying the condition:

$$\sum_{P_j \in B} h(P_j) = 1$$

for any subset B such that $\sum_{P_j \in B} P_j = I$.

$$\sum_{x_j \in B_k} x_j = 1$$
, for some $B_1, B_2, \dots, B_m \subset S$.

KOCHEN-SPECKER*

Kochen-Specker Theorem. There is a Kochen-Specker BCS that has quantum satisfying assignment but no classical satisfying assignment.

$$\sum_{x_j \in B_k} x_j = 1$$
, for some $B_1, B_2, \dots, B_m \subset S$.

KOCHEN-SPECKER*

Kochen-Specker Theorem. There is a Kochen-Specker BCS that has quantum satisfying assignment but no classical satisfying assignment.

First construction: 117 variables, recently reduced to 31.

$$\sum_{x_j \in B_k} x_j = 1$$
, for some $B_1, B_2, \dots, B_m \subset S$.

KOCHEN-SPECKER*

• k-SAT*

Each constraint is a disjunction of k literals

k-SAT*

Each constraint is a disjunction of k literals

$$x_1 \vee x_2 \vee \neg x_3$$

• k-SAT*

Quantum 3-SAT

Each constraint is a disjunction of k literals

$$x_1 \vee x_2 \vee \neg x_3$$

k-SAT*

Quantum 3-SAT

Each constraint is a disjunction of k literals

$$x_1 \vee x_2 \vee \neg x_3$$

1-in-3-SAT*

One and only one out of three variables is true

k-SAT*

Quantum 3-SAT

Each constraint is a disjunction of k literals

$$x_1 \vee x_2 \vee \neg x_3$$

• 1-in-3-SAT*

One and only one out of three variables is true

$$x_1 + x_2 + x_4 = 1$$

k-SAT*

Quantum 3-SAT

Each constraint is a disjunction of k literals

$$x_1 \vee x_2 \vee \neg x_3$$

• 1-in-3-SAT*

KOCHEN-SPECKER*

One and only one out of three variables is true

$$x_1 + x_2 + x_4 = 1$$

k-SAT*

Quantum 3-SAT

Each constraint is a disjunction of k literals

$$x_1 \vee x_2 \vee \neg x_3$$

• 1-in-3-SAT*

KOCHEN-SPECKER*

One and only one out of three variables is true

$$x_1 + x_2 + x_4 = 1$$

INDEPENDENCE*, CLIQUE*
 Quantum Graph Homomorphisms

k-SAT*

Quantum 3-SAT

Each constraint is a disjunction of k literals

$$x_1 \vee x_2 \vee \neg x_3$$

• 1-in-3-SAT*

KOCHEN-SPECKER*

One and only one out of three variables is true

$$x_1 + x_2 + x_4 = 1$$

INDEPENDENCE*, CLIQUE*
 Quantum Graph Homomorphisms

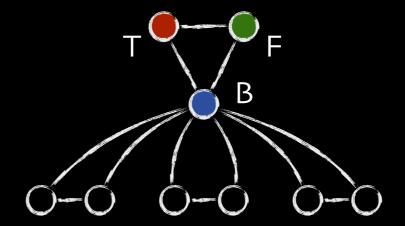
[ROBERSON AND MANCINSKA, ARXIV:1212.1724]

REDUCTIONS

$$\bigwedge_{j=1}^m C_j$$

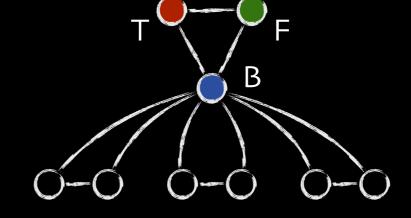
$$\bigwedge_{j=1}^m C_j$$

$$x_1, x_2, x_3, \ldots$$



$$\bigwedge_{j=1}^m C_j$$

$$x_1, x_2, x_3, \ldots$$

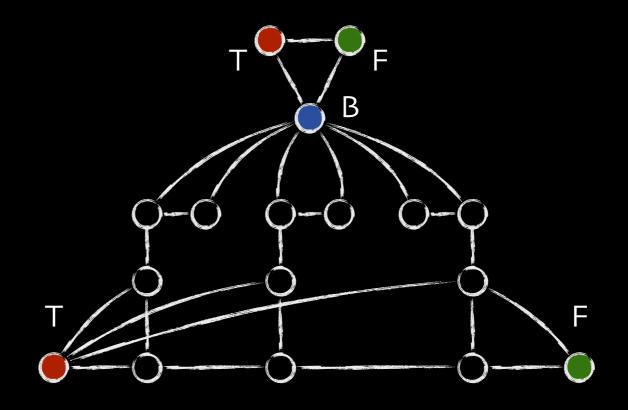


$$x_1 \vee x_2 \vee \neg x_3$$

$$\bigwedge_{j=1}^m C_j$$

$$x_1, x_2, x_3, \ldots$$

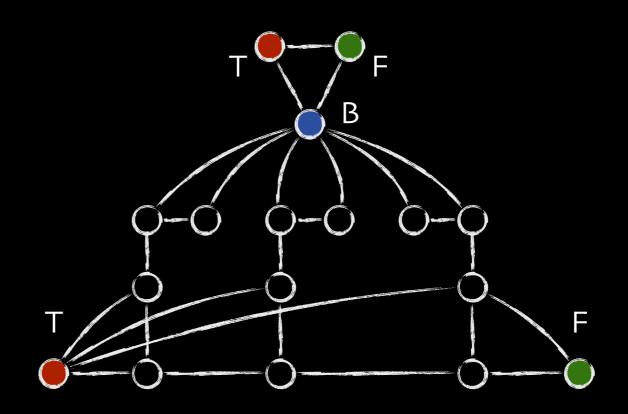
$$x_1 \vee x_2 \vee \neg x_3$$



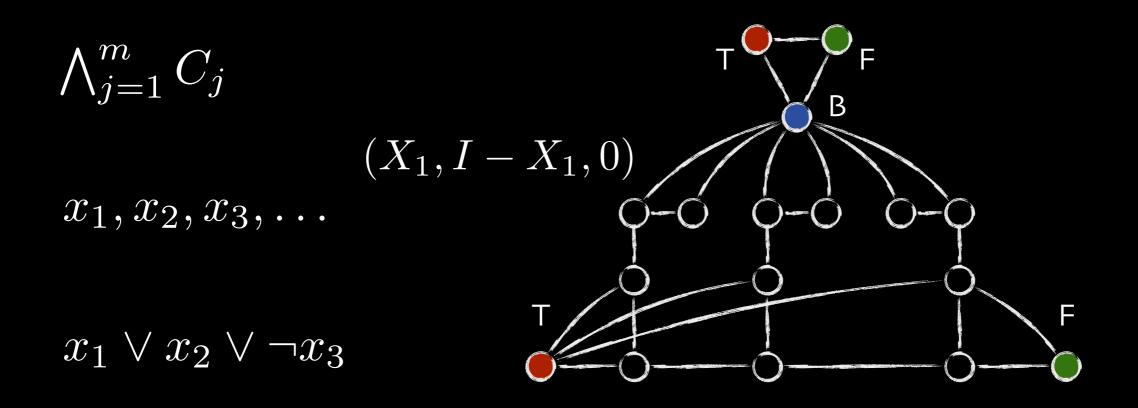
$$\bigwedge_{j=1}^m C_j$$

$$x_1, x_2, x_3, \ldots$$

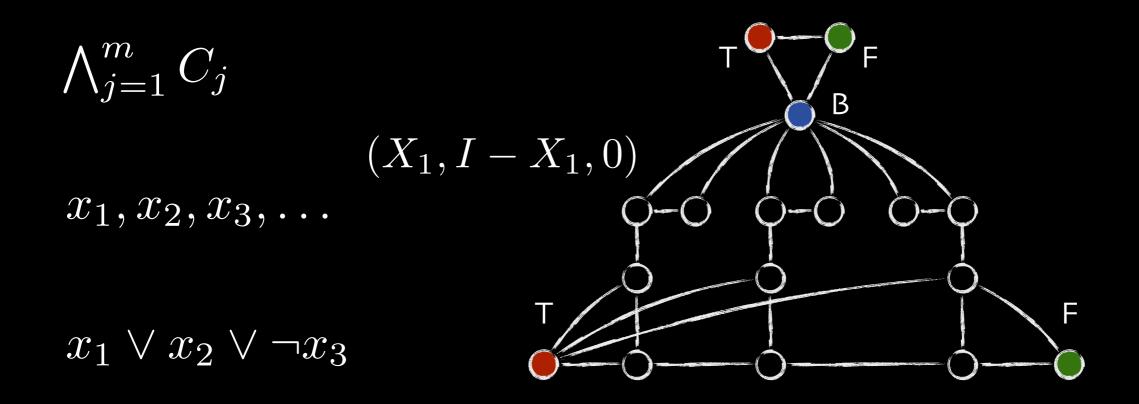
$$x_1 \vee x_2 \vee \neg x_3$$



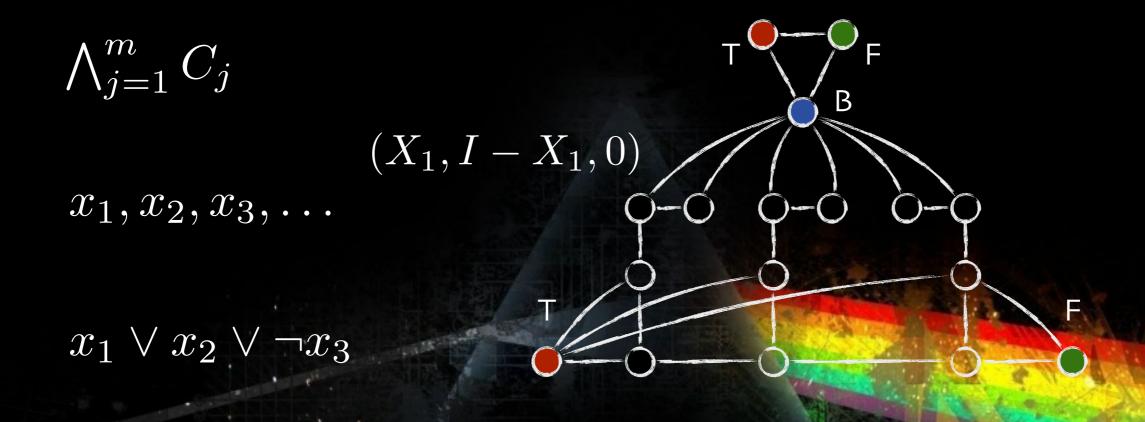
$$X_1, X_2, X_3, \dots$$
 Coloring operators?



$$X_1, X_2, X_3, \dots$$
 Coloring operators?

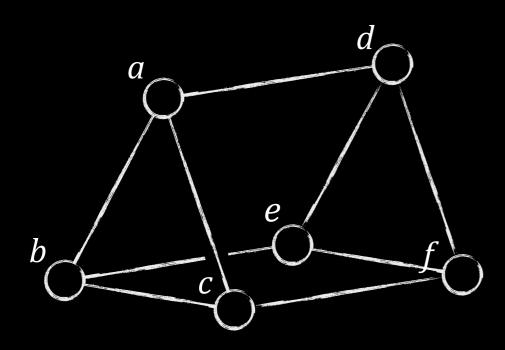


$$X_1, X_2, X_3, \dots$$
 Coloring operators?

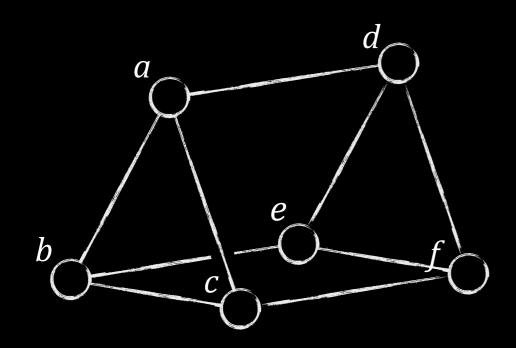


$$X_1, X_2, X_3, \dots$$
 Coloring operators?

Lemma. The only constraint on the coloring operators of vertices a and e in the gadget is that they commute.

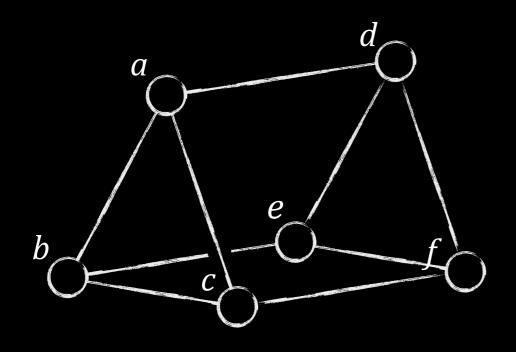


Lemma. The only constraint on the coloring operators of vertices a and e in the gadget is that they commute.



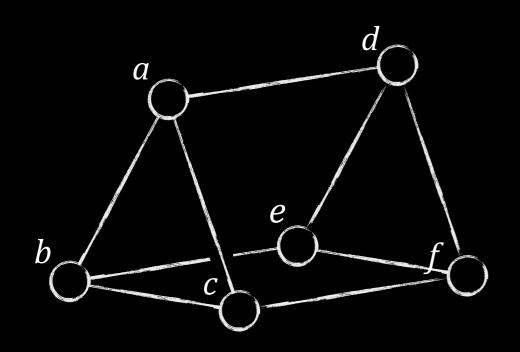
1. Commutativity

Lemma. The only constraint on the coloring operators of vertices a and e in the gadget is that they commute.



- 1. Commutativity
- 2. Extendibility

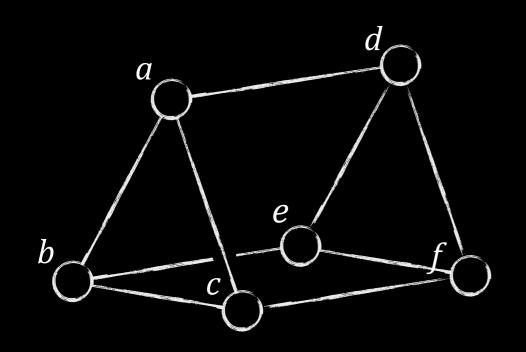
Lemma. The only constraint on the coloring operators of vertices a and e in the gadget is that they commute.



- 1. Commutativity
- 2. Extendibility

Commutativity gadget

Lemma. The only constraint on the coloring operators of vertices α and e in the gadget is that they commute.

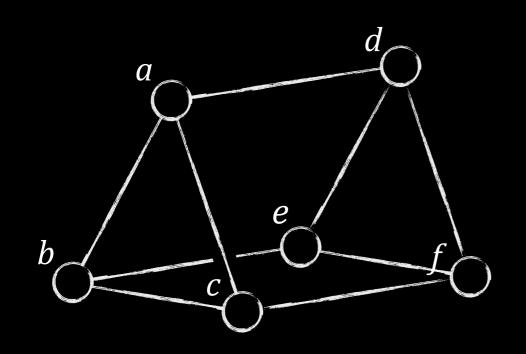


- 1. Commutativity
- 2. Extendibility

Commutativity gadget

Proof idea: commutator is in the ideal generated by the constraints. Non-commutative Grobner basis.

Lemma. The only constraint on the coloring operators of vertices a and e in the gadget is that they commute.



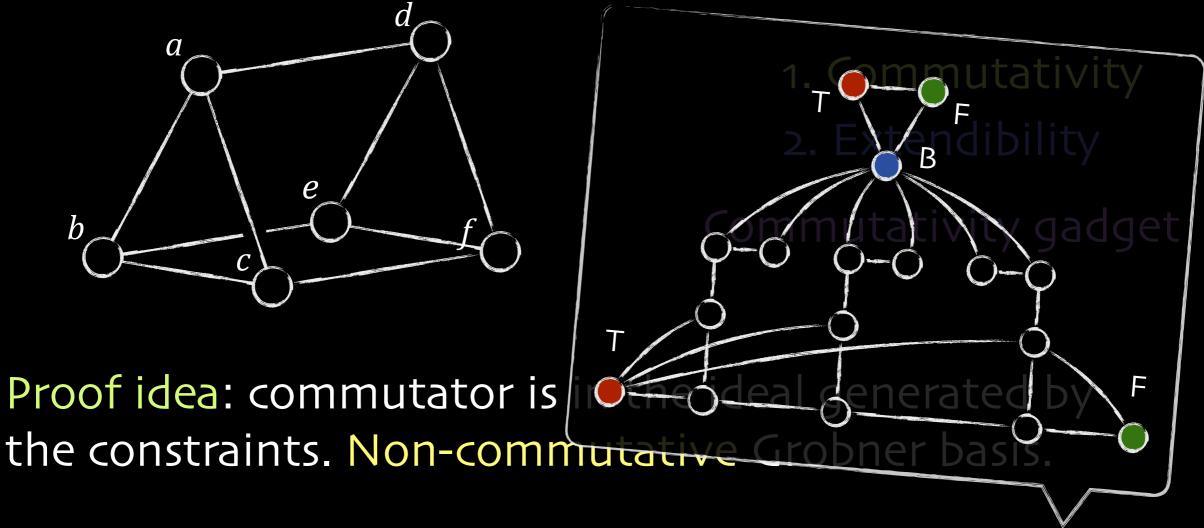
- 1. Commutativity
- 2. Extendibility

Commutativity gadget

Proof idea: commutator is in the ideal generated by the constraints. Non-commutative Grobner basis.

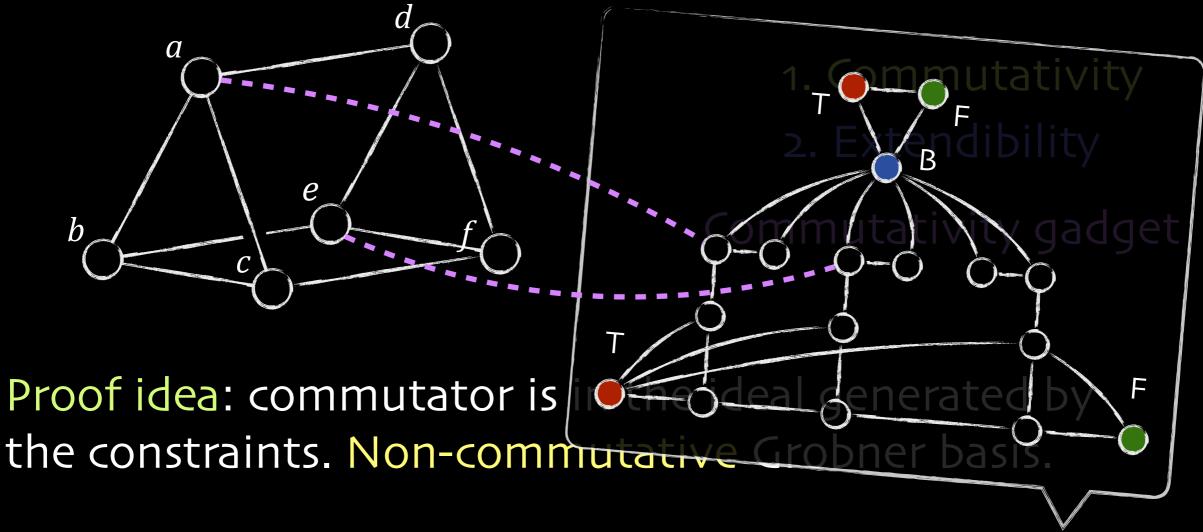
Identify *a* and *e* with vertices in the classical gadget.

Lemma. The only constraint on the coloring operators of vertices a and e in the gadget is that they commute.



Identify *a* and *e* with vertices in the classical gadget.

Lemma. The only constraint on the coloring operators of vertices a and e in the gadget is that they commute.



Identify *a* and *e* with vertices in the classical gadget.

Theorem. 3-SAT* is Karp reducible to 1-in-3-SAT*.

Theorem. 3-SAT* is Karp reducible to 1-in-3-SAT*.

Theorem. 3-SAT* is Karp reducible to 1-in-3-SAT*.

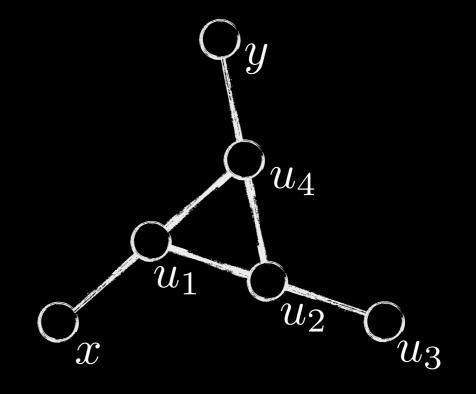
$$x + u_1 + u_4 = 1,$$

 $y + u_2 + u_4 = 1,$
 $u_1 + u_2 + u_3 = 1.$

Theorem. 3-SAT* is Karp reducible to 1-in-3-SAT*.

$$x + u_1 + u_4 = 1,$$

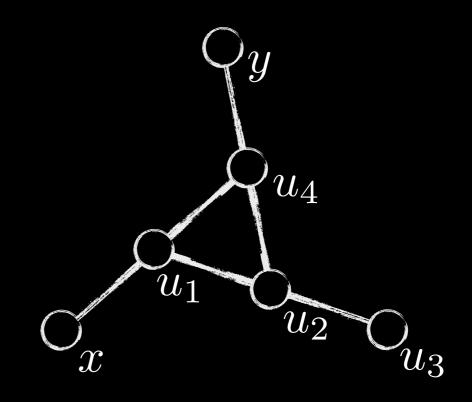
 $y + u_2 + u_4 = 1,$
 $u_1 + u_2 + u_3 = 1.$



Theorem. 3-SAT* is Karp reducible to 1-in-3-SAT*.

$$x + u_1 + u_4 = 1,$$

 $y + u_2 + u_4 = 1,$
 $u_1 + u_2 + u_3 = 1.$

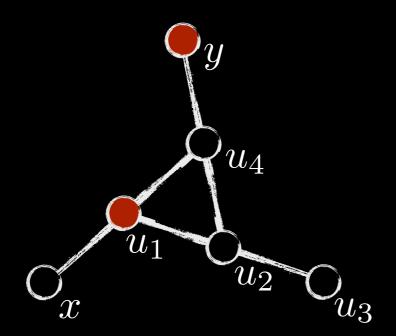


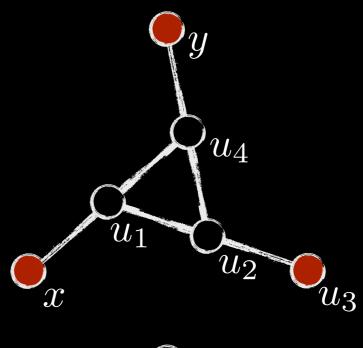
$$[x + u_1 + u_4 - 1, -x + u_1 + u_3] = [x, u_3] + [u_4, u_3],$$
$$[y + u_2 + u_4 - 1, -x] = [x, y] + [x, u_2],$$
$$[u_1 + u_2 + u_3 - 1, x + u_4] = [u_2, x] + [u_3, x] + [u_3, u_4].$$

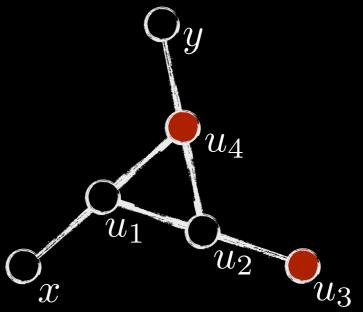
Theorem. 3-SAT* is Karp reducible to 1-in-3-SAT*.

$$x + u_1 + u_4 = 1,$$

 $y + u_2 + u_4 = 1,$
 $u_1 + u_2 + u_3 = 1.$







Results Not Covered

NP-Hardness

Results Not Covered

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE* are all NP-hard.

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE* are all NP-hard.

Easy *-problems

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE* are all NP-hard.

Easy *-problems

Theorem. 2-SAT* and HORN-SAT* are in P.

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE* are all NP-hard.

Easy *-problems

Theorem. 2-SAT* and HORN-SAT* are in P.

Bound on the game value of the four-line game

Results Not Covered

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE* are all NP-hard.

Easy *-problems

Theorem. 2-SAT* and HORN-SAT* are in P.

- Bound on the game value of the four-line game
- An example of parity BCS game that requires a large amount of entanglement

NP-Hardness

Theorem. 3-SAT*, 3-COLORING*, KOCHEN-SPECKER* and CLIQUE* are all NP-hard.

Easy *-problems

Theorem. 2-SAT* and HORN-SAT* are in P.

- Bound on the game value of the four-line game
- An example of parity BCS game that requires a large amount of entanglement

Anti-commutativity gadget + Clifford algebra

CONCLUSIONS

Why binary?

- Why binary?
 - Simple
 - Projective Measurement
 - Versatile

- Why binary?
 - Simple
 - Projective Measurement
 - Versatile
- Schaefer's dichotomy theorem?

- Why binary?
 - Simple
 - Projective Measurement
 - Versatile
- Schaefer's dichotomy theorem?
 - 2-SAT*, HORN-SAT* and AFFINE-SAT*.

- Why binary?
 - Simple
 - Projective Measurement
 - Versatile
- Schaefer's dichotomy theorem?
 - 2-SAT*, HORN-SAT* and AFFINE-SAT*. Parity BCSs

- Why binary?
 - Simple
 - Projective Measurement
 - Versatile
- Schaefer's dichotomy theorem?

```
2-SAT*, HORN-SAT* and AFFINE-SAT*. Parity BCSs
```

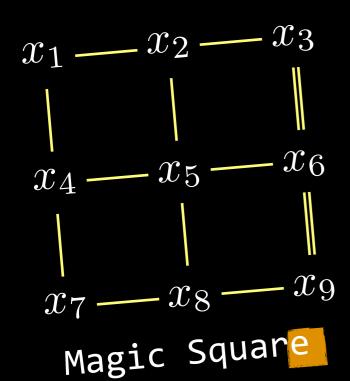
Hardness of 3-SAT*?

- Why binary?
 - Simple
 - Projective Measurement
 - Versatile
- Schaefer's dichotomy theorem?
 2-SAT*, HORN-SAT* and AFFINE-SAT*. Parity BCSs
- Hardness of 3-SAT*?

Not even known to be decidable!

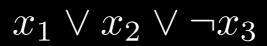
- Why binary?
 - Simple
 - Projective Measurement
 - Versatile
- Schaefer's dichotomy theorem?
 2-SAT*, HORN-SAT* and AFFINE-SAT*. Parity BCSs
- Hardness of 3-SAT*?
 Not even known to be decidable!
- Exact case vs. approximate case.

"CONNECTING THE DOTS"

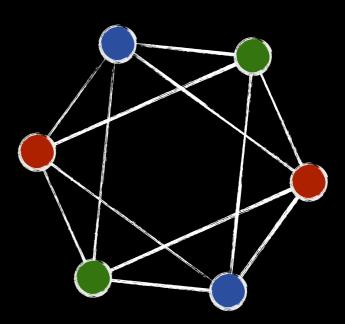


INDEPENDENCE*

CLIQUE*

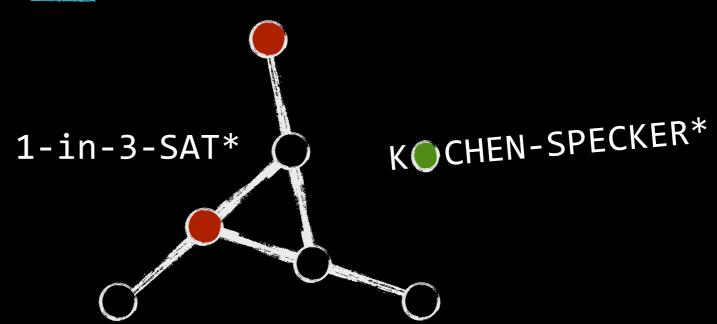


3-**SAT***

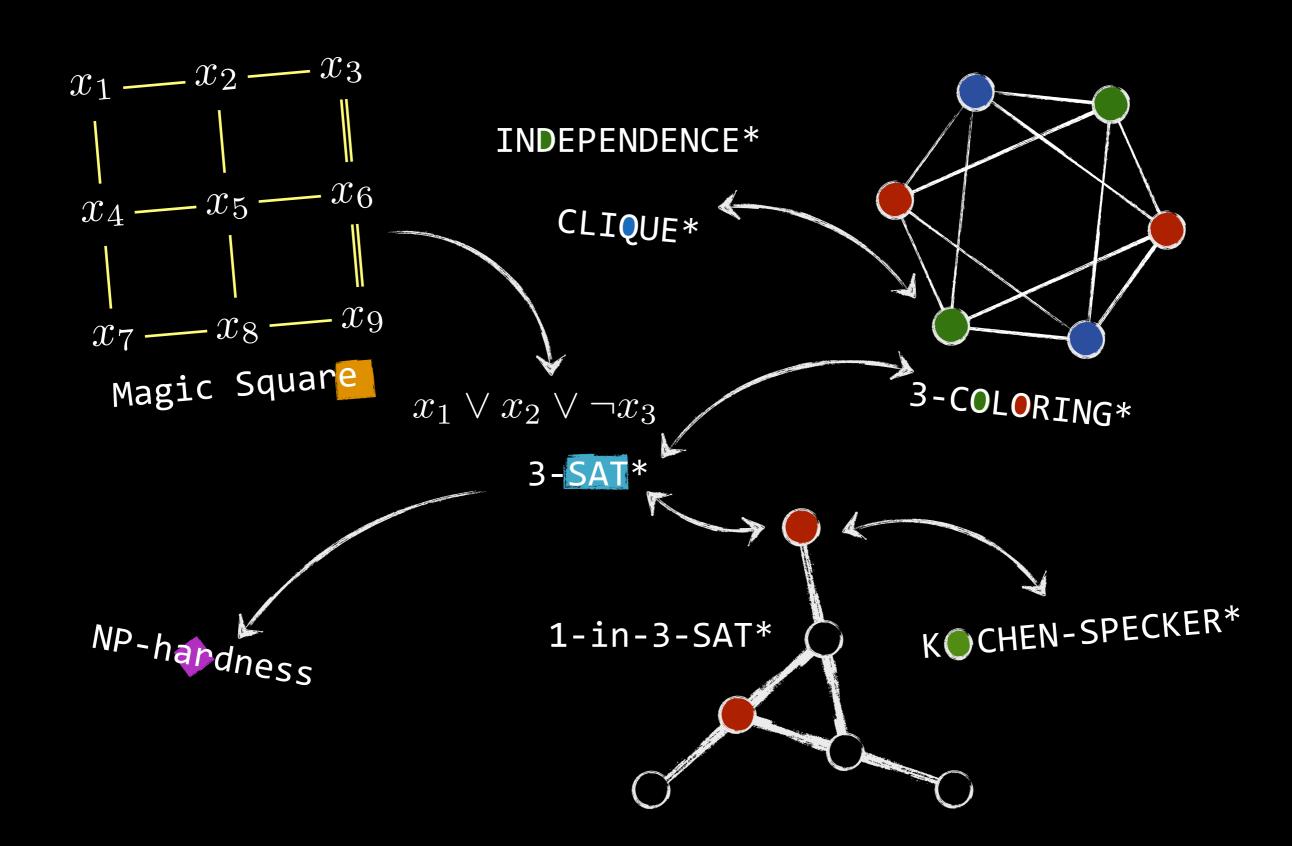


3-COLORING*

NP-hardness



"CONNECTING THE DOTS"



"CONNECTING THE DOTS"

