# Mapping out Scattering Amplitudes and Resonances using Lattice QCD

#### Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Benasque Workshop, 21st July 2014



Hadron Spectrum Collaboration



### Introduction

- Resonances etc on the lattice
  - The  $\rho$  in isospin-1  $\pi\pi$  scattering
  - πK, ηK coupled-channel scattering
- Summary and outlook

## Meson Spectroscopy



### Meson Spectroscopy



**Exotic**  $J^{PC}$  (**0**<sup>--</sup>, **0**<sup>+-</sup>, **1**<sup>-+</sup>, **2**<sup>+-</sup>, ...) or flavour quantum numbers – can't just be a  $q\bar{q}$  pair

#### Meson Spectroscopy



**Exotic**  $J^{PC}$  (**0**<sup>--</sup>, **0**<sup>+-</sup>, **1**<sup>-+</sup>, **2**<sup>+-</sup>, ...) or flavour quantum numbers – can't just be a  $q\bar{q}$  pair

X(3872), Y(4260),  $Z^+$ (4430),  $Z_c^+$ (3900),  $Z_b^+$ ,  $D_s$ (2317), light scalars, ... (also baryons) Gluonic excitations?

**Resonances or near threshold** 



Can we understand these within QCD?  $\rightarrow$  lattice QCD





### Spectroscopy on the lattice





### Spectroscopy on the lattice

(our approach)

Energy eigenstates from 2-pt corrs.

$$C_{ij}(t) = < 0 \left[ \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right] 0 > 0$$

$$O(t) = \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \ \bar{\psi}(x) \left[ \Gamma \overleftrightarrow{D} \overleftrightarrow{D} \dots \right] \psi(x)$$

Large no. of ops. with different structures

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2E_n} < 0|\mathcal{O}_i(0)|n > < n|\mathcal{O}_j^{\dagger}(0)|0 >$$

#### Spectroscopy on the lattice

(our approach)

Energy eigenstates from 2-pt corrs.

$$C_{ij}(t) = < 0 \left[ \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right] 0 > 0$$

$$O(t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \left[ \Gamma \overleftrightarrow{D} \overleftrightarrow{D} \dots \right] \psi(x)$$

Large no. of ops. with different structures

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2E_n} < 0 |\mathcal{O}_i(0)|_n > < n |\mathcal{O}_j^{\dagger}(0)|_0 >$$

Large basis of ops → matrix of corrs. – generalised eigenvalue problem

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

$$\lambda^{(n)}(t) \to e^{-E_n(t-t_0)} \quad v_i^{(n)} \to Z_i^{(n)} \equiv <0|\mathcal{O}_i|n> \quad (t>t_0)$$

## Light mesons (isospin = 0 and 1)



[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013); update of PR D83, 111502 (2011)] Anisotropic Clover [ $N_f$  = 2+1],  $a_s \approx 0.12$  fm,  $a_s/a_t \approx 3.5$ ; + other volumes and  $m_{\pi}$ 

## Light mesons (isospin = 0 and 1)



[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013); update of PR D83, 111502 (2011)] Anisotropic Clover [ $N_f$  = 2+1],  $a_s \approx 0.12$  fm,  $a_s/a_t \approx 3.5$ ; + other volumes and  $m_{\pi}$ 

Imaginary time – can't study dynamics (e.g. scattering) directly

#### Imaginary time – can't study dynamics (e.g. scattering) directly

#### Single hadron in a finite volume



Two hadrons: **non-interacting**  $E_{AB} = \sqrt{m_A^2 + \vec{k}_A^2} + \sqrt{m_B^2 + \vec{k}_B^2}$ 

Infinite volume

Continuous spectrum

Two hadrons: **non-interacting**  $E_{AB} = \sqrt{m_A^2 + \vec{k}_A^2} + \sqrt{m_B^2 + \vec{k}_B^2}$ 

Infinite volume

Continuous spectrum

#### Finite volume

Discrete spectrum

$$\vec{k}_{A,B} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two hadrons: interacting

Infinite volume

Continuous spectrum

#### Finite volume

Discrete spectrum

$$\vec{k}_{A,B} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$$
  
c.f. 1-dim:  $k = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$ 

$$\det \left[ \delta_{ij} \delta_{\ell\ell'} \delta_{mm'} + i\rho_i \ t_{ij}^{(l)} \ \left( \delta_{\ell\ell'} \delta_{mm'} + i\mathcal{M}_{\ell m;\ell'm'}^{\vec{P}}(q_i^2) \right) \right] = 0$$





Scattering *t*-matrix: 
$$S_{ij} = \delta_{ij} + 2i\sqrt{\rho_i\rho_k} t_{ij}$$

$$\vec{P} = \text{overall mom.}$$

$$\det \left[ \delta_{ij} \delta_{\ell\ell'} \delta_{mm'} + i\rho_i t_{ij}^{(l)} \left( \delta_{\ell\ell'} \delta_{mm'} + i\mathcal{M}_{\ell m;\ell'm'}^{\vec{p}} (q_i^2) \right) \right] = 0$$

$$i, j \text{ label channels}$$

$$e.g. \, \kappa\pi, \, \kappa\eta$$

$$\vec{q} = \vec{k}_{\text{cm}} L/2\pi$$

$$Reduced \text{ symmetry } \rightarrow \ell \text{ mix}$$

$$Subduce \text{ to lattice irrep } (\Lambda) \rightarrow \mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda} \delta_{\Lambda\Lambda'} \delta_{\mu\mu'}$$

$$(\ell \text{ that subduce to \Lambda mix})$$

Scattering t-matrix: 
$$S_{ij} = \delta_{ij} + 2i\sqrt{\rho_i\rho_k} t_{ij}$$

$$\vec{P} = \text{overall mom.}$$

$$\det \left[ \delta_{ij} \delta_{\ell\ell'} \delta_{mm'} + i\rho_i t_{ij}^{(l)} \left( \delta_{\ell\ell'} \delta_{mm'} + i\mathcal{M}_{\ell m;\ell'm'}^{\vec{P}}(q_i^2) \right) \right] = 0$$

$$i, j \text{ label channels}$$

$$e.g. \ \kappa_{\pi}, \ \kappa_{\eta}$$

$$\vec{q} = \vec{k}_{cm} L/2\pi$$

$$\text{Given } t: \text{ solns } \rightarrow \text{ finite-vol. spec. } \{E_{cm}\}$$

$$\text{We need: spectrum } \rightarrow t\text{ -matrix}$$

$$Reduced \text{ symmetry } \rightarrow \ell \text{ mix}$$

$$\text{Subduce to lattice irrep } (\Lambda) \rightarrow \mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda} \delta_{\Lambda\Lambda'} \delta_{\mu\mu'}$$

$$(\ell \text{ that subduce to \Lambda mix})$$

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det \left[ \delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t^{(l)} \ \left( \delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

If assume only lowest  $\ell$  relevant [near threshold  $t \sim k^{2\ell}$ ]  $\rightarrow$  can solve equ. for each  $E_{cm} \rightarrow$  phase shift  $\delta(E_{cm})$ Alternatively parameterise t(s) and fit  $\{E_{lat}\}$  to  $\{E_{param}\}$ 

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\left[\det\left[\delta_{\ell\ell'}\delta_{nn'}+i\rho_i\ t^{(l)}\ \left(\delta_{\ell\ell'}\delta_{nn'}+i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2)\right)\right]=0$$

If assume only lowest  $\ell$  relevant [near threshold  $t \sim k^{2\ell}$ ]  $\rightarrow$  can solve equ. for each  $E_{cm} \rightarrow$  phase shift  $\delta(E_{cm})$ Alternatively parameterise t(s) and fit  $\{E_{lat}\}$  to  $\{E_{param}\}$ 

Need many (multi-hadron) energy levels

Single and multi-hadron ops

Non-zero P<sub>cm</sub>, different box sizes and shapes, twisted b.c.s, ...

Map out phase shift  $\rightarrow$  resonance parameters etc

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det\left[\delta_{\ell\ell'}\delta_{nn'} + i\rho_i \ t^{(l)} \ \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2)\right)\right] = 0$$

#### Resonance: Breit-Wigner param.

$$t^{(\ell)} = \frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma_{\ell}(s)}{m_R^2 - s - i\sqrt{s} \Gamma_{\ell}(s)} \quad \Gamma_{\ell}(s) = \frac{g_R^2}{6\pi} \frac{k_{\rm Cm}^{2\ell+1}}{s \, m_R^{2(\ell-1)}}$$

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det \left[ \delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t^{(l)} \ \left( \delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

Resonance: Breit-Wigner param.

$$t^{(\ell)} = \frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma_{\ell}(s)}{m_R^2 - s - i\sqrt{s} \Gamma_{\ell}(s)} \Gamma_{\ell}(s) = \frac{g_R^2}{6\pi} \frac{k_{\rm cm}^{2\ell+1}}{s \, m_R^{2(\ell-1)}}$$



D. Wilson

$$\pi \pi \to \rho \to \pi \pi$$
3 volumes ( $L \approx 2-3$  fm),  $a_s \approx 0.12$  fm,  $M_{\pi} \approx 400$  MeV
$$C_{ij}(t) = < 0 O_i(t) O_j^{\dagger}(0) 0 >$$
single-meson
$$\sim \bar{\psi} \Gamma D \dots \psi$$
and  $\pi \pi$  ops.
$$O(\vec{P}) = \sum_{\hat{P}_1, \hat{P}_2} C_{\Lambda}(\vec{P}, \vec{p}_1, \vec{p}_2) O_{\pi}(\vec{p}_1) O_{\pi}(\vec{p}_2)$$

$$\vec{P} \longrightarrow \vec{P} \longrightarrow \vec{P}$$





Assume  $\delta_{l>3} \approx 0$  in this energy range – find no significant signal for  $\delta_{l=3}$ 





Mapped out in detail



Mapped out in detail

## $\pi K$ , $\eta K$ (I=1/2) coupled-channel scattering

$$J^{P} = 0^{+} \quad \kappa, K_{0}^{*}(1430), \dots$$
$$J^{P} = 1^{-} \quad K^{*}(892), \dots$$
$$J^{P} = 2^{+} \quad K_{2}^{*}(1430), \dots$$

## $\pi K$ , $\eta K$ (I=1/2) coupled-channel scattering

$$J^P = 0^+$$
 $\kappa, K_0^*(1430), \dots$  $J^P = 1^ K^*(892), \dots$  $J^P = 2^+$  $K_2^*(1430), \dots$ 

#### Jo Dudek, Robert Edwards, David Wilson, CT [arXiv:1406.4158]

$$\begin{array}{c} \overbrace{\vec{p}_{1}} & \overbrace{\vec{p}_{2}} \\ \overrightarrow{\vec{p}_{1}} & \overbrace{\vec{p}_{2}} \\ \overrightarrow{\vec{p}_{1}} & \overbrace{\vec{p}_{2}} \\ \overrightarrow{\vec{p}_{1}} & \overbrace{\vec{p}_{2}} \\ \overrightarrow{\vec{p}_{1}} & \overrightarrow{\vec{p}_{2}} \end{array} \end{array}$$

$$single-meson \sim \overline{\psi} \Gamma D \dots \psi$$

$$+ \pi K \text{ ops.} \quad \mathcal{O}(\vec{P}) = \sum_{\hat{p}_{1}, \hat{p}_{2}} \mathcal{C}_{\Lambda}(\vec{P}, \vec{p}_{1}, \vec{p}_{2}) \mathcal{O}_{\pi}(\vec{p}_{1}) \mathcal{O}_{K}(\vec{p}_{2})$$

$$+ \pi \eta \text{ ops.} \quad \mathcal{O}(\vec{P}) = \sum_{\hat{p}_{1}, \hat{p}_{2}} \mathcal{C}_{\Lambda}(\vec{P}, \vec{p}_{1}, \vec{p}_{2}) \mathcal{O}_{\pi}(\vec{p}_{1}) \mathcal{O}_{\eta}(\vec{p}_{2})$$

 $M_{\pi} = 391 \text{ MeV}, M_{K} = 549 \text{ MeV}, M_{n} = 589 \text{ MeV}; 3 \text{ volumes } (L \approx 2 - 3 \text{ fm}), a_{s} \approx 0.12 \text{ fm}$ 

## $\pi K$ , $\eta K$ (I=1/2) spectra

#### $P = [0,0,0] A_1^+$



 $J^{P} = 0^{+}, 4^{+}, \dots [\ell = 0, 4, \dots]$ 

## $\pi$ K, ηK (I=1/2) spectra

#### $P = [0,0,1] A_1$



 $|\lambda| = 0^+, 4, ...$  [ $\ell = 0, 1, 2, 3, 4^2, ...$ ]

## $\pi$ K, ηK (I=1/2) spectra



## $\pi$ K, $\eta$ K (I=1/2) coupled-channel scattering

$$\det \left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i \ t_{ij}^{(l)} \ \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\wedge}(q_i^2)\right)\right] = 0$$

Under-constrained equation  $\rightarrow$  parameterise  $t_{ij}(s)$  and fit  $E_{lat}$  to  $E_{param}$ 



## $\pi$ K, $\eta$ K (I=1/2) coupled-channel scattering

$$\det \left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i \ t_{ij}^{(l)} \ \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\wedge}(q_i^2)\right)\right] = 0$$

Under-constrained equation  $\rightarrow$  parameterise  $t_{ij}(s)$  and fit  $E_{lat}$  to  $E_{param}$ 

K-matrix param – respects unitarity (conserve prob.) and flexible:

$$t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} K_{ij}^{-1}(s) \frac{1}{(2k_j)^{\ell}} + I_{ij}(s)$$

$$\operatorname{Im}I_{ij} = -\delta_{ij}\rho_i(s)$$



## $\pi$ K, $\eta$ K (I=1/2) coupled-channel scattering

$$\det \left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i \ t_{ij}^{(l)} \ \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2)\right)\right] = 0$$

Under-constrained equation  $\rightarrow$  parameterise  $t_{ij}(s)$  and fit  $E_{lat}$  to  $E_{param}$ 

K-matrix param – respects unitarity (conserve prob.) and flexible:

$$t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} K_{ij}^{-1}(s) \frac{1}{(2k_j)^{\ell}} + I_{ij}(s)$$
 Im

$$\mathsf{m}I_{ij} = -\delta_{ij}
ho_i(s)$$

#### In current study:

$$K = \frac{1}{m^2 - s} \begin{bmatrix} g_{\pi K}^2 & g_{\pi K} g_{\eta K} \\ g_{\pi K} g_{\eta K} & g_{\eta K}^2 \end{bmatrix} + \begin{bmatrix} \gamma_{\pi K, \pi K} & \gamma_{\pi K, \eta K} \\ \gamma_{\pi K, \eta K} & \gamma_{\eta K, \eta K} \end{bmatrix}$$

## $\pi$ K, $\eta$ K (I=1/2): S-wave – only using P = [0,0,0] A<sub>1</sub><sup>+</sup>



### $\pi$ K, $\eta$ K (I=1/2): S-wave – only using P = [0,0,0] A<sub>1</sub><sup>+</sup>



### $\pi$ K (I=1/2): P-wave near threshold

#### (well below nK threshold)



#### Relativistic Breit-Wigner; use S-wave from prev. slide

### $\pi$ K (I=1/2): P-wave near threshold

#### (well below nK threshold)



Relativistic Breit-Wigner; use S-wave from prev. slide

### $\pi$ K (I=1/2): P-wave near threshold

#### (well below nK threshold)



Relativistic Breit-Wigner; use S-wave from prev. slide

## πK, ηK (I=1/2): S & P-waves

#### (73 energy levels)



Up to  $\pi\pi K$  threshold, except [0,0,0]  $A_1^+$  up to  $\pi\pi\pi K$ Assume  $\ell \ge 2$  negligible in this region (see later)

## πK, ηK (I=1/2): S & P-waves

#### (73 energy levels)



Up to  $\pi\pi K$  threshold, except [0,0,0]  $A_1^+$  up to  $\pi\pi\pi K$ Assume  $\ell \ge 2$  negligible in this region (see later)

### πK, ηK (I=1/2): D-wave

Only irreps where J = 2 is lowest  $\rightarrow$  24 levels Assume  $\ell \geq 3$  negligible Up to  $\pi\pi\pi$ K threshold; neglect coupling to  $\pi\pi$ K Points assume  $\pi$ K,  $\eta$ K

decouple (good approx)





### πK, ηK (I=1/2): D-wave











#### Summary and outlook

Summary

- Map out energy dependence of scattering in detail
  - $\pi\pi$  I=1:  $\rho$  resonance (also  $\pi\pi$  I=2 in S and D-wave)
  - $\pi K$ ,  $\eta K = 1 first coupled-channel scattering from LQCD$

 $\rightarrow$  broad & narrow resonances, bound state, v.b.s.



#### Summary and outlook

Summary

- Map out energy dependence of scattering in detail
  - $\pi\pi$  I=1:  $\rho$  resonance (also  $\pi\pi$  I=2 in S and D-wave)
  - πK, ηK I=1 first coupled-channel scattering from LQCD

 $\rightarrow$  broad & narrow resonances, bound state, v.b.s.



#### Outlook

- Many other interesting cases to consider using methodology
- >2 hadrons is challenge. Lighter  $\pi \rightarrow$  lower 3-hadron thresh.