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Challenging:

(Iliev et al 2006)

• Need small scales: IGM physics

• Need large scales: quasars (QSOs) are rare

Analytic/semi-numeric methods can provide physical insights
into certain aspects of the problem
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• How can we incorporate source clustering in (semi-)analytic 
models of the UV ionizing background (UVB) evolution ?

• Is quasar clustering important for the UVB at the end of HeII 
reionization ?

Tuesday, 5 August 14



• (Comoving) attenuation length or photon mean free path

• Quasar (QSO) clustering length

r0 ⇠ 30� 50 Mpc

r⇠ ⇠ 15� 30 Mpc

• QSO number density

l = n̄�1/3

(Bolton & Haehnelt 2006; Furlanetto & Oh 2008)

(Shen et al 2007; Francke et al 2008) 

Scales
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Scales

• (Comoving) attenuation length or photon mean free path

• Quasar (QSO) clustering length

r0 ⇠ 30� 50 Mpc

r⇠ ⇠ 15� 30 Mpc

• QSO number density

l = n̄�1/3

(Bolton & Haehnelt 2006; Furlanetto & Oh 2008)

(Shen et al 2007; Francke et al 2008) 

Quasar clustering important if: i) r⇠/r0 & 1

ii) r0/l � 1

Scales
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(Dixon, Furlanetto & Mesinger 2013)

QSO1 = sub-sample of halos with M � 5⇥ 1011M�

QSO2 = most massive halos

QSO3 = randomly distributed

Photoionization rate : � =

Z 1

⌫HeII

d⌫
J⌫
h⌫

�HeII(⌫)

The only attempt so far:
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Extend the work of Zuo 1992; Fardall & Shull 1993, Meiksin & White 
1993; who worked out P(J) analytically for randomly distributed sources 

N̄0 =
4⇡

3
n̄r30

(Meiksin & White 2003)

Plan of attack
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Fall et al. 1976; White 1979; Peebles 1980;  Fry 1985; Balian & Schaefer 1989;  Szapudi & Colombi 1996

Consider randomly-located cells of volume V. 

• Probability to have an empty cell:

P0 = P
�
�0(V )

�
= exp

�
W0(V )

�

• Conditional void correlation:

W0(V ) =
1X

k=1

(�n̄)k

k!

Z

V
d3x1 . . .

Z

V
d3xk ⇠k(x1, . . . ,xk)

=
1X

k=1

(�N̄)k

k!
⇠̄k(V )

• Volume-averaged irreducible correlations:

N̄ = n̄V

⇠̄k(V ) ⌘ 1

V k

Z

V
d3x1 . . .

Z

V
d3xk ⇠k(x1, . . . ,xk)

Count-in-cells
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Fall et al. 1976; White 1979; Peebles 1980;  Fry 1985; Balian & Schaefer 1989;  Szapudi & Colombi 1996

• Poisson distribution: ⇠̄1(V ) ⌘ 1, W0(V ) = �N̄

N̄W0(N̄)

Void conditional probability
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O

J =
X

k

Jk(xk)

Jk(xk) = (1 + z)2
Lk

(4⇡rk)2
e�rk/r0

Intensity distribution
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Intensity distribution

Tuesday, 5 August 14



Count-in-cells + weight

• Assign a weight to each point:
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• Assign a weight to each point:

1 =
1X

N=0

1

N !

Z
. . .

Z
P
�
X1 . . . XN

���0(V )
 
eW0(V )

P!(V ) =
1X

N=0

1

N !

Z
. . .

Z
P
�
X1 . . . XN

���0(V )
 
!(x1) . . .!(xN ) eW0(V )

Count-in-cells + weight
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P!(V ) = eW!(V ) � eW0(V )

W!(V ) =
1X

k=1

(�n̄)k

k!

Z

V
d3x1 . . .

Z

V
d3xk ⇠k(x1, . . . ,xk)

�
1� !(x1)

�
. . .

�
1� !(xk)

�

• Assign a weight to each point:

• “Weighted” probability distribution:

1 =
1X

N=0

1

N !

Z
. . .

Z
P
�
X1 . . . XN

���0(V )
 
eW0(V )

P!(V ) =
1X

N=0

1

N !

Z
. . .

Z
P
�
X1 . . . XN

���0(V )
 
!(x1) . . .!(xN ) eW0(V )

Count-in-cells + weight

Tuesday, 5 August 14



Application to UV background

• Weight is provided by the Quasar contribution to the specific intensity 
at x=0

• Each configuration of N quasars in cells of volume V contributes
Z
d↵1 . . . d↵N �(↵1) . . .�(↵N )

⇥ P
�
X1 . . . XN�0(V )

 

⇥ �D(J1 + · · ·+ JN � J)

L = ↵L?
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• Weight is provided by the Quasar contribution to the specific intensity 
at x=0

• Each configuration of N quasars in cells of volume V contributes
Z
d↵1 . . . d↵N �(↵1) . . .�(↵N )

⇥ P
�
X1 . . . XN�0(V )

 

⇥ �D(J1 + · · ·+ JN � J)

• Substitute Laplace/Fourier representation:

�D(J1 + · · ·+ JN � J) =
1

2⇡i

Z +i1

�i1
ds es(J�J1�···�JN )

!(xk) = ⇥H(R� |xk|)
Z ↵

max

↵
min

d↵k �(↵k) e
�sJk(xk)

Application to UV background
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• Weight is provided by the Quasar contribution to the specific intensity 
at x=0

• Each configuration of N quasars in cells of volume V contributes
Z
d↵1 . . . d↵N �(↵1) . . .�(↵N )

⇥ P
�
X1 . . . XN�0(V )

 

⇥ �D(J1 + · · ·+ JN � J)

• Substitute Laplace/Fourier representation:

�D(J1 + · · ·+ JN � J) =
1

2⇡i

Z +i1

�i1
ds es(J�J1�···�JN )

!(xk) = ⇥H(R� |xk|)
Z ↵

max

↵
min

d↵k �(↵k) e
�sJk(xk)

• Intensity distribution is

P (J) =
1

2⇡i

Z +i1

�i1
ds esJ+W!(V )

Application to UV background

Tuesday, 5 August 14



Hierarchical ansatz

• Volume-averaged correlation functions are of the form

⇠̄k = Sk ⇠̄
k�1
2

• Under this assumption, we can recast the conditional void correlation 
into the form

W0(V ) = �N̄
1X

k=1

(�1)k�1

k!
Sk

�
N̄ ⇠̄2

�k�1

⌘ �N̄�(N̄ ⇠̄2)

void scaling function : � = �
ln

�
P0

�

¯N
= �W0(V )

¯N

e.g. �(N̄ ⇠̄2) =
ln
�
1 + N̄ ⇠̄2

�

N̄ ⇠̄2
(Negative Binomial)

�(N̄ ⇠̄2) =
1

1 + 1
2N̄ ⇠̄2

(Geometric Hierarchical)
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Galaxies

(Croton, Norberg et al 2006)
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Test with mock quasars

Synthetic QSO catalogues constructed from the Millennium simulation
(Croton 2009)
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Quasar void scaling function
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Window

Hierarchical ansatz holds regardless the shape of the window function

Ve(s, V ) ⌘
Z
d3x

�
1� !(x)

�
⇥H(|x|�R)

=

Z R/r0

0
d⌧

dVe

d⌧
(s, ⌧)

⌧ = r/r0 = optical depth

Tuesday, 5 August 14



Intensity distribution in hierarchical models

P (J) =
1

2⇡i

Z +i1

�i1
ds esJ+W!(V )

W!(V ) ⌘ �N̄e �
⇥
N̄e⇠̄2(Ve)

⇤

N̄e⇠̄2 ⌘
✓

n̄

Ve

◆Z
d3x1

Z
d3x2 ⇠2(x1,x2)

�
1� !(x1)

�

⇥
�
1� !(x2)

�
⇥H(|x1|�R)⇥H(|x2|�R)

where:

PDF is:
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Numerical evaluation

• Normalized intensity:

P (j) =
1

2⇡i

Z +i1

�i1
dz e�zj+G(z)

j ⌘ J/J?, J? = L?/(4⇡r
2
0)
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Numerical evaluation

• Normalized intensity:

P (j) =
1

2⇡i

Z +i1

�i1
dz e�zj+G(z)

• There is a critical intensity value: jc ⌘ hji

i) j  jc ) � zj +G(z) admits a saddle point on negative real axis

ii) j > jc ) critical point jc dominates zc = 0

j ⌘ J/J?, J? = L?/(4⇡r
2
0)
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j
=
0.
00
1
j c

j
=
0.
01
j c

j
=
0.
1 j

c

Construct paths in the complex plane such that �
�
�zj +G(z)

�
2 R

j > jc

Saddle point approximation
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Asymptotics

• Low-intensities:

• High-intensities:

i) j  jc : P (j) ⇠
p
F 00(j) e�F (j)

⇠ e�(ln j)m

ii) j > jc : � zj +G(z) ⇡ �(j � jc)z + c3/2z
3/2

P (j) ⇠ j�5/2

Tuesday, 5 August 14



• Power-law form for the QSO correlation function:

⇠2(r) =

✓
r

r⇠

◆��

(Shen et al 2007)

� ⇡ 2

r⇠ ⇠ 24Mpc (2.9  z  3.5)

r⇠ ⇠ 35Mpc (z � 3.5)

Model inputs

• Standard double power-law form for the bolometric QLF:

�(L, z) =
�?(z)/L?(z)

(L/ L?(z))�1(z) + (L/L?(z))�2(z)
(Boyle, Shanks & Peterson 1988)

(Shen, Strauss et al  2007)
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Intensity distribution
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Figure 5. Top panel : Effect of changing the behaviour of the
quasar correlation function on the distribution P (j). The solid
(blue) curve is our fiducial model, the dotted (red) curve was ob-
tained using the GH rather than the NB void scaling function, the
long-dashed (magenta) curve has ξ2 = 0 for r < 1 Mpc while the
dotted-short dashed (orange) assumes ξ2 = 0 outside the range
1 < r < 150 Mpc. Finally, the dotted-long dashed (cyan) curve
assumes a powerlaw slope γ = 1.9 rather than 2.1. The corre-
lation and attenuation lengths are rξ = 15 Mpc and r0 = 35
Mpc, respectively. Bottom panel : P (j) for 3 different attenua-
tion lengths. Results are shown for randomly distributed (dashed
curves) and clustered sources with rξ = 15 Mpc (solid curves).

Varying assumptions
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Figure 5. Top panel : Effect of changing the behaviour of the
quasar correlation function on the distribution P (j). The solid
(blue) curve is our fiducial model, the dotted (red) curve was ob-
tained using the GH rather than the NB void scaling function, the
long-dashed (magenta) curve has ξ2 = 0 for r < 1 Mpc while the
dotted-short dashed (orange) assumes ξ2 = 0 outside the range
1 < r < 150 Mpc. Finally, the dotted-long dashed (cyan) curve
assumes a powerlaw slope γ = 1.9 rather than 2.1. The corre-
lation and attenuation lengths are rξ = 15 Mpc and r0 = 35
Mpc, respectively. Bottom panel : P (j) for 3 different attenua-
tion lengths. Results are shown for randomly distributed (dashed
curves) and clustered sources with rξ = 15 Mpc (solid curves).

We have thus far assumed that the quasar 2-point cor-
relation follows a powerlaw at all separations, even though
we expect quasars to be anti-correlated at very large scales.
Furthermore, if quasars populate distinct haloes, then we
should also expect anti-correlation at separations r ! 1 Mpc
smaller than the typical haloe size. In order to gauge the
importance of these effects, the top panel of Fig.5 displays
the distribution P (j) for the fiducial powerlaw scaling, yet
assuming ξ2(r) = 0 at short separations r < 1 Mpc (long-
dashed curve), as well as outside the range 1 < r < 150
Mpc (dotted-dashed curve). In this case, we have checked
that setting ξ2 = −0.001 or −0.01 for r > 150 Mpc does not
change P (j) appreciably. We also show the impact of chang-
ing the void scaling function from the fiducial NB scaling
to the GH model (dotted curve), and raising the powerlaw
slope from γ = 1.9 to 2.1 (dotted-long dashed curve). Over-
all, the low-intensity tail is quite sensitive to variations in the
default assumptions, with up to an order of magnitude dif-
ference in the probability already at j = 0.1jc. By contrast,
the high-intensity tail is barely affected as it is dominated
by the nearest neighbour.

The impact of clustering relative to Poisson fluctuations
should diminish as the number density N̄0 of sources in an
attenuation volume decreases. This is indeed the case, as
we will see shortly. At low intensities however, the oppo-
site happens. To understand this, consider the GH scaling
for simplicity. For j " 1 (i.e. s # 1), the weighted, con-
ditional void probability Wω given by Eq.(26) scales like

Table 1. Variance 〈∆j2〉 of intensity fluctuations relative to the
Poisson result. Both the quasar clustering length rξ and the at-
tenuation length r0 are in units of (comoving) Mpc.

rξ = 5 rξ = 10 rξ = 15 rξ = 20 rξ = 30

r0 = 25 1.02 1.08 1.19 1.35 1.56

r0 = 35 1.03 1.10 1.23 1.41 1.95

r0 = 55 1.05 1.15 1.32 1.56 2.25

−N̄eχ(N̄eξ̄2) ∼ −ξ̄−1
2 ∼ −τ−γ

ξ when N̄eξ̄2 → ∞. In other
words, Wω increasingly deviates from the Poisson results
∼ −r30, and a larger clustering length further enhances the
suppression, in agreement with our asymptotic expression
Eq.(44). This is clearly seen in Fig.5, where the intensity
distributions for randomly-distributed and clustered sources
are compared for three different values of the attenuation
length r0 = 25, 35 and 55 Mpc. The number of quasars in
an attenuation volume is N̄0 ∼ 7, 20 and 76, respectively.
A constant clustering length rξ = 15 Mpc is assumed for
all the solid curves. Note again the enhancement of P (j) at
large intensities, which is consistent with Eq.(45) (i.e. the
effect increases with N̄0τ

2
ξ ∼ r0r

2
ξ) provided that A ≈ 0.05.

To quantify the impact of source clustering on P (j),
we have measured the variance of intensity fluctuations,
〈∆j2〉 = 〈j2〉−〈j〉2, relative to the Poisson case for a range of
values of r0 and rξ. Results are sumarized in Table 1. All the
models assume a powerlaw slope γ = 2.1. As expected, the
deviation increases with r0 or, equivalently, with decreasing
Poisson noise. At fixed r0, it echoes the rise in the amplitude
of the j−5/2 tail with increasing correlation length rξ.

4.3 Environmental dependence of P (j)

We have thus far focused on the distribution P (j) for ran-
dom field points. Source clustering increases the probability
for intensities j " jc because regions devoid of quasars are
significantly more abundant. Therefore, we may expect that
P (j) depends on whether we sit in a high or low density
region.

4.3.1 Spherical collapse considerations

To ascertain the magnitude of this environmental depen-
dence, we restrict the set of field points to those located at
the center of spheres of volume V ∝ R3 with fractional den-
sity δ. The conditional void probability function acquires a
dependence on δ,

W0(V |δ) =
∞
∑

k=0

(−n̄)k

k!

∫

V

d3
x1 . . .

∫

V

d3
xk ξk(x1, . . . , xk|δ)

≡
∞
∑

k=1

(−N̄)k

k!
ξ̄k(V |δ) . (56)

As before,W0(V |δ) generates all the count probabilities sub-
ject to the condition that the cell fractional density is δ. In
particular, since ξ1(x|δ) is now different from unity, the av-

c© 0000 RAS, MNRAS 000, 1–16

Variance of intensity fluctuations

⌦
�j2

↵��
clus⌦

�j2
↵��

ran

=

⌦
j2
↵
�
⌦
j
↵2��
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j2
↵
�

⌦
j
↵2��
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Environmental dependence

• Environmental dependence of conditional void probability:

W0(V |�) =
1X

k=0

(�n̄)k

k!

Z

V
d3x1 . . .

Z

V
d3xk ⇠k(x1, . . . ,xk|�)

⌘
1X

k=1

(�N̄)k

k!
⇠̄k(V |�)
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Environmental dependence

• Environmental dependence of conditional void probability:

W0(V |�) =
1X

k=0

(�n̄)k

k!

Z

V
d3x1 . . .

Z

V
d3xk ⇠k(x1, . . . ,xk|�)

⌘
1X

k=1

(�N̄)k

k!
⇠̄k(V |�)

• Poisson distribution + spherical collapse:

W0(V |�) = �N̄ ⇠̄1(V |�)
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Environmental dependence

constant attenuation length

r0 depends on environmental density

r0 = 35Mpc

29 < r0 < 57Mpc

Tuesday, 5 August 14



Take home message

• Count-in-cells + Hierarchical ansatz can be very powerful to 
describe strongly clustered distributions
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